Towards a general approach for the detection of non-coding RNAs by comparative genomics

Stefan Washietl

Institute for Theoretical Chemistry and Structural Biology, University Vienna

Bled, Slovenia 2004

Non coding RNAs everywhere...

Non coding RNAs ("RNA genes") are transcripts that exert their function as RNA whithout being translated to protein.

- Well known examples directly or indirectly involved in protein gene expression:
 - Protein expression: transfer RNA, ribosomal RNA
 - Pre-mRNA splicing: spliceosomal RNAs (U1,U2,U4,U5,U6,...)
 - (r)RNA modification: small nucleolar RNAs
 - tRNA maturation: Ribonuclease P
 - Protein export: Signal recognition particle RNA
- Most prominent new class of non-coding RNAs: microRNAs
- Many other examples are currently emerging.

...and even more

- In complex organisms like human 97-98% of transcripts are ncRNAs.
- In few cases single ncRNAs have been described with interesting implications for physiology and phathology
 - roX1/2 Xist/Tsix are involved in X chromosome dosage compensation in mammals and drosphila, resp.
 - Y-chromosome specific TTY2 family is expressed in testis and kidney
 - **Bic** is strongly upregulated in certain B-cell lymphomas
 - SCA is involved in the neurodegenerative disorder spinocerebellar ataxia type 8
 - **DISC2** is implicated in the molecular etiology of schizophrenia
 - Mutations in RMRP cause the development disorder cartilage-hair hypoplasia (CHH)
 - One of the known loci associated with autism encodes a ncRNA.

Computational identification of ncRNAs

- Based on *a priori* knowledge: find members of known families
 - Sequence similiarity alone: BLASTN
 - Sequence and additional motif information: specialized programs for e.g. tRNA or snoRNAs
- *De novo* prediction: find new genes and families
 - Unlike protein coding genes (ORFs, codon bias,...) ncRNAs lack statistical signals in primary sequence
 - Many known ncRNA have a characteristic secondary structure.

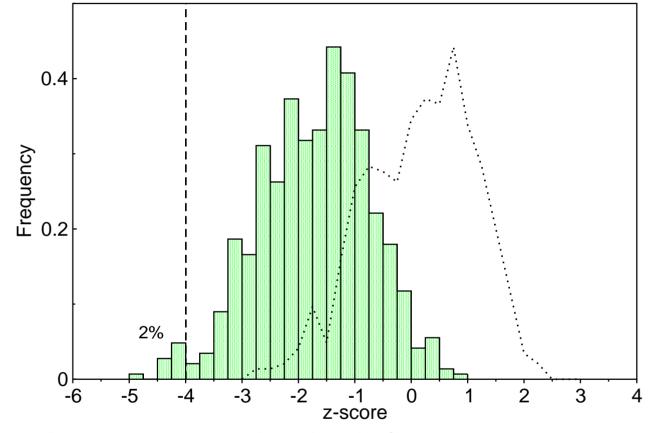
Is secondary structure prediction a reliable measure for the detection of ncRNAs?

z-score statistics

Has a natural occuring RNA sequence a lower minimum free energy (MFE) than random sequences of the same size and base composition?

- 1. Calculate native MFE m.
- 2. Calculate mean μ and standard deviation σ of MFEs of 100 shuffled random sequences.
- 3. Express significance in standard deviations from the mean as z-score

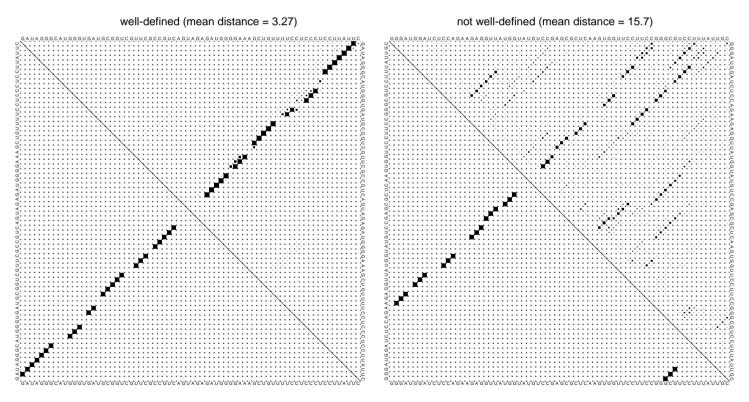
$$z = \frac{m - \mu}{\sigma}$$


Negative z-scores indicate that the native RNA is more stable than the random RNAs.

MFE z-scores of known functional RNAs

ncRNA Type	No. of Seqs.	Mean z-score
tRNA	579	-1.84
5S rRNA	606	-1.62
Hammerhead ribozyme III	251	-3.08
Group II catalytic intron	116	-3.88
SRP RNA	73	-3.37
U5 spliceosomal RNA	199	-2.73

- Functional RNAs are clearly more stable than random sequences.
- Is this significant enough for genome wide screens?


z-score distribution for 579 tRNAs

- Only 2% below a z-score threshold of -4.
- Native sequences are not clearly separated from the random bulk.

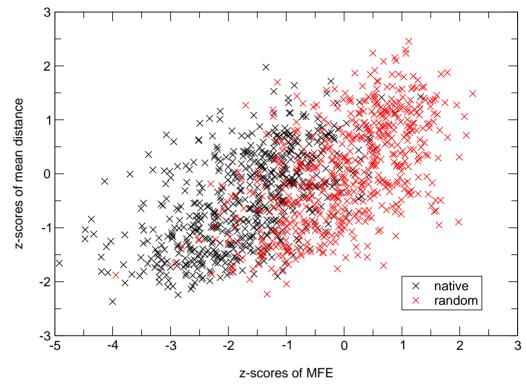
Well-definedness of RNA secondary structure

- At a given temperature RNA molecules form an ensemble of structures which is described by the Boltzmann distribution.
- If this ensemble is dominated by the ground state (MFE structure) we call the structure well-defined.

A measure for well-definedness

- As measure for well-definedness we can use the mean distance between structures in the ensemble.
- For the so-called "base-pair distance" metric the mean distance can be calculated from the base-pair probability matrix as

$$\langle D \rangle = \sum_{i < j} p_{ij} - p_{ij}^2$$


Are functional RNAs better defined than random sequences?

Well-definedness of functional RNAs

ncRNA Type	Mean z MFE	Mean z well-definedness
tRNA	-1.84	-0.5
5S rRNA	-1.62	-0.7
Hammerhead ribozyme III	-3.08	-1.5
Group II catalytic intron	-3.88	-1.2
U5 spliceosomal RNA	-2.73	-1.1

- z-scores for mean-distances are less significant than z-scores based on MFEs.
- Can a combination of both help?

Well-definedness and MFE are not independent

- Well-definedness and MFE are (to some degree) linear dependent.
- Well-definedness holds no additional information for our purpose.

Measures for single sequence predictions are not significant enough for detecting ncRNAs.

Comparative genomics at our hands

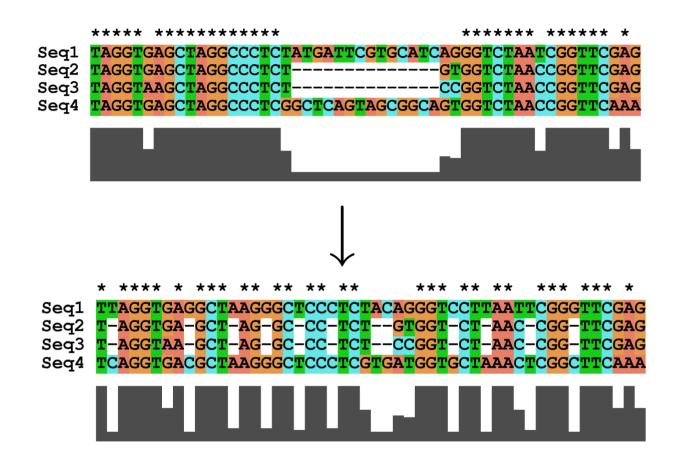
- Prokaryotes: 15 enteric bacteria
- Yeast: 7 Sacharomyces species
- Nematode: C. elegans + C. briggsae (C. remanei, C. japonica and CB5161 planned)
- Mammals: Mouse, rat, human

How can we make use of homologous sequences for ncRNA finding?

QRNA (Rivas & Eddy)

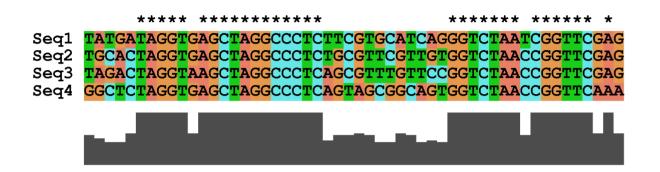
- For a given pairwise alignment decide if it is coding, structural RNA or neither.
- There is one probabilistic model for each case which evaluates the mutation pattern. The RNA model implements a probabilistic folding algorithm.
- QRNA can be useful to some degree but has several disadvantages:
 - The model parameters depend on many *ad hoc* assumptions and extrapolations.
 - Performance depends strongly on GC content and pairwise identity.
 - Sensitivity and selectivity is generally low for non-optimal data sets.
 - QRNA is relatively slow.
 - The probabilistic folding model is not optimal (e.g. trained with rRNAs and tRNAs and thus strongly biased).
 - QRNA is limited to pairwise alignments.

An alternative approach: RNAalifold

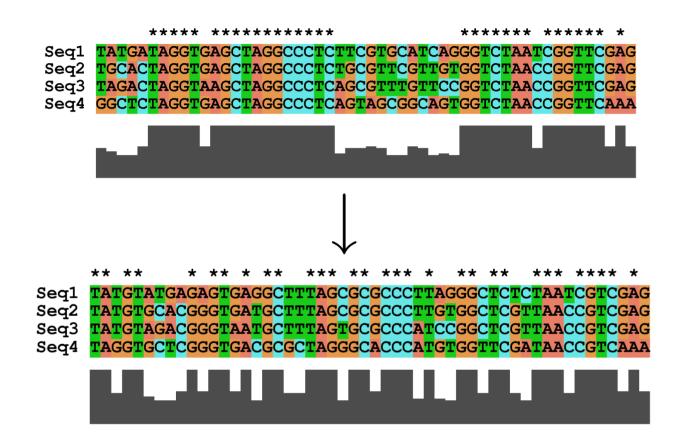

- RNAalifold performs MFE folding of a multiple sequence alignment
- It essentially uses the same algorithms and energy parameters as RNAfold.
- Energy contributions of the single sequences are averaged.
- Covariance information is incorporated into the energy model:
 - Consistent and compensatory mutations are rewarded.
 - Non compatible base pairs are penalized.
- It calculates a (pseudo-)MFE consisting of an energy term and a covariance term.

Can we use this MFE to assess an alignment for the existance of an unusually stable and/or conserved secondary structure?

How not to shuffle a MSA


	**** ****	****** *****
Seq1	TAGGTGAGCTAGGCCCTCTATGATTCGTGCATC	CAGGGTCTAATCGGTTCGAG
Seq2		- <mark>GTGGTC</mark> TAACCGGTTCGAG
Seq3	TAGGTAAGCTAGGCCCTCT	
Seq4	TAGGTGAGCTAGGCCCTCGGCTCAGTAGCGGCA	AGTGGTCTAACCGGTTCAAA

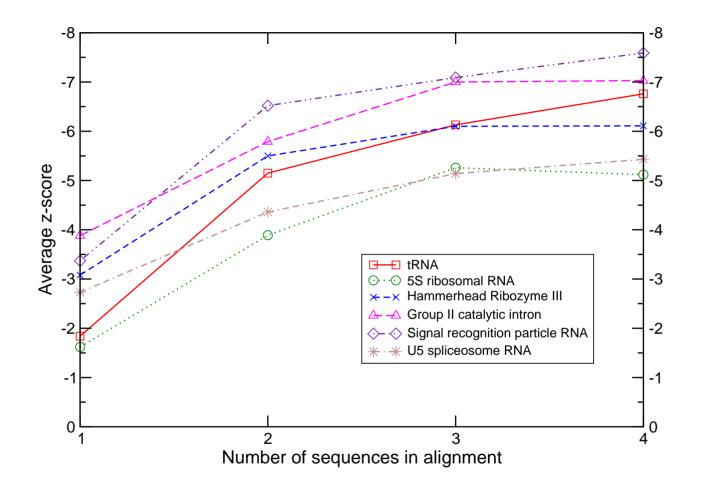
How not to shuffle a MSA



Gap structure is important

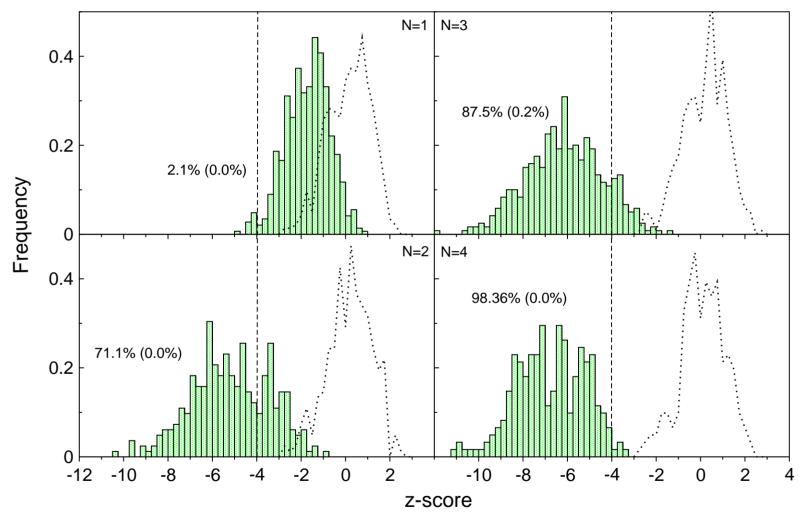
How not to shuffle a MSA II

How not to shuffle a MSA II

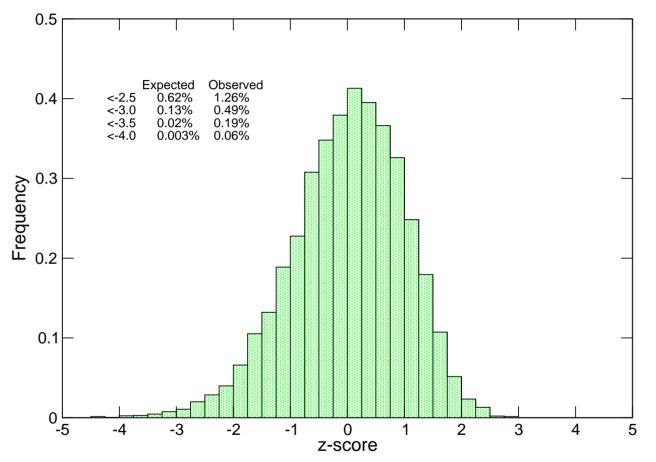


Local conservation pattern is important

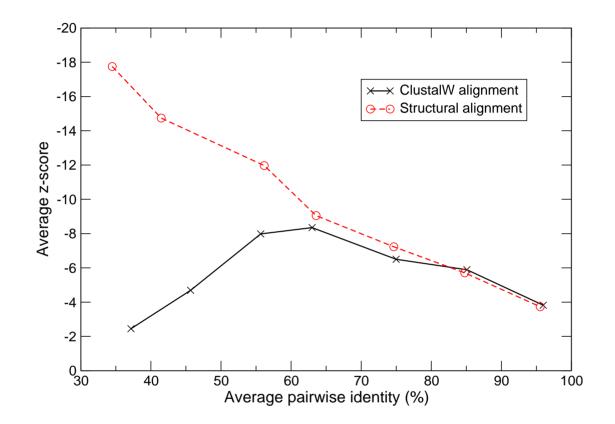
Conservative randomization of a MSA


- A correct randomization procedure shuffles only columns of the same gap pattern and local conservation pattern.
- Considering this our algorithm produces alignments of the same
 - length
 - base composition
 - overall conservation
 - local conservation
 - gap structure
- This is the most conservative procedure possible. It is effective enough to remove correlations arising from secondary structures.

z-scores of RNAalifold MFEs


• We scored alignments with 2 to 4 sequences and mean pairwise identities between 65% and 85%.

z-score distribution for tRNA test sets


 Additional information from aligned sequences shifts MFE predictions towards significant levels.

Distribution of 11633 random z-scores

• z-scores of random alignments are well approximated by a standard normal distribution ($\mu = 0.01$, $\sigma = 0.99$) with a slight negative tail.

Structural vs. sequence based alignments

- 2083 pairwise alignments of SRP RNAs were scored.
- Above 60% there structural alignments and sequence based alignments are essentially the same.
- Our method scores best between 60% and 70%.

Genomic example: Saccharomyces sp.

				z-score	
ncRNA Type	Gene Name	No. of Seqs.	ID (%)	Single	Alignment
SRP RNA	SCR1	5	78.5	-2.2	-5.0
MRP RNA	NME1	7	81.5	-4.6	-8.9
RNAse P RNA	RPR1	7	72.3	-3.8	-6.7
U1 spliceosome RNA	snR19	5	82.9	-3.2	-6.7
U4 spliceosome RNA	snR14	7	88.0	-2.4	-4.2
U5 spliceosome RNA	snR7-L	5	88.0	-3.6	-4.5
	snR7-S	5	91.2	-3.3	-4.5
U6 spliceosome RNA	snR6	7	92.8	-1.9	-0.3
H/ACA snoRNA	snR9	5	88.5	-1.3	-3.2
	snR10	7	83.4	-2.1	-3.8
C/D snoRNA	snR4	5	77.3	-1.3	-1.6
	snR39	7	83.2	-0.4	-0.2

Genomic example: C.elegans/C.briggsae

				z-score	
ncRNA Type	No. of Seqs.	Identity (%)	Length	Single	Alignment
SRP RNA	2	83.8	296	-5.5	-7.9
U1 spliceosome RNA	2	91.5	165	-4.6	-5.0
U2 spliceosome RNA	2	94.5	193	-5.0	-5.9
U4 spliceosome RNA	2	99.3	139	-0.7	+0.2
U5 spliceosome RNA	2	92.7	123	-2.3	-5.0
U6 spliceosome RNA	2	98.0	102	-0.8	-0.4
let-7 pre-miRNA	2	89.0	73	-7.5	-8.4
lin-4 pre-miRNA	2	90.0	70	-4.1	-4.8
SL2 RNA	2	91.3	103	-2.5	-3.6

How to fold a complete genome?

- Straightforward approach: local predictions using a sliding window
- A sliding window has two major drawbacks:
 - Only for a step-size 1 all possible structures are considered.
 Realistic step sizes leave a "blind-spot".
 - A fixed size window cannot predict all substructures of varying length optimally
- A local prediction algorithm is desirable
 - QRNA implements a local prediction algorithm.
 - Also standard algorithms for MFE predictions can be modified to smoothly scan a genome and predict all substructures smaller than a given maximum size: RNAlfold
 - In principle, this can be implemented also for RNAalifold without modification.

Is this feasible for complete genomes?

- Generally, RNAalifold is fast for moderate window sizes
- The Monte Carlo procedure to estimate statistical significance imposes a serious performance problem.
- A meaningful *ad hoc* score seems impossible. It would have to consider GC-content, degree of conservation, gap-pattern and length of the alignment.
- In theory, a genome has to be folded 200 times (sample size 100, forward and reverse strand)
- In practice, the number of calculations can be reduced drastically
 - Only conserved (=alignable) regions have to be analyzed
 - RNAalifold will not predict a consensus structure everywhere.
 - We are only interested if a structure has a z-score below a certain threshold, we are not interested in the exact z-score if it is above the threshold. We can thus pre-estimate z-scores with lower sample size.

Summary

- The computational detection of non coding RNAs is a major goal of bioinformatics.
- Secondary structure predictions are of limited statistical significance.
- The same is true for other measures for single sequences (e.g. well-definedness)
- Comparative studies seem most promising but only few methods for comparative sequence analysis exist (QRNA).
- We have proposed a new procedure (z-scores of RNAalifold MFEs) to assess a multiple sequence alignment for the existence of a stable and/or conserved fold.
- Our method shows good sensitivity/selectivity in a variety of test cases, including real-life genomic examples.
- Our method is computationally demanding, but feasible if reduced to the essential.

What's next?

- 1. Put all these ideas together into a (structural) RNA gene finder ("RNAlalifoldz") as quickly as possible.
- 2. Convince people that this is the way to go and that QRNA sucks.
- 3. Start doing some biology.