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@ Monte Carlo M ethod

& Task:

Compute expectation of some function g with respect to
a distribution with density f:

E1(0) = [ alx) Fx)dx

#® Method: Monte Carlo Integration

N
1
FOES > g(X)  where X; ~ f
i—1

#® Problem: Generation of X; ~ f
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7\ Generation of 11D Random Vectors

ARVAG

In high dimension it is very difficult to generate RVSs.

# The conditional distribution method requires
knowledge of all full conditional distribution functions.

#® The rejection method does not work well in higher
(> 10) dimensions, since rejection constant and/or the
memory requirements explode exponentially.

E.g. Generate points uniformly distributed in a ball by
rejection from the hypercube. For dimension 50 the

acceptance probability is about 10725,

However, there is no necessity for |ID random vectors.
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@ Markov Chain Monte Carlo

Run a Markov chain whose stationary distribution is the
required distribution.

Many such methods exist:

Metropolis-Hastings algorithm
Random walk sampler
Independence sampler

© o o o

Gibbs sampler
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@ Markov Chain Sampler

Advantages:
# Algorithms are much simplier.

# More generally applicable.

Disadvantages:
# No IID random vectors.

# The generated points are dependent and follow the
desired distribution only approximately.

# Rate of convergence of the Markov chain is a problem.
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@ Markov Chain Sampler

From the WInNBUGS manual:

Beware!

MCMC can be dangerous!



@ Metropolis-Hastings Algorithm

Such a Markov chain can be generated by means of
proposal densities ¢(z|X).

Algorithm:

#® Choose a starting point Xg; set ¢t < 0.
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@ Metropolis-Hastings Algorithm

Such a Markov chain can be generated by means of
proposal densities ¢(z|X).

Algorithm:

» Generate proposal X with density q(z|X;)
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@ Metropolis-Hastings Algorithm

Such a Markov chain can be generated by means of
proposal densities ¢(z|X).

Algorithm:

Choose a starting point Xg; set ¢ < 0.
Generate proposal X with density ¢(z|X;)
® Generate U ~ U(0,1).
f U < f(X) Q()ft‘)N()
f(X¢) q(X|X¢)
Otherwise set X;.; «+ X;.

set Xi — X

Increment + and continue.
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@ Metropolis-Hastings Algorithm

Such a Markov chain can be generated by means of
proposal densities ¢(z|X).

Algorithm:

8 IfU< N set X — X
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@ Metropolis-Hastings Algorithm

Such a Markov chain can be generated by means of
proposal densities ¢(z|X).

Algorithm:

Choose a starting point Xg; set ¢ < 0.
Generate proposal X with density ¢(z|X;)
Generate U ~ U(0,1).

f U < f(X) Q()N(t\f()

f(X¢) q(X|X¢)
#® Otherwise set X;. 1 «+ X;.

set Xi — X

Increment + and continue.
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@ Metropolis-Hastings Algorithm

Such a Markov chain can be generated by means of
proposal densities ¢(z|X).

Algorithm:

® Increment t and continue.
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7\ Gibbs Sampler

Use full conditional distributions.
Algorithm:
#® Choose a starting point Xg; set ¢t < 0.

Foreachi =1,...,d generate X, ; from density
f(xi‘Xt—i—l,la Ce 7Xt—|—1,i—17 Xt,i—‘rla ce 7Xt,d>'

Increment + and continue.
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7\ Gibbs Sampler

Use full conditional distributions.
Algorithm:
Choose a starting point Xg; set ¢ < 0.

® Foreachi:=1,...,d generate X;;;; from density
f(:l?i‘Xt+1’1, ce 7Xt—|—1,i—17 Xt,i—i—la c. 7Xt,d)-

Increment + and continue.
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7\ Gibbs Sampler

Use full conditional distributions.
Algorithm:
Choose a starting point Xg; set ¢ < 0.

Foreachi =1,...,d generate X, ; from density
f(aji‘Xt—i—l,h Ce 7X?f—|—1,i—17 Xt,i—‘r17 ce 7Xt,d>'

® Increment t and continue.
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7\ Gibbs Sampler

Use full conditional distributions.
Algorithm:
Choose a starting point Xg; set ¢ < 0.

Foreachi =1,...,d generate X, ; from density
f(xi‘Xt—i—l,la Ce 7Xt—|—1,i—17 Xt,i—‘rla ce 7Xt,d>'

Increment + and continue.

Problem:
How to sample from conditional distributions?
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@ Automatic MCMC Sampler

The above methods are “recipes” for the design of a
Markov chain that converges to the desired distribution.

They have to be adjusted to the particular generation
problem.
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@ Automatic MCMC Sampler

The above methods are “recipes” for the design of a
Markov chain that converges to the desired distribution.
They have to be adjusted to the particular generation
problem.

A MCMC sampler that runs the Hit-and-Run sampler in
combination with the Ratio-of-Uniforms method is much
simpler and works for many distributions with given density
out of the box.
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@ Hit-and-Run Sampler

Gerate a sample of random points uniformly distributed in
some fixed but arbitrary bounded open set S € R™:

#® Choose a starting point Xy € S and set £ = 0.
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@ Hit-and-Run Sampler

Gerate a sample of random points uniformly distributed in
some fixed but arbitrary bounded open set S € R™:

#® Generate a random direction d; with distribution D.
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@ Hit-and-Run Sampler

Gerate a sample of random points uniformly distributed in
some fixed but arbitrary bounded open set S € R™:

#® Generate )\ uniformly distributed in
A =5 N{x: x=x; + \d}.
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@ Hit-and-Run Sampler

B

Gerate a sample of random points uniformly distributed in
some fixed but arbitrary bounded open set S € R":

o Choose a starting point Xy € S and set & = 0.

o Generate a random direction d;. with distribution D.

o Generate )\, uniformly distributed In
A = SN{x: x=x; + \d}.

® Set X1 =Xp+ M\ dand £ =k + 1.
o Repeat from Step 2

[Smith, 1984]

o ]
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Gerate a sample of random points uniformly distributed in

Hit-and-Run Sampler

B

some fixed but arbitrary bounded open set S € R":

O

O

O

[Smith, 1984]

Choose a starting point Xy € S and set & = 0.
Generate a random direction d;, with distribution D.

Generate )\, uniformly distributed In
A = SN{x: x=x; + \d}.

Set Xpp1 =X+ \edand k£ =k + 1.
Repeat from Step 2

|
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@ Hit-and-Run Sampler

The Markov chain generated by the Hit-and-Run Algorithm
over converges geometrically fast to the target distribution.

Important choices for the directional distribution D are

#» Hypersphere sampling:
D 1s the uniform distribution over the sphere.

#» Coordinate direction sampling:
D Is the discrete uniform distribution over the axes.

& Gibbs sampling:
Go through all axes in a fixed order.
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@ Ratio-of-Uniforms

Theorem:

Let f(x) be a positive integrable function on R™. Let r > 0
and suppose the point (U, V) € R"" with U = (Uy,...,U,)
IS uniformly distributed over the region

A(f) = A(f) = {(u,0): 0 < v < "/F(u/or) }

then X = U/V" has probability density function prop. to f(x).
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@ Ratio-of-Uniforms

Algorithm:

# Sample a point (U, V) uniformly in A(f).
® Return X=U/V".
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@ Ratio-of-Uniforms

A(f) for standard bivariate normal distribution and » = 1.




@ Ratio-of-Uniforms

Theorem:

For a density f and r = 1 the region A(f) c R""! is convex
If and only if the transformed density

T(f(x)) = —(f(x))~Y* is concave.

As a consequence of the Ratio-of-Uniforms methods the
unbounded region below the graph of the density f is often
mapped into a bounded and convex set.

The Hit-and-Run sampler is well suited to sample uniformly
from A(f).
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O

Sampling from A, by adaptive rejection:

Adaptive Sampling from Line Segment A,

B

Compute a bounding rectangle.
Compute intersection L, of line with rectangle.

Sample point X in L.
If X € A, accept X.

Else shrink segment L,
and try again.

|
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9

O

O

Sampling from A, by adaptive rejection:

Adaptive Sampling from Line Segment A,

B

Compute a bounding rectangle.
Compute intersection L, of line with rectangle.
Sample point X in L.

If X € A, accept X.

Else shrink segment L,
and try again.

|

Leydold — 2006/02/20 — Hitro — p.16/2.



@ Adaptive Sampling from Line Segment A,

Sampling from A, by adaptive rejection:

# Compute intersection L, of line with rectangle.
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@ Adaptive Sampling from Line Segment A,

B

Sampling from A, by adaptive rejection:

o Compute a bounding rectangle.
o Compute intersection L, of line with rectangle.

® Sample point X In L.

o If X € A, accept X.

o Else shrink segment L,
and try again.

o ]
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@ Adaptive Sampling from Line Segment A,

B

Sampling from A, by adaptive rejection:

o Compute a bounding rectangle.
o Compute intersection L, of line with rectangle.

o Sample point X in L.
» |f X € A, accept X.

o Else shrink segment L,
and try again.

o ]
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@ Adaptive Sampling from Line Segment A,

Sampling from A, by adaptive rejection:

# Else shrink segment L,
and try again.
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@ Adaptive Sampling from Line Segment A,

Sampling from A, by adaptive rejection:

The expected number of iterations is
1 —log(pu(Ly)/1(Ar)) - =52
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@ Performance: Callsto Density f

20

—@— non adaptive
—O— adaptive

I
1 10 100

dim
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@ Alternative M ethods

Computing a bound rectangle is very expensive in higher
dimensions. This can be avoided:

# Only use an upper bound for f.

The expected number of iterations is only slightly
Increased in higher dimension.

Or:
# Compute L, by a simple search algorithm.
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@ Performance: Callsto Density f

—@— adaptive, strip
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@ Performance: M SE compared to Gibbs Sampler

MSE
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@ Performance: M SE compared to Gibbs Sampler

MSE
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@ Performance: M SE compared to Gibbs Sampler

MSE

0.008

0.006 -
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Variance of marginal distributions
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dim
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@ Non-unimodal Density
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7\ Conclusion

ARVAG

The HITRO (Hit-and-run-Ratio-Of-uniforms) sampler is
#» simple;

#® easy to implement;

# relatively fast;
o

works for many (not necessarily unimodal) distributions
out of the box;

°

performs similar to the Gibbs sampler

(in terms of MSE)

but does not need a special and/or expensive generator
for conditional distributions.

Leydold — 2006/02/20 — Hitro — p.22/2:



Thank you!
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