

Generic Chemical Reaction Network Properties

Gil Benkö

Institute for Theoretical Chemistry and Structural Biology

gil@tbi.univie.ac.at

Bled, 2003

Why?

Combinatorial chemistry

Atmospheric processes

Combustion

Metabolic networks

Chemical reaction networks

What?

What are the generic properties of a CRN:

Are average minimum path lengths short? (small-world property)

What is the scaling behavior of the graph?

How robust are these properties?

Organization of the Toy Model

Electronic Energy Calculation

Schrödinger equation $\widehat{H}\Psi = E\Psi$

Born-Oppenheimer

LCAO and Extended Hückel

VSEPR and Tight Binding

Generalized Eigenvalue Problem
$$\begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Atom Orbitals

 sp^3 hybridized sp^2 hybridized + one p

sp hybridized + two p

Implemented Overlaps

Orbital graph

Overlap matrix S of propenamide

$$C^{1}(H^{2})(H^{3}) = C^{4}(H^{5})C^{6}(=O^{7})N^{8}(H^{9})H^{10}$$

_	H ²	C^1_{2}	H ³	C^1_{2}	C ⁴		H ⁵	C ⁴	C ⁶	C ⁶	O ⁷	C ⁶	N ⁸	N ⁸	H ⁹			07	_	_	_	_	-	N ⁸
$\frac{sp^2}{}$		sp^2														sp^2			$\frac{sp^2}{2}$	$\frac{p}{2}$	$\frac{p}{2}$	$\frac{p}{2}$	$\frac{p}{}$	$\frac{p}{2}$
1 er	.65	_	0	0	.077	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.65	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	.65	_	.077	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	.65	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1		.077	-	.077	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.077	-	.077	-	.77	1	0	0	0	.077	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	.077		1	. 65	0	.077	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	.65	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	.077	•	0	0	1		.077	0	.077	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0		.077	0	.77	1		.068		.073	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	-	.077	-	1	.68	-	.073	0	0	0	0	.068			0	0	0	0
0	0	0	0	0	0	0	0	0	.068			.068		0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	.077	_		.068			.073		.073		0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0		.073		.73	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	.073		1	.63	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	.63	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	.073	_	0	0	1	.63	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.63	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	.068		0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	.068	_	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	.38		0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.38		.38		0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	.38		_	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		.26		0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 31	0	1

Wave function analysis

By definition, any molecular property can be calculated from the wave function:

- Energy
- Charge distribution
- Reactivities

Calculated vs Experimental TAE of C6H10 isomers (Total Atomization Energy)

Structure representation I: SMILES;)

HOC(C(H) = C1H) = C(H)C(H) = C1H

Structure representation II: GML

```
# Isobutane
graph [
  node [ id 1 label "C" ]
  node [ id 2 label "C" ]
  node [ id 3 label "C" ]
  node [ id 4 label "C" ]

edge [ source 1 target 2 label "-" ]
  edge [ source 1 target 3 label "-" ]
  edge [ source 1 target 4 label "-" ]
```

What is Graph Rewrite?

A grammar which operates on graphs instead of strings.

A grammar is a finite set of rules describing a formal language.

A formal language is a set of strings over some fixed alphabet.

Graph Rewriting Step

- Step 1: find isomorphic subgraph (match left graph).
- Step 2: remove subgraph (don't touch context; keep dangling ends!!).
- Step 3: insert new subgraph (right graph).
- Step 4: rewire new subgraph (with respect to the dangling ends).

Graph rewriting steps

Network Generation

Start perform all unimolecular and bimolecular reactions on the molecules in \mathfrak{L}_0 and put the products in a new set \mathfrak{L}_1' , eliminating all duplicates. This is summarized by the notation $\mathfrak{L}_1' = \mathfrak{L}_0 \otimes \mathfrak{L}_0$. Calculate $\mathfrak{L}_1 = \mathfrak{L}_1' \setminus \mathfrak{L}_0$.

Recursion (1)
$$\mathfrak{L}'_{k+1} = \left(\bigcup_{j=0}^{k-1} \mathfrak{L}_j\right) \otimes \mathfrak{L}_k \cup (\mathfrak{L}_k \otimes \mathfrak{L}_k)$$

(2) and
$$\mathfrak{L}_{k+1} = \mathfrak{L}'_{k+1} \setminus \cup \mathfrak{L}_k$$
.

Network Representation

Hypergraph and bipartite graph for $O_3 + NO_2 \longrightarrow O_2 + NO_3$

one-mode projection \longrightarrow Substrate graph

Application I: Repetitive Diels-Alder

Application II: Formose reaction

Graph properties

• $< k > = 2 \frac{\text{edges}}{\text{nodes}}$ is the average node degree.

ullet < L> is the average length of the shortest path between to nodes.

• $C_i = 2 \frac{\text{edges between i-neighbours}}{\text{i-neighbours(i-neighbours-1)}}$ is the clustering coefficient.

Computational results

For comparing: results for random Erdös-Renyi graphs

$$< L_{rand} > \approx \frac{\ln n}{\ln < k >}$$
 $< C_{rand} > = \frac{< k >}{(n-1)}$

	nodes	< k >	< L >	$\langle L_{rand} \rangle$	< C >	$\langle C_{rand} \rangle$
Diels-Alder	40	4.65	2.15	2.40	0.72	0.11
Formose	48	3.25	3.55	3.28	0.15	0.068
E. coli	282	7.35	2.9	3.04	0.32	0.026

Degree distribution

 \square : datapoints

solid : power-law regression

dashed: Poisson distribution

Threshold of 112

Threshold of 108

Threshold of 107

Threshold of 91.2

Threshold of 55.4

A larger CRN ...

< k > and reaction rate threshold vs. CRN size n

\dots with constant minimum path length $< L > \dots$

CRN size dependency of < L> and $< L_{rand}>$

\ldots and clustering coefficient < C >

CRN size dependency of < C> and $< C_{rand}>$

---- robust small-world property