0.02 € on Embedding

W. Andreas Svrcek-Seiler

Institute for Theoretical Chemistry and Structural Biology
University Vienna
http://www.tbi.univie.ac.at/~svrci/

Bled, Feb. 2004

Definition (from http://mathworld.wolfram.com):
"An embedding is a representation of a topological object, manifold, graph, field, etc. in a certain space in such a way that its connectivity or algebraic properties are preserved."

In the following, we will be concerned with a special instance of embedding, i.e. embedding a set of distances in Euclidean space \mathbb{R}^{N}.

Why would would one do that ?

- Graph embedding (with edge weigts interpreted as distances).
- Determination of molecular structure from distance information obtained from NMR measurements.
- Fun.

> How could one do that, given "enough" distances are available?
(a) By "direct construction".
(b) From the metric matrix.
(c) By Stochastic Proximity Embedding.
(d)-(z) ...various other embedding schemes exist.

Direct Construction...

...shown here for 2 dimensions, is trivial and could be done using a pencil, a ruler and compasses. On a computer it is an $O(N)$ type procedure.

Direct construction is also quite trivial in three dimensions, but I mention it since this method was recently "advertised":
Q. Deng, Z. Wu. A linear-time algorithm for solving for solving the molecular distance geometry problem with exact interatomic distances. J. Global Optim. 22, 365-375, 2002 (!)

Metric Matrix embedding:

Some semi-straightforward math allows to calculate distance $d_{i 0}$ of each point \vec{r}_{i} to the centroid \vec{r}_{0} of all points:

$$
d_{i 0}^{2}=\frac{1}{N} \sum_{j=1}^{N} d_{i j}^{2}-\frac{1}{N^{2}} \sum_{j<k}^{N} d_{j k}^{2}
$$

Then the so called metric matrix $G_{i j}=\vec{r}_{i} \cdot \vec{r}_{j}$ can be obtained by applying the law of cosines.

Obviously, $G_{i j}$ could also be written as

$$
G=\left(\begin{array}{ccccc}
x_{1} & y_{1} & z_{1} & 0 & \ldots \\
x_{2} & y_{2} & z_{2} & 0 & \ldots \\
x_{3} & y_{3} & z_{3} & 0 & \ldots \\
. & \cdot & . & 0 & \ldots \\
. & . & . & 0 & \ldots \\
x_{n} & y_{n} & z_{n} & 0 & \ldots
\end{array}\right) \cdot\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
y_{1} & y_{2} & y_{3} & \ldots & x_{n} \\
z_{1} & z_{2} & z_{3} & \ldots & x_{n} \\
0 & 0 & 0 & \ldots & 0 \\
. & . & . & \ldots & 0 \\
. & . & . & \ldots & 0
\end{array}\right)
$$

So the "square root" of the metric matrix G (obtained by diagonalization) contains the coordinates. The associated computational cost is $O\left(N^{3}\right)$.

Stochastic proximity embedding

D. K. Agrafiotis J. Comp. Chem. 24, 10, 1215-1221,2003.

Procedure: Let x_{i} be the coordinates, $d_{i j}$ the current distance between points i and j and $r_{i j}$ their target distance. Besides, let ϵ have its usual meaning.

1 Initialize the coordinates (e.g. randomly).
2 Randomly select a pair of points i and j and update their coordinates by:

$$
\begin{aligned}
& \vec{x}_{i} \leftarrow \vec{x}_{i}+\frac{\lambda}{2} \frac{r_{i j}-d_{i j}}{d_{i j}+\epsilon}\left(\vec{x}_{i}-\vec{x}_{j}\right) \\
& \vec{x}_{j} \leftarrow \vec{x}_{j}+\frac{\lambda}{2} \frac{r_{i j}-d_{i j}}{d_{i j}+\epsilon}\left(\vec{x}_{j}-\vec{x}_{i}\right)
\end{aligned}
$$

3 Repeat step 2 for a prescribed number of steps S.
4 Decrease the "learning rate" λ by a prescribed decrement $\delta \lambda$.
5 Repeat steps 2 to 4 for a prescribed number of cycles C.

Another look at the correction term:

$$
\Delta \vec{x}_{i}=\frac{\lambda}{2} \frac{r_{i j}-d_{i j}}{d_{i j}+\epsilon}\left(\vec{x}_{i}-\vec{x}_{j}\right)
$$

With $\lambda=1$, the correction corresponds to the gradient of the penalty $i j^{\text {th }}$ contribution to the penalty function.

$$
S=\sum_{j>i}^{N}\left(d_{i j}-r_{i j}\right)^{2}
$$

Furthermore $\lambda=1$ implies that each chosen pair of points is immediately set to the desired distance.

> Obvious (?) features of the algorithm:

It is very simple to implement for arbitrary dimension. For a "sufficient" set of distances, $\lambda=1$ leads to convergence. Overall chirality is truly random, in contrast to the metric matrix approach, where it is arbitrary, but not random.
When embedding a set of distances in an Euclidean space of "too Iow" dimensionality, decreasing λ as given by Agrafiotis is advisable.

Computational experiments....
a) Behavior of the penalty function S (\#steps))

b) A graphical impression of the progress:

Spiral consisting of 2000 points, after 10^{5} (red), 10^{6} (blue) and 10^{7} (green) iterations.

Conclusions (pro)

The stochastic proximity embedding algorithm is easy to implement and reasonably fast.
Without any mathematical rigor one might state that it allows "nice" representations of *some* graphs, especially if they are highly connected.

Conclusions (con)

Choosing the number of iterations is based on educated guess and/or numerical experiment.
Once one is reasonably close to the target configuration, conjugate gradient minimization of the applied penalty function should lead to faster convergence.
The chirality of embedded three-dimensional structures is random.

Thank you for your attention !

...Any contributions, especially to the chirality problem, are welcome !

