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Kirchhoff VVoltage Law

The sum of the voltages along any mesh
in an electric network is zero.
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Model: Directed Graph G = (V, FE).

e A semicycle is a simple closed walk C
in G, represented by a vector b(C).
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—1, ife; € C, and ¢; backwards,
bz(C’) = O, if €; g_i C
|+1, ife; € C and e; forwards.




Definition: A semicycle basis B is a maxi-

mal linearly independent set of semicycles
in GG.

The incidence vectors span an R-vector
space C, of dmC =m —-—n+ 1 for G con-
nected.

Problem: Construct sparsest semicycle ba-
sis B of (.

Solvability in time O(m3n) with memory
requirement O(n?):

Modification of Horton’87 for undirected
weighted graphs.

e Use matroid property of systems of in-
dependent semicycles — Greedy algo-
rithm can be applied

e Polynomially-sized set of candidate
semicycles




Aim: Find faster approximative methods to
construct sparse semicycle bases with low
space requirement.

I. Optimize fundamental tree semicycle ba-
SiS:
* Construct a spanning tree T in G.

* Add non-tree edge e to T and store
unique semicycle Fpr(e) =T + e

Lemma 1. The set of fundamental semi-
cycles {Fr(e)le ¢ T} is a semicycle basis.




Idea: Exchange semicycles in a fundamen-

tal semicycle basis such that as many as

possible are shortest semicycles.

Algorithm

1.

Create a fundamental semicycle basis
with respect to a spanning tree T..

. For each non-tree edge e construct a

shortest semicycle C(e).

. If |Fp(e)| > |C(e)|, this semicycle is a
candidate for replacement.

. Choose an independent set of such
C(e).




5. Maximum Bipartite Matching
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Proposition 2. By exchanging fundamen-
tal semicycles for semicycles of a maxi-
mum bipartite matching of value M, the
resulting semicycle basis has sparsity
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II. Ordering Method

Definition: A star generator of a vertex
v € G is a linearly independent set of
degree(v) — 1 semicycles which contain v
and cover all edges adjacent to v.

Idea: For all vertices v, construct a star
generator S(v) and remove v from G.

Horton'87 =:

Proposition 3. This method yields a semi-
cycle basis.




A vertex ordering does not always provide
a sparse semicycle basis.

Find a good elimination ordering V =
{v1,...,vn} such that for each

G; =G\ {v1,...,v-1}

min |SGZ-('U71)| C min |S(v;)]

If such an ordering exists, the resulting
semicycle basis is minimal.
This is possible for special graph classes.




Proposition 4. If G has a unique mini-
mum semicycle basis such that every edge
s contained at least twice in one of its
member semicycles, then there exists no
good elimination ordering.

Unique bases?



III. Matrix Extension

There is a minimum semicycle basis which
contains any fixed set of independent
shortest semicycles {C(e) : e € E} (Hor-
ton’87, Mardon’93).

Let A € R"*™ be the matrix with incidence
vectors of {C(e) : e € E}. If the basis is not
complete, then r =rank(A) <m —n+ 1.
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Therefore there exists a vector w € R™\{0}
with w € kernA. Take w as weight vector
for the edges of G.

w={-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1}

Find a semicycle in G with odd weight ac-
cording to w.

Lemma 5. If such a semicycle C' exists, it
is linearly independent from all semicycles
in A.

Add C to A and repeat this step if neces-
sary.




IV. Partitioning

Let G be two-connected, but not three-
connected, and Ki,...,K, its three-
connected components.

C is the direct sum of the semicycle spaces
of its Kq,...,Ky and r — 1 ‘connecting’
semicycles.

Proposition 6. Let r = 2. There exists a
minimum semicycle basis of G which con-
Sists of the union of two minimum semicy-
cle bases of K1 and K-, both containing a
shortest connecting cycle Cs.



V. Comparison

Algorithm | Minbasis | Fundamental

Basis length 56 76
Time (sec.) 0.13 0.0

Match(l.) | Order(Il.) | Extension(III.)

56 56 56
0.046 0.04 0.1




