
1. Infomercial 1

http://cactus.nci.nih.gov/osra/
http://cactus.nci.nih.gov/cgi-bin/osra/index.cgi

for chemical names http://oscar3-chem.sourceforge.net/
1

http://cactus.nci.nih.gov/osra/
http://cactus.nci.nih.gov/cgi-bin/osra/index.cgi


2. Infomercial 2

”black swan” powered by Nassim Nicholas Taleb

”Cygnus atratus” XOR ”Cygnus atractus”

”kyknos” != ”kynos”



3. Lost in Translation

http://de.wikipedia.org/wiki/John von Neumann#Zitat

John Von Neumann in einer Diskussion mit einem englischen Physiker 1943 beim Studium von
Bombenkratern auf Luftbildern [6]:

Nein, nein, du siehst das nicht richtig. Dein visualisierender Verstand kann das nicht
richtig sehen. Du musst abstrakt denken. Was passiert, ist, dass der erste Differen-
tialquotient identisch verschwindet und daher das, was sichtbar wird, die Spur des zweiten
Differentialquotienten ist.

http://de.wikipedia.org/wiki/John_von_Neumann#Zitat


4. John von Neumann

”The sciences do not try to explain, they hardly even try to interpret, they mainly make
models. By a model is meant a mathematical construct which, with the addition of
certain verbal interpretations describes observed phenomena. The justification of such a
mathematical construct is solely and precisely that it is expected to work.”



5. von Neumann Confession

”I would like to make a confession which may seem immoral: I do not believe absolutely
in Hilbert space any more. After all Hilbert-space (as far as quantum-mechanical things
are concerned) was obtained by generalizing Euclidean space, footing on the principle of
conserving the validity of all formal rules”



6. Schrödinger Eqn.

6.1. time dependent.
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6.2. time independent.

Ĥ |ψ〉 = E |ψ〉 (6.4)(
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)
|ψ〉 = E |ψ〉 (6.5)

6.3. discreete time independent.

Ĥ |ψn〉 = En |ψn〉 (6.6)

〈ψn | Ĥ |ψn〉 = En〈ψn |ψn〉 (6.7)

〈ψn | Ĥ |ψn〉
〈ψn |ψn〉

= En (6.8)

〈ψn |ψn〉 = 1 (6.9)

〈ψn | Ĥ |ψn〉 = En[ψn] (6.10)



6.4. Rayleigh-Ritz Ansatz. The ultimate lowest possible energy eigenstate is the ground state
energyE0 :

E0[ψ0] ≤ 〈ψ | Ĥ |ψ〉 (6.11)

Of course we do not know E0, as we can never know the exact ψ0. But the can construct by
linear combination an trial wave-function which tries to approximate the exact ψ0:

ψ =
∑
n

cnψn (6.12)

where cn are coefficients not yet defined / known.
Given our linear approximation of a wave-function we can write the expectation value of the

Hamiltonian as:
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cmψm〉 (6.13)

=
∑
n

∑
m

〈cnψn | Em |cmψm〉 (6.14)

=
∑
n

∑
m

c∗ncmEm〈ψn |ψm〉 (6.15)
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|cn|2En (6.16)



6.5. Other Variational Principles. http://en.wikipedia.org/wiki/Variational method

Robert K. Nesbet: Variational Principles and Methods in Theoretical Physics and Chemistry

http://en.wikipedia.org/wiki/Variational_method


7. Wavefunctions / Orbitals

7.1. STO - Slater-Type Orbitals.

Sζnlm(r, ϑ, ϕ) = Nrn−1e−ζrY m
l (ϑ, ϕ) (7.1)

where ζ controls the width of the orbital (large ζ gives tight function, small ζ gives diffuse function)

http://vergil.chemistry.gatech.edu/courses/chem6485/pdf/basis-sets.pdf

7.2. GTO - Gaussian-Type Orbitals. The principal reason for the use of Gaussian basis
functions in molecular quantum chemical calculations is the ’Gaussian Product Theorem’, which
guarantees that the product of two GTOs centered on two different atoms is a finite sum of Gaussians
centered on a point along the axis connecting them. In this manner, four-center integrals can be
reduced to finite sums of two-center integrals, and in a next step to finite sums of one-center integrals.

Gα,R
ijk (r) = Nα

ijk(x−R1)
i(y −R2)

j(z −R3)
ke−α(r−R)2 (7.2)

Correct form of atomic orbitals:
R(r) = Arle−αr

GTO:
R(r) = Arle−αr

2

Any STO can be composed by linear combination of GTOs:

STO(r) =
∑

de−αf
2r2 (7.3)

7.3. Wavelets.

• http://arxiv.org/abs/0804.2583
• http://arxiv.org/abs/0805.1190

http://vergil.chemistry.gatech.edu/courses/chem6485/pdf/basis-sets.pdf
http://arxiv.org/abs/0804.2583
http://arxiv.org/abs/0805.1190


7.4. Planewaves. The choice of periodic boundary conditions (aka Born-von Karman boundary
condition) is natural in the case of bulk solids which exhibit perfect translational symmetry. cf.
Bloch’s Theorem.

• Projector Augmented Wave (PAW) method developed by Blochl

• Linearized augmented plane-wave (LAPW)
• Full Potentional Linearized augmented plane-wave (FP-LAPW)

http://en.wikipedia.org/wiki/Reciprocal lattice
http://en.wikipedia.org/wiki/K-space (MRI)

http://en.wikipedia.org/wiki/Reciprocal_lattice
http://en.wikipedia.org/wiki/K-space_(MRI)


7.5. supercells. http://www.tcm.phy.cam.ac.uk/∼mds21/thesis/node15.html

http://www.tcm.phy.cam.ac.uk/~mds21/thesis/node15.html


7.6. LCAO - Linear combination of atomic orbitals. LCAO, LCAO-MO, LCMO, etc.)
Many names and even more abbreviations but actually a very simple concept:
a linear combination of n known basis functions χn = { | s〉, | sp〉, | sp2〉, | sp3〉}, parametrized by
not yet determined coefficients cn .

7.7. Hybrid Orbitals.

The Hybrid Orbital was pioneered by Linus C. Pauling. John C. Slater was not impressed. It is
a simple Linear Combination of Atomic Orbitals (LCAO) which tries to model covalent bonding.
Atomic Orbitals are assumed to be STO’s (Slater Type Orbitals) and the resulting hybrid orbitals
are listed below:

http://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_method


• sp3 hybridization

ψsp31 =
√

1
4 (ψ2s + ψ2px + ψ2py + ψ2pz) =

1

2
(ψ2s + ψ2px + ψ2py + ψ2pz) (7.4)

ψsp32 =
√

1
4 (ψ2s + ψ2px − ψ2py − ψ2pz) =

1

2
(ψ2s + ψ2px − ψ2py − ψ2pz) (7.5)
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1
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1

2
(ψ2s − ψ2px − ψ2py + ψ2pz) (7.6)
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1

2
(ψ2s − ψ2px + ψ2py − ψ2pz) (7.7)



• sp2 hybridization (the plain vanilla mix)
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ψπ4 = ψ2pz (7.11)

• sp2 hybridization (alternative dub-club remix)
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1
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√
1
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ψπ4 = ψ2pz (7.15)



• sp Hybrid-MO

ψsp1 =
√

1
2 (ψ2s + ψ2px) (7.16)

ψsp2 =
√

1
2 (ψ2s − ψ2px) (7.17)

ψπ3 = ψ2py (7.18)

ψπ4 = ψ2pz (7.19)

• Online Refs
http://csi.chemie.tu-darmstadt.de/ak/immel/tutorials/orbitals/hybrid.html
http://winter.group.shef.ac.uk/orbitron/AO-hybrids/sp2/equations.html

http://csi.chemie.tu-darmstadt.de/ak/immel/tutorials/orbitals/hybrid.html
http://winter.group.shef.ac.uk/orbitron/AO-hybrids/sp2/equations.html


7.8. Slater-Koster scheme.



Simplified LACO Method ”with modern digital computers”. Bloch-wave in k-space and Molecular
Orbitals shown below:



8. Extended Hückel Theory / Tight Binding

8.1. Generalized Eigenvalue Problem.

Hc = eSc (8.1)

where c is the eigenvector for eigenvalue e. if S is a identity matrix the generalized Eigenvalue
Problem reduces to the Special Eigenvalue Problem

8.2. analogy to FEM (finite element method).
In the language of the finite element method, structural analysis, structural engineering, etc. the

discrete Hamiltonian Hkj is the Stiffness Matrix Akj and the overlap matrix Skj is the mass matrix
Mkj (aka inertia matrix).

8.3. Overlap Matrix S.
Sij = 〈χi |χj〉 (8.2)

where the value Sij is within the range [0, 1]

[0, 1] = {x ∈ R | 0 ≤ x ≤ 1} (8.3)

physics: 〈χi |χj〉 is the probability amplitude for the state χj to collapse into state χj
math: Gram Matrix, positive-(semi)definite

8.4. Hamiltonian Matrix H. The inverse of the VISP (Valence State Ionization Potential)
value Pi is used for the diagonal matrix elements:

Hii = −Pi (8.4)

Whereas non-diagonal matrix elements are guesstimated through some crude Wolfsberg-Helmholz
formula. The literature offers some variety here:



• arithmetic-mean Wolfsberg-Helmholz / Mulliken-Wolfsberg-Helmholz
M. Wolfsberg and L. Helmholz, J. Chem. Phys., 20, 837 (1952)

Hij = κ
Hii +Hjj

2
Sij (8.5)

where κ = 1.75 (An Extended Hückel Theory, R. Hoffmann, J. Chem. Phys., 39,1397 (1963))
or κ = 1.3681 (Empirically adjusted and consistent set of EHT valence orbital parameters for
all elements of the periodic table, A. Herman, Modelling Simul. Mater. Sci. Eng. 12, 21-32
(2004)) Most well-known, since it was the initial favorite pet of Hoffmann. Like generations
before them Gil et al also used it and the well-trained eye of a sound and sober chemist can
easily spot some similarity to the ∆EN rule from the chemistry lab:

∆EN = Hii −Hjj

• Ballhausen-Gray expression / geometric mean Wolfsberg-Helmholz C.J. Ball-
hausen and H. B. Gray, Inorg. Chem., 1, 111 (1962)

Hij = κ
√
HiiHjj Sij (8.6)

• Cusachs expression
L. C. Cusachs and B. B. Cusachs, J. Phys. Chem., 71, 1060 (1967)

Hij = (2− |Sij|)
Hii +Hjj

2
Sij (8.7)

However either way there are obviously very serious issues due to oversimpification. And
in 1978 finnally even Hoffmann himself wrote about the so called ”counterintuitive orbital
mixing” (COM) [?], (a similar if not the same issue was also known as ”lower molecular
orbital catastrophe” (LMOC) .

http://de.wikipedia.org/wiki/Delta-EN


To combat this problem Hoffmann proposed some vodoo-corrections:
• weighted Hij formula / weighted Wolfsberg-Helmholz

J. H. Ammeter, H. B. Bürgi, J. C. Thibeault and R. Hoffmann, J. Amer. Chem. Soc., 100,
3686-3692 (1978)

Hij = κ
Hii +Hjj

2
Sij (8.8)

κ = k + ∆2 + ∆4(1− k) (8.9)

∆ =
Hii −Hjj

Hii +Hjj
(8.10)

where ∆ is the so-called ”orbital asymmetry parameter” .
(e.g. implemented in the YAeHMOP code)

• Anderson expression, distance-dependent
A. B. Anderson, J. Chem. Phys. 62, 1187 (1975)

Hij = κ
Hii +Hjj

2
Sij (8.11)

κ = k exp(−δR) (8.12)

where k = 2.25 and δ = 0.13 Å−1 and R some distance dependency.
• distance-dependent weighted Wolfsberg-Helmholz

G. Calzaferri, L. Forss and I. Kamber, J. Phys. Chem., 93, 5366-5371 (1989)

Hij = κ
Hii +Hjj

2
Sij (8.13)



κ = 1 +
exp(−∆(R− d0))

1 + ((R− d0)− |R− d0|∆)2
(8.14)

(8.15)

where ∆ = 0.35 and d0 the average bond distance .
(implemented e.g. in the BICON-CEDiT and ICON-EDiT codes)

Distance dependency is a good thing but given the brokeness of the underlying assumptions it
neither solves the problem.



8.5. Parametrization of Slater-Koster Tables.

• LUTs (Look-Up Tables)
• In the TB-community these pre-calulated tables are known as Slater-Koster Tables.
• different naming convention btwn. the EHT (mainly chemists) and the TB community (mainly

material physicists). (Linus Pauling Hybrid-Orbitals notation vs. Slater TB notation)

• Gil according to the hints given in his PHD Thesis used the formulae and data-tables from
the infamous Mulliken paper [?]. Unfortunately it is well known amongst the experts of
the field that this paper is old and contains subtle errors. (cf. also http://www.ccl.net/
chemistry/resources/messages/1997/11/05.007-dir/index.html )

• scb: tried to abuse popular off-theshelf Electronic-Structure Prediction Packages (e.g. Gauss-
ian 03, Jaguar, etc.) to generate the LUT.

The plan turned out to be possible but useless.

http://www.ccl.net/chemistry/resources/messages/1997/11/05.007-dir/index.html
http://www.ccl.net/chemistry/resources/messages/1997/11/05.007-dir/index.html


8.6. Parametrization of Slater-Koster Tables, cont.

• Roger Sayle: PDB – Cruft to Content (Perception of Molecular Connectivity from 3D Coor-
dinates) http://www.daylight.com/meetings/mug01/Sayle/m4xbondage.html

• General AMBER Force Field (GAFF) http://ambermd.org/antechamber/gaff.html

• Thomas Kleinoeder: Prediction of Properties of Organic Compounds – Empirical Meth-
ods and Management of Property Data http://deposit.ddb.de/cgi-bin/dokserv?idn=
978268148&dok var=d1&dok ext=pdf&filename=978268148.pdf (J. Gasteiger, T. Clark)

http://www.daylight.com/meetings/mug01/Sayle/m4xbondage.html
http://ambermd.org/antechamber/gaff.html
http://deposit.ddb.de/cgi-bin/dokserv?idn=978268148&dok_var=d1&dok_ext=pdf&filename=978268148.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=978268148&dok_var=d1&dok_ext=pdf&filename=978268148.pdf




9. Semi-Empirical Methods

use only valence electrons, ignore core electrons, neglect some integrals Parametrize the other
integrals from experimental values

Neglect of differential overlap approaches:

• CNDO complete neglect
• INDO intermediate neglect
• MINDO modified intermediate neglect
• MNDO - modified neglect
• AM1 - Austin model 1
• PM3 - Parametrization 3
• RM1 - Recife Model 1 (a reparameterization of AM1) G. B. Rocha, R. Oliveira Freire, A.

Mayall Simas and J. J. P. Stewart. J. of Comp. Chem. 27(10), 1101-1111, 2006



10. Density functional theory

Density functional theory is based on the notion that for a many electron system there is a
one-to-one mapping between the electron density and the external potential:

ρ(r) ↔ Vext(r) (10.1)

In other words: The (ground-state) density ρ0(r) of a many electron system is uniquely determined
given an external potential Vext(r) and vice versa. (Most often the external potential is given by
the Coulomb potential of a set of nuclei in a molecule or a crystal.)

A functional is a function which takes a function as its input (aka argument) and returns a scalar
as output (aka return value).

It is thus possible for any operator F (e.g. the Hamilton operator Ĥ ) to construct a density-
functional:

F : ρ(r) 7−→ F [ρ(r)] := f (10.2)

which takes the density-function ρ(r) as input and returns the quantum-mechanical expecation
value f of the requested operator F .



Thus the get the energy in the following way:
Let ρ(r) be an arbitrary electron density from we construct ρ(r) the external potential Vext(r)

according to the Hohenberg-Kohn theorem. The external potential now determines the ground
state electron density ρ(r) of a any quantum-mechanical operator F .

From the one-electron Schrödinger equation we obtain the one-electron wavefunction Ψ[ρ] and the
expectation value f of the operator F :

〈Ψ[ρ] | F |Ψ[ρ]〉 = f (10.3)

Thus in our case the expectation value f is the energy E[ρ] since our operator F was the Hamilton

operator Ĥ :

〈Ψ[ρ] | Ĥ |Ψ[ρ]〉 = E[ρ] ≥ E0[ρ] (10.4)

The density determines the potential, which determines the Hamilton operator Ĥ , which deter-
mines the energy E[ρ].

10.1. Kohn-Sham ansatz.
Given a electron density ρ we write the total energy E[ρ] as a linear combination of functionals:

Etot[ρ] = Ekin[ρ] +

∫
Vext(r)ρ(r)dr + VH [ρ] + Exc[ρ] (10.5)

VH =
e2

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ (10.6)

(10.7)



where Ekin[ρ] is the kinetic energy (of a non-interacting electron gas with density ρ), VH the
classical electrostatic (Hartree / Coulomb) energy of the electrons. These are all terms which can
be given exact in practial implementation. The only term which needs to be approximated is Exc[ρ]
the exchange-correlation functional which accounts for everything not contained in the other terms.



10.2. Why are we doing this?
The DFT formulation therefore allows to decompose any full self-interacting quantum system with

one system-wide many-electron Schrödinger wave equation into a equivalent system which features
only single-electron Schroedinger wave equations. All one-electron Schrödinger wave equations are
linked to each other via the exchange-correlation functional, which needs to be approximated.



10.3. Exchange-Correlation functionals.
Exchange interaction is the increase or decrease of the energy or distance expectation value of

between two or more electrons with overlapping wave functions.
And electronic correlation refers to the interaction between an electron and its neighbor electrons.
The Exchange-correlation functional therefore accounts for effects like due to Pauli exclusion

principle and kinetic energy contributions that are not taken into account in the idealized kinetic
energy T [ρ]

Further since we do not know the exact Exchange-correlation functional, we have to approximate
it - obviously at an affordable price in FLOPS and memory cost.

10.4. local-density approximation (LDA).
”We do not expect an accurate description of chemical bonding with the Local Density Approxi-

mation (LDA)” – Kohn and Sham, 1965
In solid-state physics the most widely used approximation is the local-density approximation

(LDA), where the functional depends only on the electron density at the coordinate where the
functional is evaluated which keeps computational cost low):

ELDA
xc [ρ] =

∫
εxc(ρ(r))ρ(r)d~r (10.8)

where εxc(ρ(r)) is the exchange correlation energy density function:

εxc(ρ(r)) =
1

2

∫
ρx(r, r

′)

|r − r′|
d~r′ (10.9)

Vosko-Wilk-Nusair (VWN) is a popular LDA correlation functional. It was fitted to accurate
numerical results by Ceperley and Alder, (quantum Monte-Carlo calculations on a uniform electron
gas at low- and high-spin limits for several electron densities.)



In covalent systems the LD-approximation can (sometimes) quite accurately predict structures,
vibrations, and relative energies of covalent systems. However, bond energies are seriously over-
estimated. The LDA should not be used for systems with weak bonds, such as hydrogen bonds.
These problems with the LSD method can be corrected to a large extent by using the so-called
gradient-corrected (or non-local) functionals.



10.5. generalized gradient approximation (GGA).
The generalized gradient approximation (GGA) is still local but includes the gradient of the

density (very useful for chemistry!) at the price of increased computational cost:

EGGA
xc [ρ,∇ρ(r)] =

∫
εxc(ρ(r), ~∇ρ(r))ρ(r)d~r (10.10)

Exc = Exc[ρ(r),∇ρ(r)]. (10.11)

very popular choice is the Becke [?] exchange functional which defines the exchange and correlation
energy per particle as:

εB88
xc = −βρ1/3 x2

(1 + 6βx sinh−1 x)
(10.12)

x =
|∇ρ|
ρ4/3

(10.13)

where β = 0.0042 is an empirical parameter fitted to reproduce the exact exchange energies of
the first six noble gas elements.

One note-worthy deficiency of Becke’s functional is that the potential decays asymptotically:

lim
r→∞

vB88
x (r) =

1

r2
. (10.14)

” instead of the correct

lim
r→∞

vx(r) =
1

r
(10.15)



Often the Becke exchange functional (B88) is used in conjunction with the Perdew-Wang corre-
lation functional (BP) or the Lee-Yang-Parr correlation functional (BLYP). The latest, so-called
generalized gradient corrected (GGA) functional, by Perdew and Wang (P91) was derived by con-
sidering low- and high-density regimes and by enforcing various summation rules.



10.6. meta-GGA functional (mGGA).
Like a GGA electron density and its gradient but additionally the laplacian (aka ”non-interacting

kinetic energy density”) τS(r) enters the equation:

EmGGA
xc [ρ] =

∫
εxc(ρ(r),∇ρ(r),∇2ρik(r))ρ(r)d~r (10.16)

(10.17)

A Meta-GGA is quite expensive



10.7. hybrid functional.
A hybrid functional is an exchange-correlation functional that incorporates portions of ”exact”

exchange EHF
x derived from rigorous Hartree-Fock calculation with exchange and correlation from

other sources (ab inito, LDA, GGA, empirical, etc.) by linear combination. The parameters relating
the amount of each functional can be arbitrarily assigned and is usually fitted to reproduce well
some set of observables (bond lengths, band gaps, etc.). For example, the very popular B3LYP
(Becke Exchange Functional, 3 empirical fitting parameters, and Lee-Yang-Parr) functional com-
bines the Hartree-Fock exchange term with the Becke [?] exchange and Lee-Yang-Parr [?] correlation
functionals according to the formula proposed by Becke [?]:

EB3LYP
xc = ELDA

xc + a0(E
HF
x − ELDA

x ) + ax(E
GGA
x − ELDA

x ) + ac(E
GGA
c − ELDA

c ) (10.18)

where a0 = 0.20 , ax = 0.72 and ac = 0.81 are three empirical parameters.
Becke functionals A D Becke, Phys. Rev. A 38, 3098 (1988).
Lee-Yang-Parr C Lee, W Yang and R G Parr, Phys. Rev. B 37, 785 (1988).
Formula A D Becke, ”Density-functional thermochemistry. III The role of exact exchange”, J.

Chem. Phys. 98, 5648 (1993).



10.8. Harris / Harris-Foulkes functional approximation.
J. Harris, Simplified method for calculating the energy of weakly interacting fragments, Phys.

Rev. B 31, 1770 (1985)



11. Reaction rate

Arrhenius equation, Eyring equation
Activation energy, saddle-point energy

11.1. Koopmans’ theorem.

11.2. Klopman-Salem equation.
Fuki Frontier Orbital Theory

11.3. Janak’s theorem.
J. F. Janak, Proof that ∂E/∂ni = ε in density-functional theory, Phys. Rev. B, 18, 7165 - 7168

(1978)



12. Appendix

• http://cccbdb.nist.gov/
• http://physics.nist.gov/PhysRefData/DFTdata/Tables/ptable.html
• http://www.ccdc.cam.ac.uk/products/csd/radii/
• http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4
• http://en.wikipedia.org/wiki/Covalent radius
• http://en.wikipedia.org/wiki/Covalent radius of fluorine
• http://en.wikipedia.org/wiki/Hydrogen bond
• Bilbao Crystallographic Server
•

http://cccbdb.nist.gov/
http://physics.nist.gov/PhysRefData/DFTdata/Tables/ptable.html
http://www.ccdc.cam.ac.uk/products/csd/radii/
http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4
http://en.wikipedia.org/wiki/Covalent_radius
http://en.wikipedia.org/wiki/Covalent_radius_of_fluorine
http://en.wikipedia.org/wiki/Hydrogen_bond
http://www.cryst.ehu.es/


E-mail address: scb@tbi.univie.ac.at
URL: http://www.tbi.univie.ac.at/~scb/

mailto:scb@tbi.univie.ac.at
http://www.tbi.univie.ac.at/~scb/
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