Sparse Semicycle Bases in Graphs

Franziska Berger

Lehrstuhl für Geometrie II Zentrum Mathematik TU München Germany

Bled, 2002

Kirchhoff Voltage Law

The sum of the voltages along any mesh in an electric network is zero.

Model: Directed Graph G = (V, E).

• A semicycle is a simple closed walk C in G, represented by a vector b(C).

$$b_i(C) = \begin{cases} -1, & \text{if } e_i \in C, \text{ and } e_i \text{ backwards,} \\ 0, & \text{if } e_i \not\in C \\ +1, & \text{if } e_i \in C \text{ and } e_i \text{ forwards.} \end{cases}$$

<u>Definition:</u> A semicycle basis \mathcal{B} is a maximal linearly independent set of semicycles in G.

The incidence vectors span an \mathbb{R} -vector space \mathcal{C} , of dim $\mathcal{C}=m-n+1$ for G connected.

Problem: Construct sparsest semicycle basis \mathcal{B} of G.

Solvability in time $O(m^3n)$ with memory requirement $O(n^2)$:

Modification of Horton'87 for undirected weighted graphs.

- Use matroid property of systems of independent semicycles → Greedy algorithm can be applied
- Polynomially-sized set of candidate semicycles

<u>Aim:</u> Find faster approximative methods to construct sparse semicycle bases with low space requirement.

- I. Optimize fundamental tree semicycle basis:
- * Construct a spanning tree T in G.
- * Add non-tree edge e to T and store unique semicycle $F_T(e) = T + e$

Lemma 1. The set of fundamental semicycles $\{F_T(e)|e \notin T\}$ is a semicycle basis.

<u>Idea:</u> Exchange semicycles in a fundamental semicycle basis such that as many as possible are shortest semicycles.

Algorithm

- 1. Create a fundamental semicycle basis with respect to a spanning tree T.
- 2. For each non-tree edge e construct a shortest semicycle C(e).
- 3. If $|F_T(e)| > |C(e)|$, this semicycle is a candidate for replacement.
- 4. Choose an independent set of such C(e).

5. Maximum Bipartite Matching

$$w(e_{ij}) = F(e_i) - C(e_j)$$

Proposition 2. By exchanging fundamental semicycles for semicycles of a maximum bipartite matching of value M, the resulting semicycle basis has sparsity

$$\left(\sum_{i=1}^{m-n+1} |F_T(e_i)|\right) - M.$$

II. Ordering Method

<u>Definition</u>: A star generator of a vertex $v \in G$ is a linearly independent set of degree(v) - 1 semicycles which contain v and cover all edges adjacent to v.

Idea: For all vertices v, construct a star generator S(v) and remove v from G.

Horton'87 \Rightarrow :

Proposition 3. This method yields a semicycle basis.

A vertex ordering does not always provide a sparse semicycle basis.

Find a good elimination ordering $V=\{v_1,\ldots,v_n\}$ such that for each $G_i=G\setminus\{v_1,\ldots,v_{i-1}\}$

$$\min |S_{G_i}(v_i)| \subseteq \min |S(v_i)|$$

If such an ordering exists, the resulting semicycle basis is minimal.

This is possible for special graph classes.

Proposition 4. If G has a unique minimum semicycle basis such that every edge is contained at least twice in one of its member semicycles, then there exists no good elimination ordering.

Unique bases?

III. Matrix Extension

There is a minimum semicycle basis which contains any fixed set of independent shortest semicycles $\{C(e): e \in E\}$ (Horton'87, Mardon'93).

Let $A \in \mathbb{R}^{r \times m}$ be the matrix with incidence vectors of $\{C(e) : e \in E\}$. If the basis is not complete, then $r = \operatorname{rank}(A) < m - n + 1$.

Therefore there exists a vector $w \in \mathbb{R}^m \setminus \{0\}$ with $w \in \ker A$. Take w as weight vector for the edges of G.

 $w = \{-1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1\}$

Find a semicycle in G with odd weight according to w.

Lemma 5. If such a semicycle C exists, it is linearly independent from all semicycles in A.

Add C to A and repeat this step if necessary.

IV. Partitioning

Let G be two-connected, but not three-connected, and K_1, \ldots, K_r its three-connected components.

C is the direct sum of the semicycle spaces of its K_1, \ldots, K_r and r-1 'connecting' semicycles.

Proposition 6. Let r = 2. There exists a minimum semicycle basis of G which consists of the union of two minimum semicycle bases of K_1 and K_2 , both containing a shortest connecting cycle C_s .

V. Comparison

Algorithm	Minbasis	Fundamental
Basis length	56	76
Time (sec.)	0.13	0.0

Match(I.)	Order(II.)	Extension(III.)
56	56	56
0.046	0.04	0.1