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Graph Laplacian

Let G(V, E) denote a connected, simple, undi-
rected graph without loops with vertex set V
and edge set E.

(However G might be weighted.)

The matrix

A=A(G)=D(G)—A(G)
is called the Laplacian of the graph G.
A(G)... adjacency matrix.

D(G)... diagonal matrix vertex degrees as
entries (sum of weights) .
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Nodal domains
(Sign Graphs)

For a (connected) graph G(V, E) with Laplace

operator A(G) let
A <A < A3 <...< AN

denote the eigenvalues (counting multiplicity)
of A with corresponding eigenvectors

1~|)1>1|)2>1|)3>- x )1-1)]\1

APy = Ay
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We define a strong positive nodal domain of
as a maximal, connected induced subgraph of
G on vertices with P (v) > 0.

We define a weak positive nodal domain of
1 as a maximal, connected subgraph of G on
vertices with \(x) > 0 and with at least one
vertex with P (x) > 0.

Notice that weak nodal domains may have
vertices in common. On these vertices 1
vanishes. (Zero vertex)

A zero vertex of 1 either is adjacent to other
zero vertices, or it is adjacent to vertices of
both strict signs.
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Discrete nodal domain theorems

Theorem (Weak nodal domain theorem).
P has at most k weak nodal domains.

Theorem (Strong nodal domain theorem).
P has at most k+m—1 strong nodal domains.

where m is the multiplicity of eigenvalue Ay,
i.e., we have

AM—1 <A SAkg1 <o S A kim—1 < A

Both bounds are sharp.
(Eigenvectors of a path.)
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Do we know better bounds for special graph
classes?

No! (AFAIK)
(... Well, Tiirker does for trees, cographs, ...)

Do we know lower (non-trivial) bounds?

Do we know all possible values for the numbers
of nodal domains?

No! (AFAIK)
(... Tirker always warns us that this problem
is NP-complete, i.e. from the Mafia).

Worse!

We even have no idea how to compute the
minimum and maximum number of nodal
domains for a particular eigenvalue of a graph
that is given explicitly!
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Basis of Eigenspace

Let A be an eigenvalue of multiplicity m > 2.

Orthonormal basis of eigenspace (= R™)

Ui,...,Um

Every eigenvector f is given by

f(x) =) aiui(x) = (a,u(x))
i=1
where a = (ay,...,a.), and
U(X) — (LL] (X)> .o ,Um(X))

is the vector that contains the values of the
basis at vertex x.

Alternatively: If U is the matrix containing the
basis as its columns then the u(x) are its rows.
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The convex hull of
{u(x): x € V}

forms a polytope in R™.

It is called the eigenpolytope by Godsil.
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Sign pattern

Obviously the number of nodal domains only
depend on sign of eigenvector on each of the
vertices.

The sign at vertex x is given by

sign(a, u(x))

There is a 1-1 relation between the eigenvector

f and coordinate vector a.

flx) =0 & (a,u(x))=0
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Hyperplane arrangements

Set of eigenvectors that vanish on vertex x
corresponds to the set

H(x) ={a € R™: (a,u(x)) = 0}

For a vertex x € V

e either H(x) = R™
(and f(x) = 0 for all eigenvectors),

e or H(x) is a hyperplane through the origin
in R™.

The set of all proper hyperplanes H(x), x € V,
forms a hyperplane arrangement H in R™.
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Hyperplane arrangement
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Sign vectors

Each hyperplane H(x) splits R™ into three
pleces:

e the hyperplane itself given by (a,u(x)) =0
e the positive part (a,u(x)) >0
e and the negative part {(a,u(x)) <O

In each part f(x) has the same sign.

Using H we can asign a sign vector of length
'V| to each a and hence to eigenvector f.

This sign vector corresponds to the vector of

signs of the eigenvector.
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Cellular complex

We can restrict the eigenspace R™ to the
set or normalized eigenvectors S™~!, i.e. the
(m — 1)-dimensional sphere.

H N S™ ! forms a cellular complex.

O-cell: single point.
1-cell: piece of line.

2-cell: homeomorph to disc, where boundary
consists of union of 1-cells.

n-cell: homeomorph to n-dimensional ball,
where boundary consists of union of
(n — 1)-cells.
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Cellular complex
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Cells of HNS™ ! are given by intersections of
hyperplanes.

We have a Polytope.

The sign vector (and hence the number of
nodal domains) is constant on every cell of this
complex.

Every cell is uniquely determined by its sign

vector.

Finding all possible values for the number of
nodal domain is equivalent with finding all cells
of this complex.

(l.e., this problem is from the Mafia.)
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Example: Cube

The eigenpolytope of the eigenvalue 4 is spanned

by:

(1 1 1) (1>1>_1) (1>_1>1)>(1>_1>_1)>
( ))( 1>1>_1)>(_]>_1>1)>(_1>_1>_1)

Due to symmetry we only have the cells

dim  shape 4 sND  # wND
2 rectangle 4 4
2 triangle 3 3
1 edge 4 3
0 point 3 2
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Example: Star with 5 nodes

The eigenpolytope of the eigenvalue 1 is spanned

(@)?/)_%)) (_§
(O>_TZ>_%)> (O

1),0,%2, -

0,
0,0)

Due to symmetry we only have the cells

dim  shape 4# sND 4 wND
2 rectangle 4 2
2 triangle 4 2
1 edge 3 2
0 point 2 2
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