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Overview

computer scientist are interested in methods
• method: constraint-based structure prediction

– lattice models

– basic model of HP-type models

– subproblems: bounds, hydropbic cores, threading

bioinformatics are interested in applications as well
• results and applications

– degeneracy of sequences

– finding protein-likes sequences with unique ground state

– comparing different models (cubic/fcc, HP-model with HPNX)
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Structure Prediction as Optimization Problem

• searched: structure (conformation) of minimal (free) energy

⇒ huge search space

• hence: only parts of the search space considered⇒ generate-and-test

– generate approximation

– here: broad exploration of search space

– starting points for fine-tuning

• hierarchical approaches

GPSQPTYPG

DDAPVEDLI

RFYDNLQQY

LNVVTRHRY

⇒ ⇒
10 000

⇒
100

search in low

resolution model

improvement:

biolog. knowledge,

molecular dynamics

• often: low-resolution model = lattice model

3



Structure Prediction as Optimization Problem

• searched: structure (conformation) of minimal (free) energy

⇒ huge search space

• hence: only parts of the search space considered⇒ generate-and-test

– generate approximation

– here: broad exploration of search space

– starting points for fine-tuning

• hierarchical approaches

GPSQPTYPG

DDAPVEDLI

RFYDNLQQY

LNVVTRHRY

⇒ ⇒
10 000

⇒
100

search in low

resolution model

improvement:

biolog. knowledge,

molecular dynamics

• often: low-resolution model = lattice model

3



Structure Prediction as Optimization Problem

• searched: structure (conformation) of minimal (free) energy

⇒ huge search space

• hence: only parts of the search space considered⇒ generate-and-test

– generate approximation

– here: broad exploration of search space

– starting points for fine-tuning

• hierarchical approaches

GPSQPTYPG

DDAPVEDLI

RFYDNLQQY

LNVVTRHRY

⇒ ⇒
10 000

⇒
100

search in low

resolution model

improvement:

biolog. knowledge,

molecular dynamics

• often: low-resolution model = lattice model

3



Previous Prediction Approaches for Latttice Models

• sometimes: heuristic approaches – chain growth algorithms

– genetic algorithms

– . . .

advantages: ∗ fast

disadvantages: ∗ only for structure prediction

• mostly: monte-carlo/simulated annealing

advantages: ∗ easy to adapt

∗ if ergodic, then known distribution

disadvantages: ∗ for HP-model, optimal solution nearly never found

∗ most approaches are not ergodic

• also: complete enumeration

advantages: ∗ direct exploration of landscape

disadvantages: ∗ very short sequences, only 2D
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Idea of Lattice Models

• trade-off: choose between

– models, that closely resembles proteins structure

BUT no hope of ever(algorithmically) finding the native structure

– models, that crudely resembles proteins structure

BUT we can find the native structure

BUT SO FAR: we cannot find the native structure either

• here: BUT we can find the native structure

using constraint programming
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Lattice Models

• lattice models:

– usually only backbone

– positions = positions on lattice

– self-avoiding: no steric conflicts

• often used lattices:

cubic face-centered-cubic

• BUT: search for native conformation = NP-complete

• which lattice should be used?
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The FCC

• FCC = face-centered cubic lattice

• Kepler’s conjecture: FCC=densest packing of balls

proved just recently (after≈ 400 years)

• [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

. . . the neighbours are not distributed in a uniform, less dense way, but rather in a clustered

dense way, occupying positions that closely approximate those of a distorted FCC packing.. . .

. . . We confirm that lattices with large coordination numbers provide better

fits to protein structures . . .
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Relation to Proteins

hydrophob (H)

polar (P)

• how does it related

to proteins?

– hydrophobic and polar (hydrophilic) amino acids

– hydrophobic are densely packed

alphabet:
H = Hydrophobic

P = Polar (hydrophilic)

• in the following: – search for conformation with densest hydrophobic packing

= max. number of contacts between hydrophobic AA (green)

– HP-model of Ken Dill: folding of sequences consisting of H and P
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General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

using constraint propagation

⇒
Step 1

⇒
Step 2

⇒
Step 3

9



General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

using constraint propagation

⇒
Step 1

⇒
Step 2

⇒
Step 3

9



General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

using constraint propagation

⇒
Step 1

⇒
Step 2

⇒
Step 3

9



General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

using constraint propagation

⇒
Step 1

⇒
Step 2

⇒
Step 3

9



General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

using constraint propagation

⇒
Step 1

⇒
Step 2

⇒
Step 3

9



General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

using constraint propagation

⇒
Step 1

⇒
Step 2

⇒
Step 3

9



Example for a Constraint-Problem: Sudoku

 8

 5 

  

4

 

9

6   

81

 9

 

 5  

 3 

   

28 

5

4  

 

 

 

   

   

   

 49

8

  2

  

   

  

  

3

5

8 5  

4  

  7

9

4

2

  

  

 8

 

 

 

 

    

   

  

 

9 4 8 2

3

5

8

4

9

9

2

84 • every number from 1 . . . 9 exactly

once in

– every row

– every column

– every block

10



Example for a Constraint-Problem: Sudoku

 8

 5 

  

4

 

9

6   

81

 9

 

 5  

 3 

   

28 

5

4  

 

 

 

   

   

   

 49

8

  2

  

   

  

  

3

5

8 5  

4  

  7

9

4

2

  

  

 8

 

 

 

 

    

   

  

 

9 4 8 2

3

5

8

4

9

9

2

84 • every number from 1 . . . 9 exactly

once in

– every row

– every column

– every block

10



Constraints-Formulation

• Variablen Xn
k,l ∈ {0, 1} for every row k, column l and number n ∈ {1 . . . 9}.

• Constraints

 4 8

 5  

 9  

6   

81

 9

 

 5  

 3 

   

28 

5

4   

  

   

   

   

 49

8

  2

  

   

 3 

 5  

8 5  

4  

  7

9

4

2

  

  

 8

X     = 1 

9

9
1,2

     9 4 8 2

1

9

X        =   1

X        =   1

l in Reihe 5

5,l

5,l

l in Reihe 5

für R
eihe  5

• similar for all columns and blocks
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Constraint-Propagation
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• iteration till stable state

• if not solved: Search

– for one variable: split
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– followed by Propagation.
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• “naive” search (generate-and-test):
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Constraint-Programming: automatisation of progagation and search
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Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization: distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13



Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization: distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13



Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization: distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13



Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization: distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13



Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization: distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13



Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization: distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13



Problem 1: Frame Sequences
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Bounds for FCC

• FCC models proteins better: ∼ 1.5− 2Å RMSD [Park&Levitt95]

• BUT: almost nothing was known

– approximation: 60% of optimum [Agarwala et al.98]

– only trivial bounds: 6× number of H-amino acids.

• approach:

interlayer contacts

layer contacts

x=1 x=2 x=3

4-point

3-point

n2=5n1=1 n3=2
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Bound on Layer Contact

• relation between surface and contacts

4n = 2·H-contacts + H-surface

↑ ↑
number of
H-neighbours

contacts to Ps
or solution positions

• relation to frame H-surface = 2 · a+ 2 · b (a, b)= (height,width)
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• minimal surface for n Hs = minimal frame (a, b) around n point

a = d
√
ne b = dna e
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Recursion for Bound

+ +n2 =
a2

a1 n1

b1

b2

b1

a1
n1

n2

a2

b2

ILCB      ( n1,a1,b1
 n2,a2,b2 ) 2 3 4

n2

B    (n1,a1,b1)LC

B  (n,n1,a1,b1)C

1 2 3 4

CB   (n − n1,n2,a2,b2)

BC(n, n1, a1, b1): contacts in core with n elements and first layer E1 : n1, a1, b1

= BLC(n1, a1, b1) contacts in layer E1

+ BILC(n1, a1, b1, n2, a2, b2) contacts between layers E1 and E2 : n2, a2, b2

+ BC(n− n1, n2, a2, b2) contacts in core with n− n1 elements

and first layer E2
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Bound on Interlayer Contacts

• recall: we need an bound

on interlayer contacts

x=2x=1
n1=5 n2=3

3−point

4−point

2−point

• but: we are given only frames

x=1
n1=5

x=2
n2=3

a1
=3

b1
=2

b2
=2

a2
=2

⇒ bound number of 4−, 3−, 2− and 1−points, given frames

18



Bound on Number of 4-, 3-, 2- and 1-Points

• problem: number of 4-, 3-, 2- and 1-points in x = i+ 1 depends on exact position

of Hs in x = i

ni = 8
ai = height

bi = width
4

3

4

3

4

4

• needed: parameters, which determine the number of 4-, 3-, 2- and 1-points

• Lemma let ` be the number of 3-points. Then:

number of 4 = ni + 1− ai − bi number of 2 = 2ai + 2bi − 2`− 4

number of 1 = `+ 4.

for `, there is an upper bound [Backofen00]
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Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2 bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

20
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Problem 2: Enumerate Hydrophobic Cores

=⇒

21



Enumerating Hydrophobic Cores

• constraint variables:

– boolean variable for every position =̂ (pnt(~p) = 1)
=̂ (pnt(~p) = 0)
=̂ (pnt(~p) undef.)

– contact variable for each neighboring position =̂ con(~p, ~q) = 1

• constraints: –
∑

~p∈frames pnt(~p) = number of Hs

– if optimal, then no caveats

– . . .

22



Enumerating Hydrophobic Cores

• remaining problem: relative positions of frames

• subproblems:

– symmetries later

– many subproblems solved several times

∗ do not use fixed frame position

∗ global bind frame positions by surrounding cube

– more pruning: optimal core must have optimal frame-sequence in any direction

constructive disjunction

23
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Problem 3: Threading Sequence onto Hydrophobic Cores

=⇒

24



New Constraints for Threading

• threading: given core, find a sequence of monomer through it

• main problem: self-avoiding walks⇒ new constraint: SAWalk(x1, . . . , xm)

walk self-avoiding walk (SAWalk)

Pos. used twice

• problem: complete handling for SAWalk(x1, . . . , xm) is hard

• therefore: approximate SAWalks⇒ k-avoiding walks

4- but not 5-avoiding
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Example: 3-Avoiding

• psinglets: HPH-subsequence

• in cubic lattice: has strong influence on core

caveat

• caveat-freeness by path constraint

• remaining invalid case excluded by 3-avoidingness

26
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Problem 4: Symmetry Breaking

�
�
�
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�
���������

��������
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�
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�
�
�������

������
�
�
�
�

�
�
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�
�
�

�
�
�
�

X1 = 3

X1 = 1 X1 6= 1

solved, but skipped here!
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Comparison of Results

• small selection of previous approaches:
authors model dim. maxlen algorithm comment

[Yue& Dill PhysRevE93] cubic HP 3 36 branch-and-bound optimality proven

[Yue&Dill PNAS95] cubic HP 3 88 branch-and-bound optimality proven

[Sazhin et al. 01] cubic HP, FCC 3 34 branch-and-bound not always optimal

[Cui et al. PNAS02] square HP 2 18 compl. enum

[Hart&Istrail JCB97] FCC side chain 3 — approximation 86% of optimum

[Agarwala et al. JMB97] FCC HP 3 — approximation 3
5

of optimum

• our results:

– native conformation up to length 200300

– proof of optimality

– number of conformations

of length n: ≈ 4.5n

⇒ search space handled≈ 4.5904.5190 bigger

– only existing non-heuristic algorithm for FCC

threading on 100-Hs core
seq. length runtime
S1 135 9 s
S2 151 15 s
S3 161 18 s
S4 164 11 s
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Runtimes

prediction of one optimal structure
(sequence length 48, “Harvard sequences” from [Yue et al., 1995])

Nr. sequence CPSP PERM

1 HPH2P2H4PH3P2H2P2HPH3PHPH2P2H2P3HP8H2 0,1 s 6,9 min

2 H4PH2PH5P2HP2H2P2HP6HP2HP3HP2H2P2H3PH 0,1 s 40,5 min

3 PHPH2PH6P2HPHP2HPH2PHPHP3HP2H2P2H2P2HPHP2HP 4,5 s 100,2 min

4 P2HP3HPH4P2H4PH2PH3P2HPHPHP2HP6H2PH2PH 1,8 s 74,7 min

5 H3P3H2PHPH2PH2PH2PHP7HPHP2HP3HP2H6PH 1,7 s 59,2 min

6 PHP4HPH3PHPH4PH2PH2P3HPHP3H3P2H2P2H2P3H 12,1 s 144,7 min

7 PHPH2P2HPH3P2H2PH2P3H5P2HPH2PHPHP4HP2HPHP 7,3 s 284,0 min

8 PH2PH3PH4P2H3P6HPH2P2H2PHP3H2PHPHPH2P3 1,5 s 26,6 min

9 PHPHP4HPHPHP2HPH6P2H3PHP2HPH2P2HPH3P4H 0,3 s 1420,0 min

10 PH2P6H2P3H3PHP2HPH2P2HP2HP2H2P2H7P2H2 0,1 s 18,3 min

• CPSP: “our approach”, constraint-based

• PERM [Bastolla et al., 1998]: stochastic optimization

PERM=pruned-enriched Rosenbluth method
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Applications

• structure prediction

• investigation of landscape properties

– degeneracy of sequences

– finding protein-likes sequences with unique ground state

– comparing different models (cubic/fcc, HP-model with HPNX)

30



Degeneracy

• degeneracy (g) of a sequence = number of structures with lowest energy

• known: HP-model has high degeneracy

• unknow: – how high is it?

– are there sequences with g=1 (unique ground state, “protein-like”)?

– how does it compare to other models (FCC, HPNX)?

– how do neutral nets look like?

• degeneracy: can only be tested via two algorithms

Sequence degeneracy found by

CHCC [Yue et al] our approach

HPHHPPHHHHPHHHPPHHPPHPHHHPHPHHPPHHPPPHPPPPPPPPHH ≥ 1, 500, 000 10, 677, 113
HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH ≥ 14, 000 28, 180
PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP ≥ 5, 000 5, 090
PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH ≥ 188, 000 580, 751
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Application: Design of protein-like Sequences

• find sequences with exactly

one optimal structure

• stochastic local search

node:
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Run Time Requirements

• at every step: calculation/estimation of degeneracy (using our CPFL)

• but: runtime depends on degeneracy

• good news: runtime grows only linearly with degeneracy
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Example: Sequences with Unique Ground-State

• length 64:

• length 80:

• Note: previously it was assumed that HP-model has none g=1 sequences
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Three “Typical” Runs
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Degeneracy: FCC vs. Cubic

• log-degeneracy cubic HP-model:
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Degeneracy: HP-Model vs. HPNX-model

• HPNX: P=positive N=negative X=neutral

• should reduce the degeneracy

• How much?⇒ preliminary results

– HP: approx. 0.016% of all random sequences are uniquely folding.

– HPNX: approx. 2.6% of all random sequences are uniquely folding.

• Note: 50% H monomers

• example for reduction: sequence S2

– HPNX: HXNNHHHHXHXHHNXNHXHHNHPPXHP

– corresp. HP: HPPPHHHHPHPHHPPPHPHHPHPPPHP
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S2 HP-sequence: 4 out of 297
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S2 HPNX-sequence: the 4 native ones
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Connectivity of Neutral Nets
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Conclusion

• constraint-based approach to protein folding

• guaranteed to find optima

• models: – HP-like models: HP, HPNX

– lattices: cubic, FCC

• applications: properties of landscape

– degeneracy

– neutral nets

– folding tunnel
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