Estimation of low-energy refolding paths

Michael Wolfinger

Institute for Theoretical Chemistry University Vienna

February 21, 2006

Outline

- 1 Lattice Proteins
- 2 Conformation space
- 3 Energy landscapes
- 4 Refolding paths

The HP-model

Suggested by Dill, Chan and Lau in the late 1980ies. In this *simplified model*, a conformation is a *self-avoiding walk (SAW)* on a given lattice in 2 or 3 dimensions. Each bond is a straight line, bond angles have a few discrete values. The 20 letter alphabet of amino acids (monomers) is reduced to a two letter alphabet, namely **H** and **P**. H represents hydrophobic monomers, P represents hydrophilic or *polar* monomers.

Advantages:

- lattice-independent folding algorithms
- simple energy function
- hydrophobicity can be reasonably modeled

FRRLLFLF

Contact Potentials

Generally, the energy function for a sequence with n residues $\mathfrak{S} = \mathfrak{s}_1\mathfrak{s}_2\dots\mathfrak{s}_n$ with $\mathfrak{s}_i \in \mathscr{A} = \{a_1, a_2, \dots, a_b\}$, the alphabet of b residues, and an overall configuration $x = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ on a lattice \mathscr{L} can be written as the sum of pair potentials

$$E(\mathfrak{S},x) = \sum_{\substack{i < j-1 \\ |x_i - x_j| = 1}} \Psi[\mathfrak{s}_i, \mathfrak{s}_j].$$

Lattice proteins

 $\mathfrak{S}=$ НРНРНННРРНННРНРН n=16

$$E = -15$$

 $\mathfrak{S} = \mathtt{NNHHPPNNPHHHHPXP} \quad n = 16$

$$E = -16$$

	Η	Ρ	Ν	Χ
Η	-4	0	0	0
Ρ	0	1	-1	0
Ν	0	-1	1	0
Χ	0	0	0	0

Lattice proteins - interaction scheme II

tbi

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

$$c_n \sim \mu^n \cdot n^{\gamma-1}$$
 problem is NP-hard

In the RNA case $c_n \sim 1.86^n \cdot n^{-\frac{3}{2}}$

dynamic programming algorithms available

dim	Lattice Type	μ	γ
	SQ	2.63820	1.34275
2	TRI	4.15076	1.343
	HEX	1.84777	1.345
	SC	4.68391	1.161
3	BCC	6.53036	1.161
	FCC	10.0364	1.162

- A set *X* of configurations
- \blacksquare a symmetric neighborhood relation $\mathfrak{N}: X \times X$
- an energy function $f: X \to \mathbb{R}$

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

$$c_n \sim \mu^n \cdot n^{\gamma-1}$$
 problem is NP-hard

In the RNA case $c_n \sim 1.86^n \cdot n^{-\frac{3}{2}}$

dynamic programming algorithms available

dim	Lattice Type	μ	γ
	SQ	2.63820	1.34275
2	TRI	4.15076	1.343
	HEX	1.84777	1.345
	SC	4.68391	1.161
3	BCC	6.53036	1.161
	FCC	10.0364	1.162

- A set *X* of configurations
- \blacksquare a symmetric neighborhood relation $\mathfrak{N}: X \times X$
- \blacksquare an energy function $f: X \to \mathbb{R}$

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

$$c_n \sim \mu^n \cdot n^{\gamma-1}$$
 problem is NP-hard

In the RNA case $c_n \sim 1.86^n \cdot n^{-\frac{3}{2}}$

dynamic programming algorithms available

dim	Lattice Type	μ	γ
	SQ	2.63820	1.34275
2	TRI	4.15076	1.343
	HEX	1.84777	1.345
	SC	4.68391	1.161
3	BCC	6.53036	1.161
	FCC	10.0364	1.162

- A set X of configurations
- \blacksquare a symmetric neighborhood relation $\mathfrak{N}: X \times X$
- an energy function $f: X \to \mathbb{R}$

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

$$c_n \sim \mu^n \cdot n^{\gamma-1}$$
 problem is NP-hard

In the RNA case $c_n \sim 1.86^n \cdot n^{-\frac{3}{2}}$

dynamic programming algorithms available

d	lim	Lattice Type	μ	γ
		SQ	2.63820	1.34275
	2	TRI	4.15076	1.343
		HEX	1.84777	1.345
		SC	4.68391	1.161
	3	BCC	6.53036	1.161
		FCC	10.0364	1.162

- A set X of configurations
- \blacksquare a symmetric neighborhood relation $\mathfrak{N}: X \times X$
- an energy function $f: X \to \mathbb{R}$

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

$$c_n \sim \mu^n \cdot n^{\gamma-1}$$
 problem is NP-hard

In the RNA case $c_n \sim 1.86^n \cdot n^{-\frac{3}{2}}$

dynamic programming algorithms available

	dim	Lattice Type	μ	γ
		SQ	2.63820	1.34275
	2	TRI	4.15076	1.343
		HEX	1.84777	1.345
		SC	4.68391	1.161
	3	BCC	6.53036	1.161
		FCC	10.0364	1.162

- A set *X* of configurations
- \blacksquare a symmetric neighborhood relation $\mathfrak{N}: X \times X$
- an energy function $f: X \to \mathbf{R}$

The move set

- For each move there must be an inverse move
- \blacksquare Resulting structure must be in X
- Move set must be *ergodic*

The move set

- For each move there must be an inverse move
- Resulting structure must be in X
- Move set must be *ergodic*

Some topological definitions:

A structure is a

- local minimum if its energy is lower than the energy of all neighbors
- local maximum if its energy is higher than the energy of all neighbors
- saddle point if there are at least two local minima thar can be reached by a downhill walk starting at this point

- **a** walk between two conformations x and y as a list of conformations $x = x_1 \dots x_{m+1} = y$ such that $\forall 1 \le i \le m : \mathfrak{N}(x_i, x_{i+1})$
- the lower part of the energy landscape (written as $X^{\leq \eta}$) as all conformations x such that $E(\mathfrak{S},x) \leq \eta$ (with a predefined threshold η).

Some topological definitions:

A structure is a

- local minimum if its energy is lower than the energy of all neighbors
- local maximum if its energy is higher than the energy of all neighbors
- saddle point if there are at least two local minima thar can be reached by a downhill walk starting at this point

- **a** walk between two conformations x and y as a list of conformations $x = x_1 \dots x_{m+1} = y$ such that $\forall 1 \le i \le m : \mathfrak{N}(x_i, x_{i+1})$
- the lower part of the energy landscape (written as $X^{\leq \eta}$) as all conformations x such that $E(\mathfrak{S},x) \leq \eta$ (with a predefined threshold η).

Some topological definitions:

A structure is a

- local minimum if its energy is lower than the energy of all neighbors
- local maximum if its energy is higher than the energy of all neighbors
- saddle point if there are at least two local minima thar can be reached by a downhill walk starting at this point

- **a** walk between two conformations x and y as a list of conformations $x = x_1 \dots x_{m+1} = y$ such that $\forall 1 \le i \le m : \mathfrak{N}(x_i, x_{i+1})$
- the lower part of the energy landscape (written as $X^{\leq \eta}$) as all conformations x such that $E(\mathfrak{S},x) \leq \eta$ (with a predefined threshold η)

Some topological definitions:

A structure is a

- local minimum if its energy is lower than the energy of all neighbors
- local maximum if its energy is higher than the energy of all neighbors
- saddle point if there are at least two local minima thar can be reached by a downhill walk starting at this point

- **a** walk between two conformations x and y as a list of conformations $x = x_1 \dots x_{m+1} = y$ such that $\forall 1 \le i \le m : \mathfrak{N}(x_i, x_{i+1})$
- the lower part of the energy landscape (written as $X^{\leq \eta}$) as all conformations x such that $E(\mathfrak{S},x) \leq \eta$ (with a predefined threshold η)

Some topological definitions:

A structure is a

- local minimum if its energy is lower than the energy of all neighbors
- local maximum if its energy is higher than the energy of all neighbors
- saddle point if there are at least two local minima thar can be reached by a downhill walk starting at this point

- **a** walk between two conformations x and y as a list of conformations $x = x_1 \dots x_{m+1} = y$ such that $\forall 1 \le i \le m : \mathfrak{N}(x_i, x_{i+1})$
- the lower part of the energy landscape (written as $X^{\leq \eta}$) as all conformations x such that $E(\mathfrak{S},x) \leq \eta$ (with a predefined threshold η).

Information from the barrier tree

- Local minima
- Saddle points
- Barrier heights
- Gradient basins
- Partition functions and free energies of (gradient) basins

This information can be used to approximate the dynamics of biopolymers, i.e. transition rates between different macrostates (basins in the barrier tree)

The lower part of the energy landscape

Two conformations x and y are mutually accessible at the level η (written as $x \leftrightarrow \frac{\eta}{2} \hookrightarrow y$) if there is a walk from x to y such that all conformations z in the walk satisfy $E(\mathfrak{S},z) \leq \eta$. The saddle height $\hat{f}(x,y)$ of x and y is defined by

$$\hat{f}(x,y) = \min\{\eta \mid x \leftrightarrow \underline{\eta} \hookrightarrow y\}$$

Given the set of all local minima $X_{\min}^{\leq \eta}$ below threshold η , the lower energy part $X^{\leq \eta}$ of the energy landscape can alternatively be written as

$$X^{\leq \eta} = \{ y \mid \exists x \in X_{\min}^{\leq \eta} : \hat{f}(x, y) \leq \eta \}$$

Given a restricted set of low-energy conformations, X_{init} , and a reasonable value for η , the lower part of the energy landscape can be calculated.

The Flooder approach

!Connected

tbi

LatticePath - illustration

LatticePath - illustration

Refolding profiles

Connected!

tbi

A longer refolding profile

tbi

- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A heuristic approach allows to sample low-energy refolding paths between different structures
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.

- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A heuristic approach allows to sample low-energy refolding paths between different structures
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.

- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A heuristic approach allows to sample low-energy refolding paths between different structures
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.

- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A heuristic approach allows to sample low-energy refolding paths between different structures
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.

Thanks

Sebastian Will

Rolf Backofen

Peter Stadler

Ivo Hofacker

Christoph Flamm

The electric, withouth whom this would not be possible

