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The Faber-Krahn Theorem

Among all bounded domains

� � � �

with fixed volume, a
ball has the lowest first Dirichlet eigenvalue.

� ��� � 	 � 
 � ����
 � � �
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Graph Laplacian

Let

� � � � 
 � �

be a Graph with vertex set

�

, edge set
�

and
weights

�
���

	 �

.

Laplacian of

�

:

� � � � � � � � � � � � 
 � � �


 � � �
� � � adjacency matrix.

� � � �
� � � diagonal matrix with

�
��� � � �� ��� � ��� �
�

���

Contrary to the “classical” Laplace-Beltrami operator on
manifolds, the graph Laplacian

� � � �

is defined as a positive
operator.
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Rayleigh Quotient

The associate Rayleigh quotient on a real valued function�

on

�

is the fraction

��� � � � �
� � � 
 � �

� � 
 � � �
� �� � � � �

�
���

� � � � � � � ��� � � �

� � 	
� � ��� � � �
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Geometric realization

The geometric realization of

�

is a metric space
�

,
consisting of

the vertices

�

,

arcs of length � � glued between � and � for every edge

� � � � 
 � � � �

.
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A “Continuous” Graph Laplacian

Define two measures on

�

:

� � � � � � � � �

. . . number of vertices

� � � � � �
�� �

� � . . . cumulated length of edges
(i.e. the Lebesgue measure of

�

)

Let

�

denote the set of all continuous functions on

�

, which
are differentiable on

� � �

.

Introduce operator

��� on
�

by the Rayleigh quotient

�� � � � �
�

� � � � � �	� � �

�
� � �
� � � 
 � � �
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A “Continuous” Graph Laplacian

The eigenfunctions of the first eigenvalue of

� � are
edgewise linear functions.

� � � �

and

�� have the same eigenvalues and
eigenfunctions.
(The restrictions of the eigenfunctions of

� � to

�

are the
graph Laplacian eigenvectors. Friedman, 1993)
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Graph with Boundary

A graph with boundary is a graph

� � ��
� � � � 
 �
� � � � �

�
� � � � interior vertices

� �
� � � boundary vertices

�
� � � � edges between interior vertices

(interior edges)

� � � � � edges between boundary and interior vertices
(boundary edges)
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Dirichlet Operator for Graphs

Restrict Rayleigh quotient

�� � � �

to those functions
� � �

which vanish at all boundary vertices, i.e.

� �� 
 	 � �
The “discrete” version of this operator lives on interior
vertices �

� � �
� � 

�



� � � � adjacency matrix of

� � �
� 
 �
�

�

�
� � � � diagonal matrix with

� �
�

� ��� � � �� ���� � � � ��� �
 �
�

�� �
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�

-regular Trees with Boundary

We look at trees with the following properties:

all interior vertices have degree

�

,

all boundary vertices have degree
�

,

all interior edges have length

�

,

all boundary edges have lengths

� �

,

there is at least one interior vertex.

We get such a graph by cutting a region out of an infinite
regular tree with edges of length . We insert a (new)
boundary vertex where we have cut an edge.
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�

-regular Trees with Boundary
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The Faber-Krahn Property

Let � � � �

denote the lowest (Dirichlet) eigenvalue of
�
�

� � �

.

We say a

�

-regular tree with boundary

�

has the
Faber-Krahn property, if

� � � � � � � � � �
for all

�

-regular trees with boundary
� �

with � � � � � � � � � � � �

.
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Balls

A ball

��� � � 
 � � is

�

-regular tree with boundary with

a center � � �

, and

a radius � 	 �

,

such that dist

� � 
 � �
� � � for all boundary vertices � � � � �

.

dist

� � 
 � �

denotes the geodesic distance between � 
 � � �

.

Amazingly, regular trees with the Faber-Krahn property are
not balls.
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“Onion-Shaped” Tree

�
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Branch

Let

� ��� � � dist

� � 
 � �

denote the height of the vertex � � �

.
( � . . . root of tree.)

For an edge

� � 
 � �

the branch Br

� � 
 � �

at vertex � is the
maximal subgraph induced by �, � and all descendants

� � �

of � (i.e. the geodesic path

� � 
� � � 
 � �

contains � ).

� �

� �
� �
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Branch

The length

� �

Br

� � 
 � � �

is the maximal distance between �

and boundary vertices.

The branch is called balanced if dist

� � 
 � �
�

is the same for
all boundary vertices � � � � � �

Br

� � 
 � �
.
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“Onion-Shaped” Tree // Definition

We say a

�

-regular tree with boundary

� � �
� � � � 
 �
� � � � �

is
onion-shaped if there exists a root � � �

� of the tree such
that the following holds

(O1)

�

is connected.

(O2) for an (if
then ). Thus for all boundary
vertices .

(O3) All boundary edges have length or length , where
is the same for all boundary edges of length

.

(O4) If two branches Br and Br ,
, are not balanced, then

Br Br .
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�
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.

(O3) All boundary edges have length

�

or length �, where

� � � � 
 � �

is the same for all boundary edges of length

� �

.

(O4) If two branches Br
� � � 
 � � �

and Br

� � � 
 � � � ,

� � � � � � � � � � � , are not balanced, then
Br

� � � 
 � � � �
Br

� � � 
 � � � .
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A Faber-Krahn Theorem for Trees

A

�

-regular tree with boundary

�

,

� � �

, has the
Faber-Krahn property if and only if

�

is onion-shaped and
the following holds:

(F0) There is only one interior vertex, i.e. .

(F1) All branches of length are balanced, and there
is at most one balanced branch of length ,
provided that

, or
and , or
and .
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A

�

-regular tree with boundary

�

,

� � �

, has the
Faber-Krahn property if and only if

�

is onion-shaped and
the following holds:

(F0) There is only one interior vertex, i.e.
� �
�

� � �

.

(F1) All branches of length

� � � � 
 � �
are balanced, and there

is at most one balanced branch of length

� � � � 
 � �

,
provided that

� � �

, or

� � �

and

� � ��� ��� 
 �
� � �

, or

� � �

and
� � ��� ��� 
 �

� � �

.
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� �

The ball

� � ��� 
 �
� � �
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A Faber-Krahn Theorem for Trees (cont.)

(F2) All branches of length

� � � � 
 � �

are balanced, and there
is at most one balanced branch of length

� � � � 
 � �

,
provided that

� � �

and

�� ��� 
 �
� � � � �

, or

� � �

and

�� ��� 
 �
� � � � � � �� ��� 
 �
� � �

.

(F3) All branches of length are balanced, and there
is at most one balanced branch of length ,
provided that

and .

For a given volume , is uniquely defined up to
homomorhpism.
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A Faber-Krahn Theorem for Trees (cont.)
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� � � � 
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� � � � 
 � �
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� � �

and

�� ��� 
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� � � � �
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� � �
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�� ��� 
 �
� � � � � � �� ��� 
 �
� � �
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� � � � 
 � �
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 � �
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�� ��� 
 �
� � � � �
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A Faber-Krahn Theorem for Trees (cont.)
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� � � � 
 � �
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� � � � 
 � �

,
provided that

� � �

and

�� ��� 
 �
� � � � �

, or

� � �

and

�� ��� 
 �
� � � � � � �� ��� 
 �
� � �

.
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� � � � 
 � �
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� � � � 
 � �

,
provided that

� � �

and

�� ��� 
 �
� � � � �

.

For a given volume � �,

�

is uniquely defined up to
homomorhpism.
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Example

A 6-regular tree with the Faber-Krahn property:� � �

, � � � � � � � �

, 4 interior vertices.

�
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Examples

� �

� �
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Some basic properties of � � �

� � � �

is a positive operator, i.e. � � � � 	 �

.

An eigenfunction

�

to the eigenvalue � � � �
is either

positive or negative on all interior vertices of

�

.

� � � �

is continuous as a function of
�

in the metric

� � � 
 � � � � � � � � � � � � � � � � � � �

.

� � � �

is monotone in

�

, i.e. if
� � � �

then � � � � 	 � � � � �

.

� � � �

is a simple eigenvalue.

For

�

-regular trees

�

with boundary we have

� � � � 	 � � � � � �

.
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Spiral-like Ordering (Pruss 1998)

We say that a well-ordering � on

� � �
� � � � 
 �
� � � � �

is
spiral-like providing the following conditions hold for all
vertices � 
 � 
 � � 
 � � 
 � � 
 � � � �

� and � � 
 � � � � �
:

(S1) If

� ��� � � � � � � then � � �.

(S2) If � � � � � and ��� is a child of � � (i.e.

��� � 
 ��� � � �

and

� � �� � � � ��� �
� � �

), for

� � � 
 �
, then � � � � �.

(S3) If

��� � 
 � � �

and

��� � 
 � � � are boundary edges of lengths

� � and � �, respectively, with

� ��� � � � � ��� � � and � � 	 � �,
then � � � � �.

In (S3) the ordering of some boundary vertices is reverse to
their lengths.
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Geometry of Eigenfunctions

Let

�

be a

�

-regular tree with boundary with the
Faber-Krahn property. Then

(M1)

�

is connected;

(M2)

� � ��� �
� � � � � �
� � � �

for all boundary vertices

� � 
 � � � � �

;

(M3) There exists a spiral-like ordering � such that

� � � � � � � � � ��� �

, for all vertices � 
 � � �

.

(M4) The normal derivative of

�

at all boundary edges of
length � � � �

is the same.

Leydold – 2003/02/13 – A Faber-Krahn type inequality for regular trees – p.24/36



Rearrangements

� � � � � � � �

Remove two edges

and

of length and , respectively,
and replace these by the respective edges

and

of length and .
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��� � 
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Rearrangements

We get a new graph

� �

with same vertex set

�

and new
edge set

� �

which again is a

�

-regular tree.

Lemma:

� � � � � � � � � � � �

(obvious)

Furthermore, if

� ��� � � � � � � � � 
 � ��� � � � � � � � � 
 and � � � � �

then

� � � � � � � � � �
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Rearrangements

Proof: (Idea)

Have to show: � � � � � � ��� �

� � � � ��� � � � � � � � �
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Rearrangements

Proof: (Idea)

Have to show: � � � � � � ��� �
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� � � � �
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Rearrangements

Proof: (Idea)

Have to show: � � � � � � ��� �

� � � � ��� � � � � � � � �

��� � � � �
� � � 
 � �

� � 
 � � �

�
���

� � � � � � � ��� � � �

� � ��� � � �

� �
� �

� �
� �
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Rearrangements

Now define a ordering � on the interior vertices of
�

, such
that

� � � �
� if

� ��� �
� � � ���

�

�
�

Then rearrange the interior edges as described to make �

spiral-like on

��
� (stepwise, beginning with maximum �).

� �

� �

� �
� �

�

�

� �

� �

� �
� �
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Derivative at Boundary Edges

Normal derivative of

�

at the boundary edge

�
� � ���
� 
 � �

� � � �

, �
�

� �
� , of length �

� � � ��� is

� ���
�

� � �
�

The “average” normal derivative of � boundary edges is
given by

�
� � �

� ���
�

�

�
� � �

�
�
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Perturbation of Boundary Edges

Replace each of these � edges �
� by edges ¯ �
� of length ¯ �
� ,

where

¯ �
� � � ���
�

�

�
� � � � �

�
� � � � ��� �

��
Then the normal derivative is the same for all these
boundary edges.
If such an edge ¯ �

� is longer than
�

, then replace all the
edges �

� by edges �
�

��� �

of lengths

�
�

��� � � � � � � � �
�

� � ¯ �
� 
 where � � � � 
 � �
�

Make � as great as possible, i.e. (either) one edge �
�

��� �

has
length �

�

��� � � �

or � � �

.
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Perturbation of Boundary Edges

Again, we get a new graph

� �

with same vertex set
�

and
new edge set

� �

which again is a

�

-regular tree.

Lemma:

� � � � � � � � � � � �

(by definition of “average derivative”)

� � � � � � � � � �

.
Equality holds if and only if ¯ �

� � �
� for all

�

.

Alternatively,
use perturbation theory
for linear operators
(matrices).
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Resumé 1

Using the above lemmata and a recursive rearrangement of�

results in a graph

� �

with decreased first Dirichlet
eigenvalue and

(M2)

� � ��� �
� � � � � �
� � � �

for all boundary vertices � � 
 � � � � �

;

(M3) There exists a spiral-like ordering � such that

� � � � � � � � � ��� �

, for all vertices � 
 � � �

.

(M4) The normal derivative of
�

at all boundary edges of
length � � � �

is the same.

For onion-shaped property we have to show that all almost
all branches are balanced.
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Recursion Formula for Branches

Let

� ��� � 
 � � � 
 ��� � 
 � � � 
� � � 
 ��� � � � 
 � � �� denote a geodesic path
in

�

with � � � � �

and � � � �
� ,

� � � 
� � � 
 �.

If Br

���
� 
 � � � �

�

,

� � � 
� � � 
 �, are balanced branches then

� ��� � � � � � � � � � � � � � � � � � � ��� � � � �

� ���
�

� � � � � � � � ���
� � �

� � � � � � � � ���
� � � �

where � is the length of the boundary edge

��� � 
 � � �

.
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Recursion Formula for Branches

Consequently, we can express

� ���
�

�

by

� ���
�

� � � � �
�

� � 
 � � � �
�

� � 
 � � � �
where � denotes the normal derivative at the boundary
edge

��� � 
 � �
�

, i.e.

� ��� � � � �.

The coefficients �
� and

�
� are polynomials which are given

by the recursions

� � � � 
 � � � � � � 
 and

�� � � � � � � �� � � � � � � � � �
� � �,

� � � � 
 � � � � � � 
 and
�

� � � � � � � �
� � � � � � � � � �
� � �.
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Proof of the theorem

By means of this recursion formula, the normal derivative at
the “leaves” of balanced branches at the same vertex can
be compared.

For the proof it is shown that many cases that are not
excluded by Resumé 1 cannot exist.

(And it is too tedious to give any details.)

� � �� ��� 
 �
� � � �

, � � �� ��� 
 �
� � � �

and � � �� ��� 
 �
� � � �

are the zeros of

� � � � 
 � � and

� � � � 
 � � , respectively.
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