A journey through regulatory features of UTRs of eukaryotic mRNAs

Kristin Missal

Bioinformatic, Institute of Computer Science, Univ. Leipzig, Germany

Regulation of gene expression

Transcriptional control: Whether a gene is transcribed or not and to what extend.

Post-transcriptional control: Controlling the fate of transcribed molecules.

Regulation by UTRs

Mignone et al. 2002: Genome Biology 3(3):reviews0004.1-0004.10

Control of translation efficiency

Leaky scanning:

Occurrence of upstream AUGs correlates with a long 5'UTR and with weak start codon context of first AUG codon

Down-regulate translation:

Coding region
uORF

Control of translation efficiency

Role of secondary structure in 5'UTR:

Inhibitory effects of very stable secondary structures

Internal ribosome entry site (IRES):

Is a mechanism of translation initiation alternative to the conventional 5'-cap dependent ribosome scanning.
Common structural motif: A Y-type stem-loop structure followed by the AUG triplet or followed by additional stem-loop structures and the AUG triplet. (Le, and Maizel, 1997: Nucleic Acids Res.25,362-69)

Control of mRNA stability

Changes in rate of mRNA degradation may alter the amount of protein in a cell.

Mechanisms of mRNA degradation:

- AU-rich elements in 3' UTRs affect rate of shortening of the poly(A)-tail (Deadenylation)
- Removal of the cap at the 5' end (Decapping)
- Nonsense mediated mRNA decay (Decapping)

Nonsense-mediated mRNA decay

Pre-mRNA processing

Spliceosome deposits exon junction complexes (EJCs) at site of intron removal

With first round of translation, the ribosome displaces the EJCs

If ribosome reaches a stop codon upstream of the final EJCs, last EJCs will remain bound

Recruiting of a decapping enzyme through interactions between EJC proteins and release factors triggers rapid mRNA decay

Functional analysis of UTRs

- UTRs with their cis-acting elements have critical role in many aspects in regulation of gene expression
- Functional elements share common motifs
- Identifying common motifs may lead to new sequence regions important for regulation of gene expression
\Rightarrow Need of general analysis of features in primary and secondary structure of UTRs

Functional analysis of UTRs

UTRdb: Specialized database of 5' and 3' UTR sequences of eukaryotic mRNAs (Pesole, et al. 2002: Nucleic Acids Res. 30, 335-340)

- Generated by parsing EMBL/GenBank DB entries and cleaning from redundancy
- Additional information like number of exons in corresponding gene region, presence of repetitive elements and occurrence of regulatory elements
- Cross-referencing to primary DB entry and to corresponding 5' or 3' UTR
- Current release (24th October 2003 - against EMBL release 75) includes 62163 for homo sapiens, 32538 entries for mouse and 9557 for rattus norvegicus

Functional analysis of UTRs

UTRsite: A collection of functional sequence patterns located in 5' or 3' UTR sequences (Pesole, et al. 2002: Nucleic Acids Res. 30, 335-340)

- Generated on basis of information reported in literature
- Description of biological role of functional element
- Current release (30th July 2003) includes 31 entries

Functional analysis of UTRs

Common oligonucleotides: The WordUP algorithm finds oligonucleotide motifs which may be involved in regulatory activity (Pesole et al. 1992: Nucleic Acids Res. 20, 2871-2875).
It assesses the statistical significance of each word of size w comparing the observed and expected number of sequences containing it.
Expected probability that sequence i contains oligomer s_{k} at least one time:

$$
\begin{equation*}
\pi_{i}\left(s_{k}\right)=1-e^{-\lambda_{i}} \tag{1}
\end{equation*}
$$

λ_{i} is the average number of sequences containing oligomer s_{k} in sequence i :

$$
\begin{equation*}
\lambda_{i}=\quad \underbrace{q_{i}\left(s_{k}\right)} \quad \underbrace{\left(L_{i}-w+1\right)} \tag{2}
\end{equation*}
$$

```
Probability that sk oc- Maximal number of oc-
curs in i curence of sk in i
```


WordUP

The statistical significance of the occurrence of oligomer s_{k} is verified by:

$$
\begin{equation*}
\chi^{2}\left(s_{k}\right)=\frac{(\overbrace{\sum_{i} p_{i}\left(s_{k}\right)}^{\text {Observed }}-\overbrace{\sum_{i} \pi_{i}\left(s_{k}\right)}^{\text {Expected }})^{2}}{\sum_{i} \pi_{i}\left(s_{k}\right)} \tag{3}
\end{equation*}
$$

Results:

	5'UTR		3'UTR	
\boldsymbol{w}	oligo	χ^{2}	oligo	χ^{2}
6	CUGCAG	347.55	AAUAAA	4729.17
7	GGAGCCG	267.18	UGUAUUU	1802.74
8	GAAUUCGG	2316.47	UGUAUAUA	2917.89
9	GAAUUCCGG	4155.05	UACAGGCGU	3697.54

Only the most significant oligonucleotides are reported.

Functional analysis of UTRs

Common patterns: PatSearch is a more sophisticated pattern discovery algorithm. (Pesole et al. 2000: Bioinformatics 16, 439-450):

- It analyzes user submitted sequence collections for the presence of complex patterns.
- Definition of patterns is similar to regular expressions

$$
p 1=4 \ldots 4 p 1 p 1
$$

Pattern p1 will match any character sub-sequence that is made up of 3 repeats of the same 4 character sequence.

PatSearch

- Mismatch and/or mispairing below a user fixed threshold S is allowed

		G	S	G	C
p1 $=$ GSGC	A	16	0	0	0
	C	0	50	0	80
	G	84	50	100	20
	T	0	0	0	0

Match p1 against GACG: $84+0+0+20=104>S$

PatSearch

- Pattern may include potential secondary structure elements

$$
\mathrm{p} 2=\sim \mathrm{p} 1
$$

Pattern p2 matches the reverse complement of pattern p1.

$$
\mathrm{p} 3=6 \ldots 83 \ldots 8 \sim \mathrm{p} 3
$$

Pattern p3 matches a hairpin loop in which the stem comprises 6 to 8 nucleotides and the loop 3 to 8 nucleotides.

PatSearch

- UTRsite contains functional elements of 3' and 5' UTRs identified by PatSearch

Functional elements	UTR	UTRdb entries
Iron responsive element	$3^{\prime}, 5^{\prime}$	121
Upstream ORF	5^{\prime}	71438
Internal ribosome entry site	3^{\prime}	7356
Class 2 AU-rich elements	3^{\prime}	70

- Disadvantage: Pattern to search for must be known!

Comparative analysis

- Average length of 5'UTRs is more or less constant over taxonomic classes
- Average length of 3 'UTRs is much more variable
- But length of 5' and 3' UTRs vary a lot within a species
- G and C content of 5'UTRs is greater than that of 3 'UTRs
- Contain several types of repeats

Summary

- UTRs play important role in post-transcriptional regulation
- What has been already done?
- Common oligonucleotides
- Identification of known functional elements
- Comparative studies

Outlook (first steps)

- Clustering primary structure depending on local alignments
- Analyzing secondary structures

THANK YOU!

