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Definition (from http://mathworld.wolfram.com):

“An embedding is a representation of a topological object, man-

ifold, graph, field, etc. in a certain space in such a way that its

connectivity or algebraic properties are preserved.”



In the following, we will be concerned with a special instance

of embedding, i.e. embedding a set of distances in Euclidean

space RN .



Why would would one do that ?

• Graph embedding (with edge weigts interpreted as distances).

• Determination of molecular structure from distance informa-

tion obtained from NMR measurements.

• Fun.

• · · ·



How could one do that,

given “enough” distances are available ?

(a) By “direct construction”.

(b) From the metric matrix.

(c) By Stochastic Proximity Embedding.

(d)-(z) ...various other embedding schemes exist.



Direct Construction...
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...shown here for 2 dimensions, is trivial and could be done using

a pencil, a ruler and compasses. On a computer it is an O(N)-

type procedure.



Direct construction is also quite trivial in three dimensions, but

I mention it since this method was recently “advertised”:

Q. Deng, Z. Wu. A linear-time algorithm for solving for solv-

ing the molecular distance geometry problem with exact inter-

atomic distances. J. Global Optim. 22, 365-375, 2002 (!)



Metric Matrix embedding:

Some semi-straightforward math allows to calculate distance di0

of each point ~ri to the centroid ~r0 of all points:
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Then the so called metric matrix Gij = ~ri ·~rj can be obtained by

applying the law of cosines.



Obviously , Gij could also be written as

G =
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So the “square root” of the metric matrix G (obtained by diag-

onalization) contains the coordinates. The associated compu-

tational cost is O(N3).



Stochastic proximity embedding

D. K. Agrafiotis J. Comp. Chem. 24, 10, 1215-1221,2003.



Procedure: Let xi be the coordinates, dij the current distance
between points i and j and rij their target distance. Besides, let
ǫ have its usual meaning.

1 Initialize the coordinates (e.g. randomly).

2 Randomly select a pair of points i and j and update their coordinates by:

~xi ← ~xi +
λ

2

rij − dij

dij + ǫ
(~xi − ~xj)

~xj ← ~xj +
λ

2

rij − dij

dij + ǫ
(~xj − ~xi)

3 Repeat step 2 for a prescribed number of steps S.

4 Decrease the “learning rate” λ by a prescribed decrement δλ.

5 Repeat steps 2 to 4 for a prescribed number of cycles C.



Another look at the correction term:

∆~xi =
λ

2

rij − dij

dij + ǫ
(~xi − ~xj)

With λ = 1, the correction corresponds to the gradient of the

penalty ijth contribution to the penalty function.

S =
N
∑

j>i

(dij − rij)
2

Furthermore λ = 1 implies that each chosen pair of points is

immediately set to the desired distance.

Technical sidenote: ǫ can be left out, e.g. by ‘‘if (dij ==0.0) continue;’’



Obvious (?) features of the algorithm:

It is very simple to implement for arbitrary dimension.

For a “sufficient” set of distances, λ = 1 leads to convergence.

Overall chirality is truly random, in contrast to the metric matrix

approach, where it is arbitrary, but not random.

When embedding a set of distances in an Euclidean space of

“too low” dimensionality, decreasing λ as given by Agrafiotis is

advisable.



Computational experiments....

a) Behavior of the penalty function S(#steps))
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b) A graphical impression of the progress:

Spiral consisting of 2000 points, after 105 (red), 106 (blue) and

107 (green) iterations.
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Conclusions (pro)

The stochastic proximity embedding algorithm is easy to imple-

ment and reasonably fast.

Without any mathematical rigor one might state that it allows

“nice” representations of *some* graphs, especially if they are

highly connected.



Conclusions (con)

Choosing the number of iterations is based on educated guess

and/or numerical experiment.

Once one is reasonably close to the target configuration, conju-

gate gradient minimization of the applied penalty function should

lead to faster convergence.

The chirality of embedded three-dimensional structures is ran-

dom.



Thank you for your attention !

...Any contributions, especially to the chirality problem, are welcome !


