Cycles and Bicycles

Peter F. STADLER

Institut fur Theoretische Chemie, Universitat Wien

Santa Fe Institute, New Mexico

http://www.tbi.univie.ac.at/ studla

Bled, Slovenia, January 2002



Undirected Graphs

We consider cycles in simple undirected or directed graphs G(V, E).
E ... edge set
V... vertex set
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In the directed case we distinguish
cycles ... without orientation
circuits ... following the orientation of the edges.

UCEFE ...|E|-dimension vector (indexed by the edges):

A cycle (=subgraph with even vertex degrees) is an edge-disjoint union of
elementary cycles.

TWO-CONNECTED GRAPHS only: every edge is contained in a cycle.



Vector Spaces of Edges

_J1 it eeU
Ue_{o if e¢U

Incidence matrix H of G-

_J1 if zee
Hme_{O if xée

All cycles satisfy
HU = 0 over GF(2) = ({0,1},@,-)

Cycle space € = vector space spanned by cycles

Dimension:
dim€ = ~(G) = |E| — |V| + components(G)



Bases of a Vector Space

A set {z1,...,x} of vectors is linearly independent if the linear
equation

AMx1+ oz + ...\ =0

has no solution except A\ = Ao =-.- = X\ = 0.

A basis of a vector space is a maximal set of linearly independent
vectors.

Each vector £ can be written as a linear combination of the basis
elements B = {y1,y2,...,yn}:

T = Ayl + Aoys2+ -+ Anyn



Cycle Bases

Kirchhoff basis:

graph = spanning tree = cycles C(T,e) for all e & T.

A basis of B is a Kirchhoff basis (or a strictly fundamental basis)
of € if there is a spanning tree T such that B = {C(T,e)|e € E\T}.



Fundamental Cycle Bases

A collection of v(G) cycles in G is called fundamental if there is
an ordering of these cycles such that

Ci\(CLUCU---UCj_1)# 0 for 2 < j <v(Q)

Strictly Fundamental implies fundamental but not vice versa.



Ear Decomposition
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Every two-connected graph has an ear decomposition. Each ear
decomposition defines a basis of the cycle space €.




Minimal Length Cycle Bases
Length |C| of cycle C = number of edges
Length of a cycle basis ¢(B) = Y cep|C]|.
Relevant Cycles (Plotkin '71, Vismara '97);

C is contained in a minimal cycle basis

<—
C' cannot be written as a @-sum of shorter cycles



Some Counter examples

e Not every MCB is strictly fundamental (Horton, Deo)
e Not every MCB is fundamental (examples are quite complicated)

e The MCB of a planar graph not necessarily consists of faces




Who cares about MCBs?

Chemical Ring Perception (SSSR).
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Analysis of chemical reaction networks.
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Reaction network of Io's athmosphere
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Matroid Property

The cycles of G form a matroid —
A minimal cycle basis is obtained from the set of all cycles by a greedy

procedure:
1. Sort set C of cycles by length
B—0
2. while(C # 0)
C—C\{C}
if BU{C} independent: B+ BU{C}.

Problem: exponentially many cycles.
Necessary conditions:

elementary (all vertices have degree 2)

short (isometric) for all vertices z,y in C, the cycle C contains a shortest

paths between x and y.
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Horton’s Polynomial Time Algorithm

A cycle is edge short if C contains an edge e = {z,y} and a vertex z such
that

C ={z,y} UP(z,2) UP(y, 2)
where P(x,z) and P(y,z) are shortest paths.

If C is relevant then it is edge-short
(Horton'87).

Construct (at most) |E| x |V| edge-short cycles.

Horton showed that even if P(xz, z) is not unique one may choose any shortest
path, i.e., the |E| x |V| cycles contain a minimal cycle basis.

Alternative trick [Hartvigsen'94]: small perturbation of edge length to make

minimum weight cycle basis unique.
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Graph Operations

The length of minimal cycle bases does not behave “well’ under
many simple graph operations:

G1 has v(G1) = 3 and ¢(G1) = 38. Deletion of a single edge
leads to G with v(Go) = 2 but £(G>) = 44.

Similar: other graph minor operations.
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Cartesian and Strong Graph Products
Given two non-empty graphs G = (Vg, Eg) and H = (Vy, Ey):

Cartesian product GUH:

Vertex set Vg X Vg

Edges: (z1,22)(y1,y2) is an edge in Egny iff either xo = y» and z1y1 € Eg or if x1 = y1 and
xoy2 € By

vD — vx — ﬁ vm —

Direct product G x H:
Vertex set Vg x Vg
Edges: (x1,z2)(y1,y2) is an edge if xz1y1 € Eq and zoy> € Ey

Strong product GX H:
Vertex set Vg x Vg

Edges: those of the direct product and those of the Cartesian product
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Relevant Cycles in Product Graphs

G = (Vg,Eg) and H = (Vy, Eyg) be two non-empty graphs,
T and Ty spanning trees,
Bs and By cycle bases of G and H.

Hammack’s Basis for Cartesian Products (1999):

Hi ={elflecTq, f €Ty}
Ho = {CY|C € B, y € Vy}
Hz = {*Clz € Vg, C € By}
B* = H1{ UH>UHs3

B* is i general not minimal even if B; and By are minimal.
e Counterexample: Csl1Ko

Hammack basis: 4 squares and 2 pentagons.
Minimal length basis: 5 squares and 1 pentagon.
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Hammack’s basis is minimal if B; and By consist of triangles
and squares only.

Consider a triangle-free graph for the moment.

Idea. Start with the Hammack basis and replace as many cycles
in the fibres as possible by squares from
Co=A{elfle€ Eq, f € Ex}.

Lemma. For all C € B and all z,y € Vg there is a collection of
squares in Co such that
C* = CY & squares.

It is hence sufficient to have one copy Bgs and one copy of By in
one G and one H-fibre. The rest of the basis can be completed
from Cp.
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To show that there are no relevant cycles that are not contained in C; or a fibre we consider
the following procedure:

Set 6(x) = sum of distance of x € GLOH from two fixed fibres. Define for any cycle C* in
LH:
*\ __ degC*(x)
0(C*) = Z T(S(CE),

€V

We show that we keep adding squares from Co to C* until we arrive at §(C®*)) = 0 and
|IC(R)| < |C*|. Since C* is either strictly shorter than C* or it is the edge-disjoint union of a
cycle in *H and a cycle in GY C* cannot be relevant.

It remains to show that it is impossible to replace any further basis cycle by squares from

Ch. (not hard)

For graphs with triangles: retain triangles in each fibre and use
the longer basis cycles in a single fibre only.
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Total Basis Length in Iterated Products

((GUH) = 4(G) + £(H)+
3lta([Vul — 1) + 3tu(|Va| — 1)]
+ 4[(|Ec| —ta)(Va| — 1) 4+ |Ex| — ta)(|Va] — 1) —
(IVal = D(|[Val - 1)]
Substitute
G" =GO ~ g0, Gl=G

and set a = |E|/|V| and T = tg/|V|, where tg is the number of triangles in
the MCB of G.

LG = (G) + 6(G™) + 3T[IVIIVT = 1) + V" (V] = 1)]
+4(a =) [[VI(V]" = 1) +n|V[*(|V] - 1)
- (VI"=1(V] = D).
Dividing by v(G"T!) and setting ¢ = 1/V eventually yields:

Loo = lim L, =32 4+42"7"
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Graphs with a Unique MCB

Outerplanar graphs
Two-connected o.p. graphs have a Hamiltonian Cycle H and
each separates G into 2 two-connected outerplanar graphs G1 and Go.

Take an edge e in H. The shortest cycle C through e contains at least one
chord, hence C'is a member of the MCB. Split C along the chords and repeat.
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RNA Secondary Structures

outerplanar.
“loops’ = cycles of the unique MCB.

nterior base pai
terior base p: losing base pair ¢
[ .- A
—————— 5. C
c 3--
I T :
c )} e
Y]
. . closing base p
closing base pair
stacking pair hairpin loop interior loop
closi gbasepal
,: nterior base pairs
‘\ teno base :Q:

closing base pair

bulge multiple loop
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Exchangability of Relevant Cycles

Set R of relevant cycles of an undirected graph can be computed
efficiently by Vismara's algortithm (1997).

Def.: C,C’ € R are exchangable, C « C’, if there is a set Q of
relevant cycles such that

(i) |C"| < |C) = || for all C" € Q,

(i) QU {C’} is linearly independent, and

(iii) C'=CuUP Q.

Theorem. C «— C’ is an equivalence relation.

Surprisingly tedious to prove ...
uses explicitly that we work over GF(2), i.e.,

does not work for general matroids.

23



Theorem. Let VW be a «<-class and let M be a minimal cycle
basis. Then

knar(W) = |[M N W|

IS independent of the choice of the minimal cycle basis M.
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Directed Graphs

Let G(V,A) be a directed graph and a U a cycle in G.
Associated vector:

+1 if eeU in forward direction
U.=< -1 if eeU in backward direction
0 if e¢U

Incidence matrix H of G:

-1 if x IS inital point of arc e
H,.=<+1 if xis terminal point of arc e
0 if x ée

All cycles satisfy
HU =0 over R

Circuit cycle in forward direction, C. = 0, +1.
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Circuit Bases

Theorem. (Berge) If G(V, A) is strongly connected if it has a
cycle basis consisting of (elementary) circuits.

Remark. Elementary circuits generate the extremal rays of the
convex cone

K:={U:HU =0 and U(e) >0}
How to compute a minimum length circuit basis?
Circuits again form a matroid (linear independence over R).
— QGreedy Algorithm.

Again exponentially many circuits.
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Def. A circuit C is short if for all vertices x and y it contains a shortest path S[x,y] or a
shortest path S|y, z].

Def.:. A circuit C is arc-short if C contains a vertex x and an arc e = (v,w) such that
C = Plw, z] + P[z,v] + (v,w) where Plw,z] and P[x,v] are shortest directed paths.

Lemma. If C is short, it is arc-short

Proof.

Lemma. If C is relevant, then C is short.

Proof. C relevant but not short =

Jdz,y in C: C contains neither shortest paths S[z,y] nor S[y,z]. Then C! = C|z,y] + S|y, =],
C? = S[x,y] + S[y, z], and C3 = S|z, y] + S|y, ] are closed paths in G and hence are sums of
(shorter) circuits. Furtermore

C=Clz,yl + Cly,z] =C' +C* - C®

and |CY < |C]
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Minimum Circuit Base

1: Compute directed distances and shortest paths with per-
turbed edge length. O(|V|3)

2: Construct |A| x |V| candidates for arc-short cycles.

3: Check that the cycles are elementary. O(|V|) for each cycle,
i.e., O(A| x |V|?)

4. Greedy step. At most |A| x |V| Gauss eliminations on a
(v(@) + 1) x |E| matrix, i.e., at most O(v(G)|E|? x |V|).

For most graphs probably much faster.
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Cuts

Let (V1,V5) be a partition of the vertex set V, i.e.,, V1,Vo =0
and ViUV, = V.

A cut or cocycle K = (V1,V5) is the set of all edges in G that
have one end in V7 and one end in V5.

The cuts form a vector space K over ({0,1},®,-) with dimension
V| — 1.
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Fundamental Cuts

A basis is again obtained from a spanning tree: Let b e T.
Removal of b disconnects the tree T into exactly two subtrees
with vertex sets VlT’b and VQT’b. The cut

cut(T,b) 1= (v, Vb

is fundamental cut of d.

T has |V| — 1 edges, thus there are |V| — 1 linearly independent
fundamental cuts.
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Cut Sets
A cut is a cut set of G if both V7 and V5 are connected.

= every fundamental cut cut(7,b) is a cut set of G. (7\ {b} consists

of two trees)

Size of a cut: |K]|

Length of a cut basis 4(B) = )  |K|
KeB

Minimal basis of the cut space?
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The Cut Tree
Let G(V,E) be a graph, possibly with edge weights w(e).

A cut tree T# of G is a tree with vertex set V with the following
property:

For every pair of distinct vertices s,t € V, let e be a minimum
weight edge on the unique path from s to ¢t in T# . Deleting
e from T# separates T# into two connected components Vft’e

and VQSt’e such that
cut(T#; e) = (Vhe, vshe)
IS @ minimum weight cut separating s,t.

The algorithms by Gomory and Hu (1961) and Gusfield (1991) compute a cut tree T# and
the sets cut(T#;e) in O(|E||V|?log |V]) steps.
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The Gomory-Hu Algorithm

In a nutshell:

(1) Pick two vertices s and ¢t (at random) and find the minimum weight cut (V1, V%) that

separates s and t.

(2) Form two graphs GG1 and G2 by contracting V> and Vi, repectively.

(3) Repeat with both graphs until only graphs with two vertices as left.

W -,
%ﬁ%%/
B P-g-w
% J AN

®
o ®
)
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Lemma. (see e.g. Golynski, Horton 2001)
If T# is a cut tree then

M = {cut(T7;e)le € T?}

IS @ minimum weight basis of the cut space K.

Proof. We use the edge-weight perturbation trick to make the Gomory-Hu tree and all cut
weights unique.

Suppose Q is a minimal cut basis and let H = cut(T#;e) be the minimum weight cut
separating s and t. Then H is a ®-sum of cuts in Q. This sum must contain a cut H’ which
separates s and t. Suppose H #= H'. Of course, H' cannot be shorter than the cut H, hence
Q' = Q\ {H'}U{H} is shorter than Q, a contradiction to minimality. Thus cut(T#;e) € Q.
This holds for each of the |V| — 1 cuts associated with T#, which are linearly independent,

and the lemma follows from dimg = |V| — 1.

Open Question: How to compute the set of relevant cuts in
the unweighted (or degenerate) case?
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Relationships of Cycles and Cuts
Cecif |[CnNnK]|is even for all K € R.
K e Rif |CnNnK]|is even for all C € C.

Thus, for all C € € and all K € R |[CN K| is even, i.e.,

@Ce'Ke:O.
ecl

In other words € and K are “orthogonal” over GF(2).

¢ and K are orthogonal complements iff €N K = {0}.
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So what is a “bicycle” ?

Def. A bicycle B is a subset of E that is both a cycle and a
cocycle (cut).

Thus the bicycle space is B = €N K.
Some graphs have bicycles, some don't ...

QUESTION: How can we compute (minimal) Bicycle Bases 777
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