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What 7

What are the generic properties of a CRN :

Are average minimum path lengths short 7
(small-world property)

What is the scaling behavior of the graph?

How robust are these properties?



Organization of the Toy Model
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Electronic Energy Calculation @

Schrodinger equation
HV = Ev

Born-Oppenheimer @

LCAO and Extended Hiickel %

VSEPR and Tight Binding

Generalized Eigenvalue Problem

H 40,- a0, — S A0, A0,




Atom Orbitals

sp3 hybridized sp? hybridized 4+ one p
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sp hybridized 4+ two p



Implemented Overlaps

big o-overlap lesser overlap
between sp? orbitals between sp? orbitals



Orbital graph
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Overlap matrix S of propenamide
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Wave function analysis

By definition, any molecular property can be calculated from the
wave function:

e Energy
e Charge distribution

e Reactivities
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Calculated vs Experimental TAE of C6H10 isomers
(Total Atomization Energy)
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Structure representation I : SMILES;)

CH4 H,C—CH,
C CC
or C(H)(H)(H)H or C(H)(H)(H)C(H)(H)(H)
CC(OC or

C(H)(H)(H)C(H) (C(H) (H)(H))C(H) (H)(H)

i OH
0C(C=C1) =CC=Cl or

HOC(C(H) = C1H) = C(H)C(H) = C1H
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Structure representation II : GML

# Isobutane

graph [
node
node
node

node

edge
edge
edge
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id 1 label "C"
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id 3 label "C"
id 4 label "C"
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source 1 target 2 label "-" ]
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What is Graph Rewrite ?
A grammar which operates on graphs instead of strings.
A grammar is a finite set of rules describing a formal language.

A formal language is a set of strings over some fixed alphabet.

Graph Rewriting Step

Step 1: find isomorphic subgraph (match left graph).

Step 2: remove subgraph (don’'t touch context; keep dangling ends!!).
Step 3: insert new subgraph (right graph).

Step 4: rewire new subgraph (with respect to the dangling ends).
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Graph rewriting steps

1 A

o O
left graph context right graph
host graph product graph
find left graph and context reconnect

@raph insert right graph
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Network Generation

Start perform all unimolecular and bimolecular reactions on the
molecules in £9 and put the products in a new set £/, eli-
minating all duplicates. This is summarized by the notation
L1 = Lo ® £p. Calculate £1 = £1\ £o.

Recursion (1) k+1 = (Uk lg ) ® LU (L ® £1)

(2) and £k—l—1 = 2%4—1 \ng
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Network Representation

Hypergraph and bipartite graph
for 03 —|— N02 — 02 —I— NO3

O; @ ® O oF @ O,
NG, OE ZO NG, NG @ NG
one-mode projection — Substrate graph

03 C)2
NG, I I NG,
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Application I : Repetitive Diels-Alder
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Formose reaction

Application II :
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Graph properties

o < k>= 2% is the average node degree.

e < L > is the average length of the shortest path between to
nodes.

o (. — 7 _€dges between i-neighbours
¢~ “i-neighbours(i-neighbours—1)

IS the clustering coefficient.
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Computational results

For comparing: results for random Erdos-Renyi graphs

<L S~ Inn
rand ~ In< k >
< k>
< C > ——C
rand (n — 1)
nodes <k> <L > <Lrand> <C > <Crand>
Diels-Alder 40 4.65 2.15 2.40 0.72 0.11
Formose 48 3.25 3.55 3.28 0.15 0.068
E. coli 282 7.35 2.9 3.04 0.32 0.026
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Degree distribution

Repetitive Diels-Alder Formose reaction

100 , F T

1 10 100 1 10
Degree Degree

[1 : datapoints
solid : power-law regression
dashed : Poisson distribution
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Threshold of 112
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Threshold of 108

%0 o000 oco® 000 000 000

TR L s dit

AR R RN

26



Threshold of 107
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Threshold of 91.2
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Threshold of 55.4
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A larger CRN ...
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. . . wWith constant minimum

path length <L > ...
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. and clustering coefficient < C >
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