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Undirected Graphs

We consider cycles in simple undirected or directed graphs G(V, E).
E . . . edge set
V . . . vertex set

In the directed case we distinguish
cycles . . . without orientation
circuits . . . following the orientation of the edges.

U ⊆ E . . . |E|-dimension vector (indexed by the edges):

A cycle (=subgraph with even vertex degrees) is an edge-disjoint union of
elementary cycles.

TWO-CONNECTED GRAPHS only: every edge is contained in a cycle.
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Vector Spaces of Edges

Ue =

{

1 if e ∈ U
0 if e /∈ U

Incidence matrix H of G:

Hxe =

{

1 if x ∈ e
0 if x /∈ e

All cycles satisfy

HU = 0 over GF(2) = ({0,1},⊕, ·)

Cycle space C = vector space spanned by cycles

Dimension:

dimC = γ(G) = |E| − |V |+ components(G)
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Bases of a Vector Space

A set {x1, . . . , xL} of vectors is linearly independent if the linear

equation

λ1x1 + λ2x2 + . . . λlxl = 0

has no solution except λ1 = λ2 = · · ·= λL = 0.

A basis of a vector space is a maximal set of linearly independent

vectors.

Each vector x can be written as a linear combination of the basis

elements B = {y1, y2, . . . , yn}:

x = λ1y1 + λ2y2 + · · ·+ λnyn
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Cycle Bases

Kirchhoff basis:

graph ⇒ spanning tree ⇒ cycles C(T, e) for all e /∈ T .

A basis of B is a Kirchhoff basis (or a strictly fundamental basis)

of C if there is a spanning tree T such that B = {C(T, e)|e ∈ E\T}.
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Fundamental Cycle Bases

A collection of ν(G) cycles in G is called fundamental if there is

an ordering of these cycles such that

Cj \ (C1 ∪ C2 ∪ · · · ∪ Cj−1) 6= ∅ for 2 ≤ j ≤ ν(G)

Strictly Fundamental implies fundamental but not vice versa.
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Ear Decomposition

Every two-connected graph has an ear decomposition. Each ear

decomposition defines a basis of the cycle space C.
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Minimal Length Cycle Bases

Length |C| of cycle C = number of edges

Length of a cycle basis `(B) =
∑

C∈B |C|.

Relevant Cycles (Plotkin ’71, Vismara ’97);

C is contained in a minimal cycle basis

⇐⇒

C cannot be written as a ⊕-sum of shorter cycles
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Some Counter examples

• Not every MCB is strictly fundamental (Horton, Deo)

• Not every MCB is fundamental (examples are quite complicated)

• The MCB of a planar graph not necessarily consists of faces
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Who cares about MCBs?

Chemical Ring Perception (SSSR).
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Analysis of chemical reaction networks.
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Matroid Property

The cycles of G form a matroid =⇒
A minimal cycle basis is obtained from the set of all cycles by a greedy
procedure:

1. Sort set C of cycles by length

B ← ∅

2. while(C 6= ∅)

C ← C \ {C}

if B ∪ {C} independent: B ← B ∪ {C}.

Problem: exponentially many cycles.

Necessary conditions:

elementary (all vertices have degree 2)

short (isometric) for all vertices x, y in C, the cycle C contains a shortest

paths between x and y.
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Horton’s Polynomial Time Algorithm

A cycle is edge short if C contains an edge e = {x, y} and a vertex z such
that

C = {x, y} ∪ P(x, z) ∪ P(y, z)

where P(x, z) and P(y, z) are shortest paths.

If C is relevant then it is edge-short
(Horton’87).

Construct (at most) |E| × |V | edge-short cycles.

Horton showed that even if P(x, z) is not unique one may choose any shortest
path, i.e., the |E| × |V | cycles contain a minimal cycle basis.

Alternative trick [Hartvigsen’94]: small perturbation of edge length to make

minimum weight cycle basis unique.
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Graph Operations

The length of minimal cycle bases does not behave “well” under

many simple graph operations:

G1 G2

G1 has ν(G1) = 3 and `(G1) = 38. Deletion of a single edge

leads to G2 with ν(G2) = 2 but `(G2) = 44.

Similar: other graph minor operations.
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Cartesian and Strong Graph Products

Given two non-empty graphs G = (VG, EG) and H = (VH , EH):

Cartesian product G�H:
Vertex set VG × VH

Edges: (x1, x2)(y1, y2) is an edge in EG�H iff either x2 = y2 and x1y1 ∈ EG or if x1 = y1 and
x2y2 ∈ EH

Direct product G×H:
Vertex set VG × VH

Edges: (x1, x2)(y1, y2) is an edge if x1y1 ∈ EG and x2y2 ∈ EH

Strong product G � H:

Vertex set VG × VH

Edges: those of the direct product and those of the Cartesian product
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Relevant Cycles in Product Graphs

G = (VG, EG) and H = (VH , EH) be two non-empty graphs,

TG and TH spanning trees,

BG and BH cycle bases of G and H.

Hammack’s Basis for Cartesian Products (1999):

H1 = {e�f |e ∈ TG, f ∈ TH}

H2 = {Cy|C ∈ BG, y ∈ VH}

H3 = {xC|x ∈ VG, C ∈ BH}

B∗ = H1 ∪H2 ∪H3

B∗ is i general not minimal even if BG and BH are minimal.

• Counterexample: C5�K2

Hammack basis: 4 squares and 2 pentagons.

Minimal length basis: 5 squares and 1 pentagon.

16



Hammack’s basis is minimal if BG and BH consist of triangles

and squares only.

Consider a triangle-free graph for the moment.

Idea. Start with the Hammack basis and replace as many cycles

in the fibres as possible by squares from

C� = {e�f |e ∈ EG, f ∈ EH}.

Lemma. For all C ∈ BG and all x, y ∈ VH there is a collection of

squares in C� such that

Cx = Cy ⊕ squares.

It is hence sufficient to have one copy BG and one copy of BH in

one G and one H-fibre. The rest of the basis can be completed

from C�.
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To show that there are no relevant cycles that are not contained in C� or a fibre we consider
the following procedure:

Set δ(x) = sum of distance of x ∈ G�H from two fixed fibres. Define for any cycle C∗ in
�H:

δ(C∗) =
∑

x∈VC∗

degC∗(x)

2
δ(x),

We show that we keep adding squares from C� to C∗ until we arrive at δ(C(k)) = 0 and
|C(k)| ≤ |C∗|. Since C∗ is either strictly shorter than C∗ or it is the edge-disjoint union of a
cycle in xH and a cycle in Gy C∗ cannot be relevant.

It remains to show that it is impossible to replace any further basis cycle by squares from

C�. (not hard)

For graphs with triangles: retain triangles in each fibre and use

the longer basis cycles in a single fibre only.
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Total Basis Length in Iterated Products

`(G�H) = `(G) + `(H)+

3
[

tG(|VH| − 1) + 3tH(|VG| − 1)
]

+ 4
[

(|EG| − tG)(|VH| − 1) + |EH| − tH)(|VG| − 1)−

(|VH| − 1)(|VG| − 1)
]

Substitute

Gn = G�Gn−1 ' Gn−1
�G, G1 = G

and set a = |E|/|V | and τ = tG/|V |, where tG is the number of triangles in
the MCB of G.

`(Gn+1) = `(G) + `(Gn) + 3τ
[

|V |(|V n| − 1) + n|V |n(|V | − 1)
]

+ 4(a− τ)
[

|V |(|V |n − 1) + n|V |n(|V | − 1)

− (|V |n − 1)(|V | − 1)
]

.

Dividing by ν(Gn+1) and setting ξ = 1/V eventually yields:

L∞ = lim
n→∞

Ln = 3
τ

a
+ 4

a− τ

a
.
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Graphs with a Unique MCB

Outerplanar graphs
Two-connected o.p. graphs have a Hamiltonian Cycle H and
each chord separates G into 2 two-connected outerplanar graphs G1 and G2.

Take an edge e in H. The shortest cycle C through e contains at least one
chord, hence C is a member of the MCB. Split C along the chords and repeat.

20



RNA Secondary Structures

outerplanar.

“loops” = cycles of the unique MCB.
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Pseudoknots: MCB usually not unique.
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Exchangability of Relevant Cycles

Set R of relevant cycles of an undirected graph can be computed

efficiently by Vismara’s algortithm (1997).

Def.: C, C ′ ∈ R are exchangable, C ↔ C ′, if there is a set Q of

relevant cycles such that

(i) |C ′′| ≤ |C|= |C ′| for all C ′′ ∈ Q,

(ii) Q ∪ {C ′} is linearly independent, and

(iii) C ′ = C ∪
⊕

Q.

Theorem. C ↔ C ′ is an equivalence relation.

Surprisingly tedious to prove ...

uses explicitly that we work over GF(2), i.e.,

does not work for general matroids.
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Theorem. Let W be a ↔-class and let M be a minimal cycle

basis. Then

knar(W) = |M ∩W|

is independent of the choice of the minimal cycle basis M.
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Directed Graphs

Let G(V, A) be a directed graph and a U a cycle in G.
Associated vector:

Ue =







+1 if e ∈ U in forward direction
−1 if e ∈ U in backward direction
0 if e /∈ U

Incidence matrix H of G:

Hxe =







−1 if x is inital point of arc e
+1 if x is terminal point of arc e
0 if x /∈ e

All cycles satisfy

HU = 0 over R

Circuit cycle in forward direction, Ce = 0,+1.
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Circuit Bases

Theorem. (Berge) If G(V, A) is strongly connected if it has a

cycle basis consisting of (elementary) circuits.

Remark. Elementary circuits generate the extremal rays of the

convex cone

K := {U : HU = 0 and U(e) ≥ 0}

How to compute a minimum length circuit basis?

Circuits again form a matroid (linear independence over R).

=⇒ Greedy Algorithm.

Again exponentially many circuits.
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Def. A circuit C is short if for all vertices x and y it contains a shortest path S[x, y] or a
shortest path S[y, x].

Def.: A circuit C is arc-short if C contains a vertex x and an arc e = (v, w) such that
C = P [w, x] + P [x, v] + (v, w) where P [w, x] and P [x, v] are shortest directed paths.

Lemma. If C is short, it is arc-short

Proof.

x

y

e

x

y

z z

Lemma. If C is relevant, then C is short.

Proof. C relevant but not short =⇒
∃x, y in C: C contains neither shortest paths S[x, y] nor S[y, x]. Then C1 = C[x, y] + S[y, x],
C2 = S[x, y] + S[y, x], and C3 = S[x, y] + S[y, x] are closed paths in G and hence are sums of
(shorter) circuits. Furtermore

C = C[x, y] + C[y, x] = C1 + C2 − C3

and |Ci| < |C|
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Minimum Circuit Base

1: Compute directed distances and shortest paths with per-

turbed edge length. O(|V |3)

2: Construct |A| × |V | candidates for arc-short cycles.

3: Check that the cycles are elementary. O(|V |) for each cycle,

i.e., O(|A| × |V |2)

4: Greedy step. At most |A| × |V | Gauss eliminations on a

(ν(G) + 1)× |E| matrix, i.e., at most O(ν(G)|E|2 × |V |).

For most graphs probably much faster.
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Cuts

Let (V1, V2) be a partition of the vertex set V , i.e., V1, V2 6= ∅

and V1 ∪ V2 = V .

A cut or cocycle K = 〈V1, V2〉 is the set of all edges in G that

have one end in V1 and one end in V2.

The cuts form a vector space K over ({0,1},⊕, ·) with dimension

|V | − 1.
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Fundamental Cuts

A basis is again obtained from a spanning tree: Let b ∈ T .

Removal of b disconnects the tree T into exactly two subtrees

with vertex sets V
T,b
1 and V

T,b
2 . The cut

cut(T, b) := 〈V T,b
1 , V

T,b
2 〉

is fundamental cut of G.

T has |V | − 1 edges, thus there are |V | − 1 linearly independent

fundamental cuts.
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Cut Sets

A cut is a cut set of G if both V1 and V2 are connected.

⇒ every fundamental cut cut(T, b) is a cut set of G. (T \ {b} consists

of two trees)

Size of a cut: |K|

Length of a cut basis `(B) =
∑

K∈B

|K|

Minimal basis of the cut space?
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The Cut Tree

Let G(V, E) be a graph, possibly with edge weights w(e).

A cut tree T# of G is a tree with vertex set V with the following

property:

For every pair of distinct vertices s, t ∈ V , let e be a minimum

weight edge on the unique path from s to t in T#. Deleting

e from T# separates T# into two connected components V
st,e
1

and V
st,e
2 such that

cut(T#; e) = 〈V st,e
1 , V

st,e
2 〉

is a minimum weight cut separating s, t.

The algorithms by Gomory and Hu (1961) and Gusfield (1991) compute a cut tree T # and

the sets cut(T#; e) in O(|E||V |2 log |V |) steps.
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The Gomory-Hu Algorithm

In a nutshell:

(1) Pick two vertices s and t (at random) and find the minimum weight cut (V1, V2) that

separates s and t.

(2) Form two graphs G1 and G2 by contracting V2 and V1, repectively.

(3) Repeat with both graphs until only graphs with two vertices as left.
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Lemma. (see e.g. Golynski, Horton 2001)

If T# is a cut tree then

M = {cut(T#; e)|e ∈ T#}

is a minimum weight basis of the cut space K.

Proof. We use the edge-weight perturbation trick to make the Gomory-Hu tree and all cut
weights unique.

Suppose Q is a minimal cut basis and let H = cut(T #; e) be the minimum weight cut

separating s and t. Then H is a ⊕-sum of cuts in Q. This sum must contain a cut H ′ which

separates s and t. Suppose H 6= H ′. Of course, H ′ cannot be shorter than the cut H, hence

Q′ = Q \ {H ′} ∪ {H} is shorter than Q, a contradiction to minimality. Thus cut(T #; e) ∈ Q.

This holds for each of the |V | − 1 cuts associated with T #, which are linearly independent,

and the lemma follows from dimK = |V | − 1.

Open Question: How to compute the set of relevant cuts in

the unweighted (or degenerate) case?
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Relationships of Cycles and Cuts

C ∈ C if |C ∩K| is even for all K ∈ K.

K ∈ K if |C ∩K| is even for all C ∈ C.

Thus, for all C ∈ C and all K ∈ K |C ∩K| is even, i.e.,

⊕

e∈E

Ce ·Ke = 0 .

In other words C and K are “orthogonal” over GF(2).

C and K are orthogonal complements iff C ∩ K = {∅}.
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So what is a “bicycle”?

Def. A bicycle B is a subset of E that is both a cycle and a

cocycle (cut).

Thus the bicycle space is B = C ∩ K.

Some graphs have bicycles, some don’t . . .

QUESTION: How can we compute (minimal) Bicycle Bases ???
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