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Genotype Spaces

Given:
a set X of possible genotypes
a set A of realized genotypes
a fixed collection of genetic operators

[such as mutation, recombination, gene-rearrangement]
define the set A′ of genotypes accessible from A.
Properties

(i) No spontaneous creation, i.e, ∅′ = ∅.

(ii) A more diverse population produces more diverse offsprings:
A ⊆ B implies A′ ⊆ B ′

(iii) All parental genotypes are also accessible in the next time step
A ⊆ A′.

In the case of mutation as the only source of diversity:
haploid populations, no sex, no recombination, etc

(iv) Diversity of offsprings depends only on the parent:
A′ =

⋃

x∈A{x}
′



Set-Valued Set-Functions

Let X be a set, P(X ) its power set (i.e., theset of all subsets of X )

Let cl : P(X ) → P(X ) be an arbitrary function.
We call cl(A) the closure of the set A.
The dual of the closure function is the interior function

int : P(X ) → P(X ) defined by

int(A) = X \ cl(X \ A)

Given the interior function, we can recover the closure:

cl(A) = X \ (int(X \ A))



Neighborhoods

Let cl and int be a closure function and its dual interior function
on X . Then the neighborhood function N : X → P(P(X ))

N (x) =
{

N ∈ P(X )
∣

∣x ∈ int(N)
}

of its neighborhoods.
Closure and neighborhood are equivalent:

x ∈ cl(A) ⇐⇒ (X \ A) /∈ N (x) and x ∈ int(A) ⇐⇒ A ∈ N (x)



Axioms for Generalized Closure Spaces

closure interior neighborhood

K0’ ∃A : x /∈ cl(A) ∃A : x ∈ int(A) N (x) 6= ∅

K0 cl(∅) = ∅ int(X ) = X X ∈ N (x)

K1 A ⊆ B =⇒ cl(A) ⊆ cl(B) A ⊆ B =⇒ int(A) ⊆ int(B) N ∈ N (x) and N ⊆N ′

isotonic, cl(A ∩ B) ⊆ cl(A) ∩ cl(B) int(A) ∪ int(B) ⊆ int(A ∪ B) =⇒
monotone cl(A) ∪ cl(B) ⊆ cl(A ∪ B) int(A ∩ B) ⊆ int(A) ∩ int(B) N ′ ∈ N (x)
KA cl(X ) = X int(∅) = ∅ ∅ /∈ N (x)

KB A ∪ B = X =⇒ A ∩ B = ∅ =⇒ N′, N′′ ∈ N (x) =⇒
cl(A) ∪ cl(B) = X int(A) ∩ int(B) = ∅ N′ ∩ N′′ 6= ∅

K2 A ⊆ cl(A) int(A) ⊆ int(A) N ∈ N (x) =⇒ x ∈ N

expansive

K3 cl(A ∪ B) ⊆ cl(A) ∪ cl(B) int(A) ∩ int(B) ⊆ int(A ∪ B) N′, N′′ ∈ N (x) =⇒
sub-linear N′ ∩ N′′ ∈ N (x)
K4 cl(cl(A)) = cl(A) int(int(A)) = int(A) N ∈ N (x) ⇐⇒
idempotent int(N) ∈ N (x)
K5 N (x) = ∅ or ∃N(x) :

additive
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Isotonic Spaces

(K1) A ⊆ B implies cl(A) ⊆ cl(B) for all A,B ∈ P(X ).

(K1ı) cl(A) ∪ cl(B) ⊆ cl(A ∪ B) for all A,B ∈ P(X ).

(K1ıı) cl(A ∩ B) ⊆ cl(A) ∩ cl(B)

A (not necessarily non-empty) collection F ⊆ P(X ) is a stack if
F ∈ Fand F ⊆ G implies G ∈ F . The closure function cl is
isotonic if and only if N (x) is a stack for all x ∈ X .
Isotony (K1) is necessary and sufficient to express the closure in
terms of neighborhoods in the usual way:

c(A) = {x ∈ X |∀N ∈ N (x) : A ∩ N 6= ∅}



Binary Relations

Let R be a binary relation on a (not necessarily finite) set X , i.e.,
R ⊆ X × X . We write xRy or (x , y) ∈ R to mean that x “is in
relation R to y´´.
We define:

Rx = {z ∈ X |zRx}

xR = {z ∈ X |xRz}

Furthermore, we define:

dom [R] = {x ∈ X |∃z ∈ X : xRz}

img [R] = {y ∈ X |∃z ∈ X : zRy}

Then dom [R] =
⋃

x Rx and img [R] =
⋃

x xR.



Topology of a Binary Relation

Let R be a relation of X and consider a subset A ⊆ X . A natural
way of defining the interior of A is to consider all points x ∈ X

that are isolated from the complement of A in the sense that there
is no point y ∈ X \ A for which yRx . We have:

int(A) = {x ∈ X | 6 ∃y ∈ X \ A : yRx}

Equivalently, x ∈ X \ int(X \ A) if ∃y ∈ A : yRx , i.e.,

cl(A) =
⋃

y∈A

{x |yRx} =
⋃

x∈A

xR

It follows immediately that cl is additive and satisfies (K0).



Binary Relation from Totally Additive Closures

Conversely, consider an additive closure function c satisfying (K0).
Then there is a unique relation Rc defined by

xRcy ⇐⇒ y ∈ c({x}).

Now construct the closure function clRc
associated with relation

Rc . We see:
c({x}) = clRc

({x}) for all x ∈ X .
Additivity of c now implies c(A) = clRc

(A) for all A ∈ P(X ).
Hence additive closure spaces satisfying (K0) are equivalent to
binary relations.



Vicinities

The most important property of totally additive (K0) spaces is that
there is a smallest neighborhood (vicinity) for each point:

vc(x) =
⋂

{

N
∣

∣N ∈ N (x)
}

∈ N (x)

We have cl(x) = xR and vc(x) = Rx , i.e., the vicinity is the
closure of the transposed relation R

+.
Thus: x ∈ cl(y) ⇐⇒ y ∈ vc(x)
(R0) cl is symmetric if x ∈ vc(y) ⇐⇒ y ∈ vc(x).
Result: cl is symmetric R is symmetric.



Separation Axioms

I (T0) ∀x , y∃N ′ ∈ N (x) or N ′′ ∈ (y) such that y 6∈ N ′ or
x 6∈ N ′′

(K0+K5) spaces: x 6= y =⇒ x /∈ vc(y) or y /∈ vc(x), i.e.,
y 6∈ cl(x) or x 6∈ cl(y).
Equivalently: If x 6= y then xRy implies y 6 Rx .
Thus (T0) is equivalent to antisymmetry of the relation.

I (T1) ∀x , y∃N ∈ N (x) such that y 6∈ N

(K0+K5) spaces: x 6= y =⇒ x /∈ vc(y)
x 6∈ cl(y) ⇐⇒ cl(x) ⊆ {x}, i.e., there are no “off-diagonal
elements” in R.

Lemma For isotonic spaces holds (R0) and (T0) ⇐⇒ (T1)



Separation Axioms

I (T2) ∀x 6= y ∃N ′ ∈ N (x) and N ′′ ∈ N (y) such that
N ′ ∩ N ′′ = 0
(K0+K5) spaces: vc(x) ∩ vc(y) = 0,i.e.,
z ∈ vc(x) =⇒ z 6∈ vc(y), i.e., x ∈ cl(z) =⇒ y 6∈ cl(z), i.e.,
|cl(z) | ≤ 1.

A (K0+K5+T2) space corresponds to a function on X :

ψ : domR → imgR : x 7→ ψ(x) where cl(x) = {ψ(x)}



Transitive Relations and Topologies

I Def. R is reflexive if xRx for all x ∈ X .
This is equivalent to A ∈ cl(A) (enlarging, K2)

I Def. R is transitive if xRy and yRz implies xRz

x ∈ cl(y) and y ∈ cl(z) implies x ∈ cl(z).
This is equivalent to cl(cl(A)) ⊆ cl(A).

I Pre-Order relation = reflexive and transitive.
This implies: A ∈ cl(A) and cl(cl(A)) ⊆ cl(A), i.e.,
cl(cl(A)) = cl(A) (idempotent closure).

I Thm. (K0,K5)-space is topological if and only if the
corresponding relation R is a pre-order.

I In particular, finite topologies and finite pre-order relations are
the same thing.



So Long, and Thanks for all the fish!


