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Thermodynamic vs. Kinetic Folding

Equilibrium properties can be calculated efficiently
But what about dynamics?

» On what time scale is equilibrium reached?
» How fast/slow is re-folding between dissimilar structures?

» What structures are populated initially?

—7.9kcal /mol ~ —8.0kcal /mol



Structural changes are common in functional RNA

RNA switches toggle between active and inactive states by

changing conformation.
Used especially to control mRNA translations; triggered by:

» binding of proteins or small ligands
» chemical modification, e.g. tRNA
» temperature dependent switches
» timed mRNA switches, e.g. HOK
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Folding during Transcription

RNA is transcribed at a rate of only 3040 nucleotides per
second

The nascent chain starts folding as soon as its leaves the
ribosome

Stem formed by the incomplete chain may be too stable to
refold later on

Co-transcriptional folding may drive the folding process to a
well-defined folded state



Predicting dynamics of RNA folding

Folding dynamics described by a Morkov process with master
equation

d .
% = Z Iy Py () with ry = — Z Iyx-

yeX y#x

» Integration of the master equation (toy models only).
» Stochastic folding simulations. Needs many trajectories.

» Qualitative analysis of the energy landscape to identify
possible traps (local minima). — coarse grained versions of
the Markov process

Need to model the rate r,. For small moves Metropolis rule is sufficient.



Elementary move set for RNA secondary structures

Add base pair Remove base pair
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Kinetic Folding Algorithm

Simulate folding kinetics by a Monte-Carlo type algorithm: .

Generate all neighbors using the move-set
e Basepair Insertion

e Basepair Deletion 0o

Assign rates to each move, e.g.

AE
P; = min {l,exp (——)}
kT

Advance clock 1/, P;.

select a move with probability proportional to its rate



Kinetic Folding Algorithm

Simulate folding kinetics by a Monte-Carlo type algorithm:

Generate all neighbors using the move-set
e Basepair Insertion

e Basepair Deletion

Assign rates to each move, e.g.

AE
P; = min {l,exp (——)}
kT

Advance clock 1/, P;.
extend chain by one if t > n- 7 else
select a move with probability proportional to its rate

grow chain

if tn*t




Characterization of Landscapes

A landscape consists of a configuration space V, a move set within that
configuration space and an energy function f : V — R.

Simplest move set for secondary structures: opening and closing of pairs.
Speed of optimization depends on the roughness of the Landscape.

Measures of roughness suggested in the literature:
Number of local optima

Correlation lengths (e.g. along a random walk)
Lengths of adaptive walks

Folding temperature vs. glass temperature T¢/ T,

vV v.v. v Yy

Energy barriers between the local optima. Especially, the
maximum barrier height (“depth” in SA literature)



Energy barriers

Els, W]—min{max[ | | p: path from s to W},

B(s) = min { E[s,w] — f(s)|w : f(w) < f(s)}

Depth and Difficulty
(borrowed from simulated annealing theory)

D = max { B(s)|s is not a global minimum }
_ B(s)
ke { f(s) — f(min)

s is not a global minimum}



Calculating barrier trees

The flooding algorithm:

Read conformations in energy sorted order.

For each confirmation x we have three
cases:

(a) x is a local minimum if it has no
neighbors we've already seen

(b) x belongs to basin B(s), if all known
neighbors belong to B(s)

(c) if x has neighbors in several basins
B(s1)...B(sk) then it's a saddle
point that merges these basins.
Basins B(s1), ..., B(sk) are then
united and are assigned to the
deepest of local minimum.




Information from the Barrier Trees

Local minima

Saddle points

Barrier heights

Gradient basins

Partition functions and free energies of (gradient) basins
Effective refolding rates between gradient basins

Depth and Difficulty of the landscape

vV v vV vV VvV VY

A gradient basin is the set of all initial points from which a gradient walk
(steepest descent) ends in the same local minimum.



Energy Landscape of a Toy Sequence

Energy [kcal/mol]

Steps [arbitrary]
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Barrier Tree and refolding Path
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» The two component structure is kinetically prefered, because both

t as nucleation centers

irpins ac

ha
» For the full length chain 75% of trajectories reach the two component

stucture first

» Much stronger effect for co-transcriptional folding

only 1 in 1000 trajectories ends in the one component structure



Some Examples

Effect of co-transcriptional folding for some bi-stable structures
taken from the PARNAS web site.

name | full seq slow fast very fast equil. maxB !
MS2 69/31 99.6/0.4 59/41 76/24  99.9/0.1 8.1
S15 60/40 99.7/0.3 99.5/0.5 60/40 99/1 6.24
dsrA 32/68 63/37 42/58 65/35 62/38 7.8

attenuator | 85/15 99.9/0.1  25/75  69/31 94/6 13.7

With realistically slow transcription rate, co-transcriptional folding
often leads to equilibrium.

!kcal /mol



Attenuator example

13.7kcal
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Barrier Trees of Growing Sequence

n=50 n==60 n=70

AUCCAGGAGGCUAGCGCGUGAGAAGAGAAACGGAAAACAGCGCCUGAAAGCCUCCCAGUGGAGGCUUUUUUU
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Coarse Graining the folding dynamics

For a reduced description we need
> macro-states that form a partition of full configuration space
> transition rates between macro states

How can we optimally choose the macro-states?
Use the gradient basins around each local minimum.

Transition rates could follow an Arrhenius rule
p— (—(Ega - Ga)/RT).

Or compute macro state rates from microscopic ones
RT
r3a = Z Z ryProb[x|a] = Z Z re EX)/
YEB XEQ yeﬁ XEa

assuming local equilibrium.



Coarse grained dynamics
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Mapping between Barrier Trees

Each structure x at length n corresponds to an extended structure xe at
length n+ 1.

For a minimum m, the correponding minimum m’ can be found by a
gradient walk starting with me.

» Two minima may be mapped to
the same minimum in the n 41
landscape.

» In addition new minima may
appear.



An BTM Example

bar_map.pl computes the mapping between a sequence of bar files

> bar_map.pl attenuator_x.bar
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Coarse grained Simulation with Chain Growth

How to generalize the coarse grained simulations for
co-transcriptional folding

1. Simulate folding on barrier tree of size n for time 7
2. map final population to size barrier tree of size n+ 1

3. use mapped population as initial condition for next simulation

Not yet implemented...



Summary

Folding dynamics can be simulated through either explicit MC
simulation or coarse grained computation on the barrier tree.
Both approaches can be generalized to co-transcriptional
folding

Co-transcriptional folding can focus the outcome on just one
structure

Results can depend strongly on transcription speed

Need to fix our time-scale by comparison with experiment



