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The HP-model

Suggested by Dill, Chan and Lau in the late
1980ies. In this simplified model, a
conformation is a self-avoiding walk (SAW) on
a given lattice in 2 or 3 dimensions. Each bond
is a straight line, bond angles have a few
discrete values. The 20 letter alphabet of
amino acids (monomers) is reduced to a two
letter alphabet, namely H and P. H represents
hydrophobic monomers, P represents
hydrophilic or polar monomers.

Advantages:
m lattice-independent folding algorithms
m simple energy function

m hydrophobicity can be reasonably modeled
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Contact Potentials

Generally, the energy function for a sequence with n residues
S =s152...5, with s; € & = {a1,ap,...,ap}, the alphabet of b residues,

and an overall configuration x = (x1,X2,...,X,) on a lattice £ can be
written as the sum of pair potentials
E(G,x)= Z V[sj, 5]
i<j-1
[xi —xj| =1



Lattice proteins

S = HPHPHHHPPHHHPHPH n =16 & = NNHHPPNNPHHHHPXP n =16

E=-15 E=-16
H P H P N X
AR
P 0 0 -
N 0 -1 1 0 ,
X 0 0 0 0 toi



Lattice proteins - interaction scheme ||

S = HHHHNNNNHHHHHHNHNHPNNNNNNNNPNPNNHNNHHHHXXHHP XHNHHNXNHHNPHPNHHNHHNPXNHHHHHH

n="74
E=-120
H P N X
H -4 0 0 0
P 0 0 -1 0
N 0 -1 0 0 .
X 0 0 0 0 tot



Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of
the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

Cp o~ pumon?1
problem is NP-hard

In the RNA case
ch~1.86"-n"2

dynamic programming algorithms available

dim | Lattice Type u Y
sqQ 2.63820 | 1.34275
2 TRI 4.15076 1.343
HEX 1.84777 1.345
sC 4.68391 1.161
3 BCC 6.53036 1.161
FCC 10.0364 1.162
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Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of
the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

dim | Lattice Type u Y
_ sSQ 2.63820 1.34275
PNNTLI

vt is NP-hard 2 TRI 415076 | 1.343
HEX 1.84777 1.345

In the RNA case sC 4.68391 1.161
1.86"- ,% 3 BCC 6.53036 1.161

Cn ™~ 10071 FCC 10.0364 | 1.162

dynamic programming algorithms available

Formally, three things are needed to construct an energy landscape:
m A set X of configurations
® a symmetric neighborhood relation 91: X x X
m an energy function f : X — R
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m For each move there must be an inverse move
m Resulting structure must be in X
m Move set must be ergodic
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m the lower part of the energy landscape (written as X=<") as all
conformations x such that E(&,x) < n (with a predefined threshold 7).



Information from the barrier tree

Local minima

Saddle points

Barrier heights

Gradient basins

Partition functions and free energies of (gradient) basins

This information can be used to approximate the dynamics of biopolymers, i.e.
transition rates between different macrostates (basins in the barrier tree)

B rgy =lpq exp (—(Ega - Ga)/kT)




The lower part of the energy landscape

Two conformations x and y are mutually accessible at the level n
(written as x <P T G- y) if there is a walk from x to y such that all
conformations z in the walk satisfy E(&,z) <n. The saddle height

~

f(x,y) of x and y is defined by

~

f(x,y) =min{n | x<p 1%y}

Given the set of all local minima eriz below threshold 1, the lower
energy part X=" of the energy landscape can alternatively be written as
< <n .2
X=M={y|3x EXrgiz f(x,y)<n}
Given a restricted set of low-energy conformations, Xi,i:, and a reasonable
value for 17, the lower part of the energy landscape can be calculated.



The Flooder approach
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LatticePath - illustration
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LatticePath - illustration
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Connected!
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Conclusion

m Discrete models allow a detailed study of the energy surface.
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Conclusion

m Discrete models allow a detailed study of the energy surface.

m Barrier trees approximate the landscape topology and folding
kinetics.

m A heuristic approach allows to sample low-energy refolding paths
between different structures

m This newly generated framework provides a powerful method for
further refinement of biopolymer folding landscapes.
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