Local Algorithm for Strong Products

Werner Klöckl

Institute for Applied Mathematics Montanuniversität Leoben, Austria

TBI Winterseminar

Bled, Slovenia

February, 2007

Definition Graph G = (V(G), E(G)) = (V, E).

V(G) ... vertex set, E(G) ... edge set.

Undirected graph: The elements of E are subsets of V with $|e| \in \{1,2\}$. |e|=1 ... loop

Example: $V = \{v_1, v_2, v_3, v_4, v_5\}, E = \{\{v_1, v_2\}, \{v_1\}\}.$

$$G = (V, E)$$

$$v_1 \qquad v_2 \qquad v_3$$

Definition Strong product $G_1 \boxtimes G_2$:

$$V(G_1 \boxtimes G_2) = \{(x_1, x_2) \mid x_1 \in V(G_1) \text{ and } x_2 \in V(G_2)\}$$

$$E(G_1 \boxtimes G_2) = \{\{(x_1, x_2), (y_1, y_2)\} \mid (\{x_i, y_i\} \in E(G_i) \text{ for } i = 1, 2), (\{x_1, y_1\} \in E(G_1) \text{ and } x_2 = y_2) \text{ or } (\{x_2, y_2\} \in E(G_2) \text{ and } x_1 = y_1)\}.$$

Properties: commutative, associative, K_1 ... unit

Definition G is prime (with respect to \boxtimes), if $\nexists A \boxtimes B = G$ with A, B nontrivial, i.e. |V(A)|, |V(B)| > 1.

Question: Is the prime factor decomposition unique? Algorithm?

Theorem (Dörfler and Imrich, 1969) PFD (\boxtimes) is unique for finite, connected undirected graphs.

There is a polynomial algorithm $(O(|V(G)|^5))$ to compute it (Feigenbaum and Schäffer 1992).

Theorem There are polynomial algorithms to compute the PFD with respect to \Box (Feigenbaum, 1985) and \times (Imrich, 1997)

Idea: G given. Cover it by subgraphs. \longrightarrow Factorize subgraphs \longrightarrow Suggest global factors

Definition $G = (V, E), v \in V$. $B_n(v)$ induced by $\{x \in V \mid d(x, v) \leq n\}$... ball with radius n and center v.

Remark: Balls in products are products (☑). Conclusion:

Prime test: $B_2(v)$ ($\subset G$) prime $\Rightarrow G$ prime.

What about cardinal products?

Algorithm

Choose
$$v \in V(G)$$
, $W = V(B_2(v))$, $B_2(v) = A_1 \boxtimes A_2 \boxtimes ... \boxtimes A_n$ while $(W \neq V(G))$
$$x \in V(G) \setminus W \text{ with } d(x,W) = 1, \quad W = W \cup V(B_2(x)),$$

$$B_2(x) = A_{n+1} \boxtimes A_{n+2} \boxtimes ... \boxtimes A_{n+m}$$
 for $k = 1 : m$
$$\text{for } j = 1 : n \quad \{$$

$$\text{if } ((A'_j \cap A'_{n+k}) \neq \emptyset) \quad A'_j = A'_j \cup A'_{n+k} \quad \}$$

$$A'_{n+k} = \emptyset$$

 $A'_1 = \{e \in E(B_2(v)) \mid e \in \text{copy of } A_1\} = \{\text{magenta edges}\}\$

 $A'_1 \cup A'_3$: magenta and **thick** edges

Situation after the first union:

 $A_2' \cap A_4'$: very thick edges

Output:

Approximate products?

