# The Klobüršteltheorem

#### Josef Leydold

## joint work with Türker Bıyıkoğlu and valuable comments by Franziska Berger

leydold@statistik.wu-wien.ac.at

Institut für Statistik, WU Wien

Max Planck Institut Leipzig

TU München

#### **The Faber-Krahn Theorem**

Among all bounded domains  $D \subset \mathbb{R}^n$  with fixed volume, a ball has the lowest first Dirichlet eigenvalue.

$$-\Delta u = \lambda u$$
,  $u|_{\partial D} = 0$ 



#### **The Faber-Krahn Theorem**

Among all bounded domains  $D \subset \mathbb{R}^n$  with fixed volume, a ball has the lowest first Dirichlet eigenvalue.

$$-\Delta u = \lambda u$$
,  $u|_{\partial D} = 0$ 



### **Graph Laplacian**

G = (V, E) simple graph with vertex set V, edge set E (and possibly weights  $\frac{1}{c_e} > 0$ ).

Laplacian of G

$$\Delta = \Delta(G) = D(G) - A(G)$$

 $A(G) \dots$  adjacency matrix.  $D(G) \dots$  diagonal matrix with vertex degrees

Contrary to the "classical" Laplace-Beltrami operator on manifolds, the graph Laplacian  $\Delta(G)$  is defined as a **positive** operator.

### **Graph with Boundary**

A graph with boundary is a graph  $G(V_0 \cup \partial V, E_0 \cup \partial E)$ 

- $V_0 \ldots$  interior vertices
- $\partial V$  ... boundary vertices
- $E_0 \ldots$  edges between interior vertices (interior edges)
- ∂E ... edges between boundary and interior vertices(boundary edges)

We assume that all boundary vertices have degree 1 (and vice versa).

#### **Discrete Dirichlet Operator**

A **discrete Dirichlet operator**  $\Delta_0$  is the graph Laplacian restricted to interior vertices, i.e.

 $\Delta_0 = D_0 - A_0$ 

where  $A_0$  is the adjacency matrix of the graph induced by the interior vertices,  $G(V_0, E_0)$ , and where  $D_0$  is the degree matrix with the vertex degrees in the whole graph  $G(V_0 \cup \partial V, E_0 \cup \partial E)$  as its entries.

#### **Faber-Krahn Property**

We say that a graph with boundary has the **Faber-Krahn property** if it has lowest first Dirichlet eigenvalue among all graphs with the same "volume" in a particular graph class.

### **Faber-Krahn Property**

We say that a graph with boundary has the **Faber-Krahn property** if it has lowest first Dirichlet eigenvalue among all graphs with the same "volume" in a particular graph class.

This definition raises two questions:

- (1) What is the "volume" of a graph, and
- (2) what is an appropriate graph class?

#### **Friedman's Class**



The class of trees that can be obtained by cutting subsets out of the geometric representation of an infinite

d-regular tree.

Volume is total length of edges.

### **Onion-Shaped Trees**



Example of tree with Faber-Krahn property in Friedman's graph class with volume 38.5.

#### **Faber-Krahn Theorem for Friedman's class**

Regular trees with the Faber-Krahn property are not balls, but almost balls with a complicated structures ("lazy peeled onions").

### **Nonregular Trees**

When generalizing the Faber-Krahn type theorems to arbitrary trees, the picture of cutting out a graph fails. Instead ...

#### Problem

Given a class C of graphs, where all graphs have the same "volume". Now characterize all graphs in C with the Faber-Krahn property, i.e., which minimize the first Dirichlet eigenvalue.

It seems natural to use the number of vertices as measure for the "volume" of a graph (equivalent to number of edges).

Analogous results for the Laplace-Beltrami-operators on manifolds with non-constant curvature are rare.

### **Too Simple: Class of All Trees**

Let us consider the class  $\mathcal{T}^{(n)}$  of all connected trees with n vertices (and at least two boundary vertices). The volume is the total number of vertices, i.e. n,

**Theorem** (Katsuda & Urakawa 1999) A graph T has the Faber-Krahn property in class  $\mathcal{T}^{(n)}$  if and only if it is a path of length n - 1.



### **More Appropriate Classes**

Class of all trees with number of interior and boundary vertices fixed:

$$\mathcal{T}^{(n,k)} = \{ G \text{ is a tree, with } |V| = n \text{ and } |V_0| = k \}$$

Class of all trees with number of interior and boundary vertices fixed with minimum vertex degree:

$$\mathcal{T}_d^{(n,k)} = \{ G \in \mathcal{T}^{(n,k)} : d_\nu \ge d \text{ for all } \nu \in V_0 \}$$

Class of all trees with degree sequence fixed:

 $\mathcal{T}_{\pi} = \{G \text{ is a tree with boundary with degree sequence } \pi\}$ 

### **Degree Sequence**

A sequence  $\pi = (d_0, \ldots, d_{n-1})$  of nonnegative integers is called **degree sequence** if there exists a graph G with n vertices for which  $d_0, \ldots, d_{n-1}$  are the degrees of its vertices.

In the following we assume that the degrees sequence of G is given by  $\pi = (d_0, d_1, \dots, d_{k-1}, d_k, \dots, d_{n-1})$  such that the degrees  $d_i$  are non-decreasing for  $0 \le i < k = |V_{=}|$ , and  $d_j = 1$  for  $j \ge k$  (i.e., correspond to boundary vertices).

#### **Proposition** (Harary 1969)

A degree sequence  $\pi = (d_0, \dots, d_{n-1})$  is a tree sequence (i.e. a degree sequence of some tree) if and only if every  $d_i > 0$  and  $\sum_{i=0}^{n-1} d_i = 2(n-1)$ .

#### The Klobüršteltheorem

#### Theorem

A tree G has the Faber-Krahn property in a class  $\mathcal{T}$  if and only if G is a star with a long tail, i.e. a comet (aka *Klobürštel*). G is then uniquely determined up to isomorphism.



### Height, Parent, and Child

For a tree G with root  $v_0$  the height h(v) of a vertex v is defined by  $h(v) = dist(v, v_0)$ .

For two adjacent vertices v and w with h(w) = h(v) + 1 we call v the parent of w, and w a child of v.

Notice that every vertex  $v \neq v_0$  has exactly one parent, and every interior vertex *w* has at least one child vertex.

### **SLO-Ordering**

A well-ordering  $\prec$  of the vertices of a tree with boundary is called **spiral-like** if the following holds:

- (S1)  $v \prec w$  implies  $h(v) \leq h(w)$ ;
- (S2) if  $v_1 \prec v_2$  then for all children  $w_1$  of  $v_1$  and all children  $w_2$  of  $v_2$ ,  $w_1 \prec w_2$ ;
- (S3) if  $v \prec w$  and  $v \in \partial V$ , then  $w \in \partial V$ .

It is called **spiral-like with increasing degrees** (**SLO**\*-ordering for short) if additonally the following holds

(S4) if  $v \prec w$  for interior vertices  $v, w \in V_0$ , then  $d_v \leq d_w$ .

We call trees that have a SLO- or SLO\*-ordering of its vertices **SLO-trees** and **SLO\*-trees**, respectively.

#### **SLO-Ordering**



TBI Seminar 2004 in Bled

#### **Faber-Krahn Theorems**

#### Theorem 1

A tree G has the Faber-Krahn property in a class  $\mathcal{T}$  if and only if G is a star with a long tail, i.e. a comet (aka *Klobürštel*).

#### Theorem 2

A graph G has the Faber-Krahn property in a class  $T_d$  if and only if it is a SLO\*-tree where all but one interior vertices have degree d.

#### Theorem 3

A graph G with degree sequence  $\pi$  has the Faber-Krahn property in the class  $\mathcal{T}_{\pi}$  if and only if it is a SLO\*-tree.

G is then uniquely determined up to isomorphism.

### **The Rayleigh Quotient**

The Rayleigh quotient on a real-valued function f is the fraction

$$\mathcal{R}_{G}(f) = \frac{\langle \Delta f, f \rangle}{\langle f, f \rangle} = \frac{\sum_{(u,v) \in E} (f(u) - f(v))^{2}}{\sum_{v \in V} f(v)^{2}}.$$

We denote the first Dirichlet eigenvalue of a graph G by  $\lambda(G)$ .

#### **Proposition**

$$\lambda(G) = \min_{f \in \mathcal{S}} \mathcal{R}_G(f) = \min_{f \in \mathcal{S}} \frac{\langle \Delta f, f \rangle}{\langle f, f \rangle}$$

where S is the set of all real-valued functions on V with the constraint  $f|_{\partial V} = 0$ .

#### Rearrangements

The main techniques for proving our theorems is **rearranging** of edges.

We need two different types of rearrangement steps that we call **switching** and **shifting**, respectively.

Starting with graph G(V, E) we move edges in such a step to get a new graph G'(V, E').

For each step we are able to show that the Rayleigh quotients is non-increasing for a particular function on V.

#### **Switching**



For a non-negative function  $f \in \mathcal{S}$  we find

 $\mathcal{R}_{G'}(f) \leq \mathcal{R}_G(f)$ 

whenever  $f(v_1) \ge f(u_2)$  and  $f(v_2) \ge f(u_1)$ . This inequality is strict if both inequalities are strict.

 $\mathcal{T}_{\pi}$  is closed under switching.





For a non-negative function  $f \in \mathcal{S}$  we find

 $\mathcal{R}_{G'}(f) \leq \mathcal{R}_G(f)$ 

if and only if  $f(v_1) \ge f(v_2)$ . The inequality is strict if  $f(v_1) > f(v_2)$ .  $\mathcal{T}_2$  is closed under shifting, but  $\mathcal{T}_{\pi}$  is not!

### **Proof: A Greedy Algorithm**

**Input:** Tree  $G(V, E) \in \mathcal{T}_{\pi}$  with non-negative eigenfunction f to  $\lambda(G)$ . **Output:** Tree  $G^*(V, E^*) \in \mathcal{T}_{\pi}$  with SLO-ordering  $\prec$  and  $\lambda(G^*) \leq \lambda(G)$ .

- 1. Enumerate vertices such that  $f(v_i) > f(v_j)$  implies i < j.
- 2. Define a well-ordering  $\prec: v_i \prec v_j$  if and only if i < j.
- 3. Set  $s \leftarrow 0$ .
- 4. For  $r = 0, \ldots, k-1$  do
- 5. For  $i = 1, ..., d_r 1$  do  $[i = 1, ..., d_0 \text{ if } r = 0]$
- 6. Set  $s \leftarrow s + 1$  (increment s).
- 7. If  $v_s$  is not adjacent to  $v_r$  then
- 8. Select an edge  $(v_r, w_r)$  such that  $v_s \prec w_r$ .
- 9. Select an edge  $(v_s, w_s)$  such that  $v_s \prec w_s$  and  $w_s$  is in the geodesic path from  $v_r$  to  $v_s$  if and only if  $w_r$  is not.
- 10. Apply Switching such that the new graph  $G_s$  has edges  $(v_r, v_s)$  and  $(w_r, w_s)$ .
- 11. Forall  $(v, v_r) \in E$  with  $v_s \prec v$  do
- 12. Apply Shifting such that edge  $(v, v_r)$  is replaced by edge  $(v, v_{r+1})$ .

### **Proof** (Cont.)

Hard work: Show that this greedy algorithm

- (i) works;
- (ii) always results in graphs as described in the above theorems;
- (iii) which are isomorphic they belong to the same graph class.

Idea: for each step in this iteration use the above lemmata to show that the Rayleigh quotient is non-increasing.

[Details are tedious and thus skipped ...]

#### **Further results**

#### Theorem

Let G(V, E) have the Faber-Krahn property in  $\mathcal{T}_{\pi}$ and G'(V', E') have the Faber-Krahn property in  $\mathcal{T}_{\pi'}$ for two degree sequences with  $|\pi| = |\pi'| = n$  that satisfy  $\sum_{j \leq r} d_j \leq \sum_{j \leq r} d'_j$  for all  $0 \leq r < n$ .

Then  $\lambda(G) \leq \lambda(G')$ , where equality holds if and only if  $\pi = \pi'$ .