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Genotype Spaces

Given:
a set X of possible genotypes
a set A of realized genotypes
a fixed collection of genetic operators
[such as mutation, recombination, gene-rearrangement]
define the set A’ of genotypes accessible from A.
Properties

(i) No spontaneous creation, i.e, §’ = 0.

(i) A more diverse population produces more diverse offsprings:
A C B implies A C B’

(iii) All parental genotypes are also accessible in the next time step
ACA.

In the case of mutation as the only source of diversity:

haploid populations, no sex, no recombination, etc

(iv) Diversity of offsprings depends only on the parent:

A" = Urealx}!



Set-Valued Set-Functions

Let X be a set, P(X) its power Set (ie., theset of all subsets of X)
Let cl : P(X) — P(X) be an arbitrary function.

We call cl(A) the closure of the set A.

The dual of the closure function is the interior function
int : P(X) — P(X) defined by

int(A) = X \ cl(X\ A)
Given the interior function, we can recover the closure:

cl(A) = X\ (int(X \ A))



Neighborhoods

Let cl and int be a closure function and its dual interior function
on X. Then the neighborhood function N : X — P(P(X))

N(x) = {N e P(X)|x € int(N)}

of its neighborhoods.
Closure and neighborhood are equivalent:

x € c(A) <= (X\A) ¢ N(x) and x € int(A) <= A e N(x)



Axioms for Generalized Closure Spaces

[ closure interior [ neighborhood
KO’ JA : x & cl(A) JA: x € int(A) N(x)# @
KO c(@®) =0 int(X) = X X e N(x)
K1 ACB — d(A)CdB) | ACB — int(A) Cint(B) | N € N(x)and NCN’
isotonic, c(An B) C cl(A) Ncl(B) int(A) U int(B) C int(AU B) =
monotone cl(A) Ucl(B) C cl(AU B) int(A N B) C int(A) N int(B) N € N(x)
KA cd(X) =X int(0) = 0 0 ¢ N(x)
KB AUB=X = ANB=0) = N, N" € N(x) =

cl(A) U cl(B) = X int(A) Nint(B) = 0 N NN #0
K2 A C cl(A) int(A) C int(A) NEN(K — xEN
expansive
K3 cl(AU B) C cl(A) Ucl(B) int(A) Nint(B) C int(AU B) N, N" € N(x) =
sub-linear N NN € N(x)
K4 cl(cl(A)) = cl(A) int(int(A)) = int(A) N € N(x) <=
idempotent int(N) € N (x)
K5 N(x) =0 or IN(x) :
additive Jea) = (U A,-> () int(A;) = int (ﬂ A,-> N € N(x)
iel icl iel icl

<~ N(x) C N




Isotonic Spaces

(K1) A C B implies cl(A) C cl(B) for all A, B € P(X).

(K1) cl(A)ucl(B) C cl(AUB) for all A,B € P(X).

(K1") cl(An B) C cl(A)Ncl(B)
A (not necessarily non-empty) collection F C P(X) is a stack if
F € Fand F C G implies G € F. The closure function cl is
isotonic if and only if AV/(x) is a stack for all x € X.

Isotony (K1) is necessary and sufficient to express the closure in
terms of neighborhoods in the usual way:

c(A)={xe XIVN e N(x): AnNN # 0}



Binary Relations

Let 2R be a binary relation on a (not necessarily finite) set X, i.e.,
R C X x X. We write xRy or (x,y) € R to mean that x “is in

relation R to y " ".
We define:

Rx = {z € X|zMx}
xR = {z € X|xRz}

Furthermore, we define:

dom [R] = {x € X|3z € X : xRz}
img [R] = {y € X|Fz € X : zRy}

Then dom [R] = |, MRx and img [R] = [, xR.



Topology of a Binary Relation

Let R be a relation of X and consider a subset A C X. A natural
way of defining the interior of A is to consider all points x € X
that are isolated from the complement of A in the sense that there
is no point y € X \ A for which y?x. We have:

int(A) = {x e X| Ay ¢ X\ A: yRx}

Equivalently, x € X \int(X \ A) if Iy € A: yRx, i.e,

cl(A) = | J{xlyRx} = [ ] xR

y€EA x€EA

It follows immediately that cl is additive and satisfies (KO).



Binary Relation from Totally Additive Closures

Conversely, consider an additive closure function c satisfying (KO0).
Then there is a unique relation R defined by

xRy <<= yec({x}).

Now construct the closure function clg;_ associated with relation
Re. We see:

c({x}) = clm. ({x}) for all x € X.

Additivity of ¢ now implies c¢(A) = cly_(A) for all A € P(X).
Hence additive closure spaces satisfying (KO) are equivalent to
binary relations.



Vicinities

The most important property of totally additive (KO) spaces is that
there is a smallest neighborhood (vicinity) for each point:

ve(x) = ﬂ{N|N e N(x)} e N(x)

We have cl(x) = xR and vc(x) = Rx, i.e., the vicinity is the
closure of the transposed relation SR™.

Thus: x € cl(y) < y € ve(x)

(RO) cl is symmetric if x € ve(y) <= y € ve(x).

Result: cl is symmetric R is symmetric.



Separation Axioms

> (TO) Vx,ydN' € N(x) or N” € (y) such that y & N or
x & N
(KO+Kb) spaces: x # y == x ¢ vc(y) or y ¢ ve(x), i.e.,
y & cl(x) or x € cl(y).
Equivalently: If x # y then xRy implies y Jx.
Thus (TO0) is equivalent to antisymmetry of the relation.
» (T1) Vx,y3dN € N(x) such that y ¢ N
(KO+K5) spaces: x #y = x ¢ vc(y)
x € cl(y) <= cl(x) C {x}, i.e., there are no “off-diagonal
elements” in fR.

Lemma For isotonic spaces holds (RO) and (T0) < (T1)



Separation Axioms

» (T2) Vx # yIN' € N(x) and N” € N(y) such that
N'AN"=0
(K0+K5) spaces: vc(x) Nve(y) = 0,i.e.,
zeve(x) = z¢&vc(y), e, xec(z) = y&d(z),ie,
lcl(z) | < 1.

A (KO+K5+T2) space corresponds to a function on X:

¥ domR — imgR : x — P(x) where cl(x) = {(x)}



Transitive Relations and Topologies

Def. R is reflexive if xX)x for all x € X.
This is equivalent to A € cl(A) (enlarging, K2)

Def. fR is transitive if xRy and y9iz implies xRz

x € cl(y) and y € cl(z) implies x € cl(z).

This is equivalent to cl(cl(A)) C cl(A).

Pre-Order relation = reflexive and transitive.

This implies: A € cl(A) and cl(cl(A)) C cl(A), i.e.,
cl(cl(A)) = cl(A) (idempotent closure).

Thm. (KO0,K5)-space is topological if and only if the
corresponding relation fR is a pre-order.

In particular, finite topologies and finite pre-order relations are
the same thing.



So Long, and Thanks for all the fish!



