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3. LOST IN TRANSLATION

http://de.wikipedia.org/wiki/John von Neumann#Zitat

John Von Neumann in einer Diskussion mit einem englischen Physiker 1943 beim Studium von
Bombenkratern auf Luftbildern [6]:

Nein, nein, du sichst das nicht richtig. Dein visualisierender Verstand kann das nicht
richtig sehen. Du musst abstrakt denken. Was passiert, ist, dass der erste Differen-
tialquotient identisch verschwindet und daher das, was sichtbar wird, die Spur des zweiten
Differentialquotienten ist.


http://de.wikipedia.org/wiki/John_von_Neumann#Zitat

4. JOHN VON NEUMANN

"The sciences do not try to explain, they hardly even try to interpret, they mainly make
models. By a model is meant a mathematical construct which, with the addition of
certain verbal interpretations describes observed phenomena. The justification of such a
mathematical construct is solely and precisely that it is expected to work.”



5. VON NEUMANN CONFESSION

"1 would like to make a confession which may seem immoral: I do not believe absolutely
in Hilbert space any more. After all Hilbert-space (as far as quantum-mechanical things

are concerned) was obtained by generalizing Euclidean space, footing on the principle of
conserving the validity of all formal rules”



6. SCHRODINGER EQN.

6.1. time dependent.

H |4(t) —Zﬁ - [9(®)) (6.1)
(L +vi@n) v) = ing [v(0) (62
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6.2. time independent.
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6.3. discreete time independent.
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6.4. Rayleigh-Ritz Ansatz. The ultimate lowest possible energy eigenstate is the ground state
energy [y :
Eqlto] < (¢ | H [4) (6.11)

Of course we do not know FEj, as we can never know the exact 1y. But the can construct by
linear combination an trial wave-function which tries to approximate the exact y:

¢ — Z ann (612)

where ¢, are coefficients not yet defined / known.
Given our linear approximation of a wave-function we can write the expectation value of the
Hamiltonian as:

(0| H |¢) = chwn! H \Zcmwm (6.13)
- Z Z Cnn| B | emtm) (6.14)

= ZZC cmE ¢n’¢m> (6'15)
-~ Z .| E, (6.16)



6.5. Other Variational Principles. http://en.wikipedia.org/wiki/Variational method

Robert K. Nesbet: Variational Principles and Methods in Theoretical Physics and Chemistry


http://en.wikipedia.org/wiki/Variational_method

7. WAVEFUNCTIONS / ORBITALS
7.1. STO - Slater-Type Orbitals.
S (130, 0) = Nr'"le Y™ (1, ) (7.1)

nlm
where ( controls the width of the orbital (large ¢ gives tight function, small ¢ gives diffuse function)

http://vergil.chemistry.gatech.edu/courses/chem6485/pdf/basis-sets.pdf

7.2. GTO - Gaussian-Type Orbitals. The principal reason for the use of Gaussian basis
functions in molecular quantum chemical calculations is the 'Gaussian Product Theorem’, which
guarantees that the product of two GTOs centered on two different atoms is a finite sum of Gaussians
centered on a point along the axis connecting them. In this manner, four-center integrals can be
reduced to finite sums of two-center integrals, and in a next step to finite sums of one-center integrals.

Gif(r) = N (x = R)'(y — Ro)!(2 — Ry)Fe 01 (7.2)
Correct form of atomic orbitals:
R(r) = Arle=o"
GTO:

R(r) = Arle—ar?
Any STO can be composed by linear combination of GTOs:

STO(r) =" de™l™ (7.3)

7.3. Wavelets.

e http://arxiv.org/abs/0804.2583
e http://arxiv.org/abs/0805.1190


http://vergil.chemistry.gatech.edu/courses/chem6485/pdf/basis-sets.pdf
http://arxiv.org/abs/0804.2583
http://arxiv.org/abs/0805.1190

7.4. Planewaves. The choice of periodic boundary conditions (aka Born-von Karman boundary
condition) is natural in the case of bulk solids which exhibit perfect translational symmetry. cf.
Bloch’s Theorem.

e Projector Augmented Wave (PAW) method developed by Blochl

e Linearized augmented plane-wave (LAPW)
e Full Potentional Linearized augmented plane-wave (FP-LAPW)

http://en.wikipedia.org/wiki/Reciprocal lattice
http://en.wikipedia.org/wiki/K-space (MRI)


http://en.wikipedia.org/wiki/Reciprocal_lattice
http://en.wikipedia.org/wiki/K-space_(MRI)

7.5. supercells. http://www.tcm.phy.cam.ac.uk/~mds21/thesis/nodel5.html
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http://www.tcm.phy.cam.ac.uk/~mds21/thesis/node15.html

7.6. LCAO - Linear combination of atomic orbitals. LCAO, LCAO-MO, LCMO, etc.)
Many names and even more abbreviations but actually a very simple concept:

a linear combination of n known basis functions x, = { |s),|sp),|sp?),|sp®)}, parametrized by
not yet determined coefficients ¢, .

7.7. Hybrid Orbitals.

The Hybrid Orbital was pioneered by Linus C. Pauling. John C. Slater was not impressed. It is
a simple Linear Combination of Atomic Orbitals (LCAO) which tries to model covalent bonding.
Atomic Orbitals are assumed to be STO’s (Slater Type Orbitals) and the resulting hybrid orbitals
are listed below:


http://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_method

e sp’ hybridization

Gt = /3 (W + o, + Uy, + 1)
Do = \J 4 (W Vg, — Uy, — V)
Vopiz = \/% (a5 — Pap, — Pap, + Pap.)
Dois = /3 (W — Gy, + iy, — W)

%(%s + Yap, + Vap, + Vap.)
(s, =, = .
%<¢28 — Pap, — Yoy, + y.)
(W = W+, — )



e sp? hybridization (the plain vanilla mix)

%;21 - \/g (¢2s + \/i?bsz) - \/g s + \/g ¢2px
hepra = \/§ (Y25 — \@ Yap, + \/§ tap,) = \/g s — \/% bap, + \@ bap,
Yprs = \/§ (s — \@ bop, — \/§ Yap,) = \/g as — \/% Yap, — \/g Wbap,

%4 - ¢2pz

e sp? hybridization (alternative dub-club remix)

¢sp21 — \/g Pos — \/g prx
¢sp22 = \/g Pos + \/% Vap, + \/g ¢2py
VY3 = \/g o + \/% oy, — \/% ¢2py

¢7T4 — ¢2pz



e sp Hybrid-MO

wspl - \/g (¢2s + 7#szv) (716)
7vbspQ - \@ (¢2s - 77D2pgg) (717)
1%3 — ¢2py (718)
Vra = Pap, (7.19)

e Online Refs
http://csi.chemie.tu-darmstadt.de/ak/immel/tutorials/orbitals/hybrid.html
http://winter.group.shef.ac.uk/orbitron/A0-hybrids/sp2/equations.html


http://csi.chemie.tu-darmstadt.de/ak/immel/tutorials/orbitals/hybrid.html
http://winter.group.shef.ac.uk/orbitron/AO-hybrids/sp2/equations.html

1500 J. C.
orbitals were considered. Actually, here as in other
cases, there are nondiagonal matrix components of
energy between all these types of Bloch functions, at
an arbitrary k value, and the ¢ band does not split
into two subbands. This unwarranted simplification
is also found in the first work of Fletcher and Wohl-
farth” on nickel, though it is removed in their second
paper,® which seems to be the first proper treatment of
the structure of the d band by the LCAO method.

In addition to the misunderstanding which we have
just been describing, there is another widespread mis-
conception about the method. This is the supposition
that it is desirable for some reason to start by hybrid-
izing the atomic orbitals, for instance, to introduce
directed orbitals of some sort suggested by the sym-
metry of the crystal. This misconception occurs particu-
larly in the writings of those who, like for instance
Pauling® and Ganzhorn,”® do not make it clear whether
they are using an energy band calculation, or a modified
Heitler-London method. In the case of Lennard-Jones
and his- associates, using their equivalent orbitals,
one gathers that they feel that there is some virtue in
using hybridized orbitals of ene type or another (that
is, linear combinations of several atomic orbitals, on
the same or adjacent atoms) for a straightforward
calculation of energy bands, or of molecular orbitals
in a molecular problem. This procedure is in fact of no
value in most cases.

One can start with atomic orbitals of the ordinary
sort, space quantized with respect to a particular
direction in space, or can use orbitals set up with
reference to cubic axes, such as the p., p,, #. combi-
nations of the p orbitals and the 4 orbitals varying as
%y, ¥, zv, ¥*—+?% and 328—+% or finally one can use
more complicated hybridized orbitals, such as the four
tetrahedral directed orbitals formed from the s and
the three p functions. With any one of these starting
points, one can set up the Bloch sums of the atomic
orbitals, and then can solve the secular problem be-
tween these Bloch sums, The final result will obviously
be the same no matter which set of atomic orbitals we
start with. In fact, if we were going to use » atomic
orbitals per umit cell, we could make any n linear
combinations of the original orbitals, form Bloch sums
of these modified orbitals, and solve a secular problem
using the modified Bloch sums, and in every case come

7 G. C. Fletcher and E. P. Wohlfarth, Phil. Mag. 42, 106 (1951).

%G, C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952),

® L. Pauling, Phys. Rev. 54, 899 (1938).
__WEK. Ganzhorn, "Gruppcntheom und Quantenmechanik der
Ubergangs metall- Strukturen,” thesis, Technischen Hochschule,
Stuttgart, 1952 ;’unpubhshcd) Z. Naturforsch. 7a, 291 (1952),
Z. Naturforsch 8a, 330 (19

1 J, Lennard ]'cmes, Proc Roy. Soc. (London) Al98, 1, 1

(1949); J. Lennard-Jones and G. G. Hall, Proc. Roy. Soc.
(London) A202, 155 (1950); J. Lennard-Jones and J. A. Pople,
Proc. Roy. Soc. (London) A202, 166 (1950); G. G. Hall, Proc.
Roy. Soc. {London) A202, 336 (1950) ; Proc. Phys. Soc. (London)
A66, 1162 (1953). (This last reference, which was not available
when the present paper was written, has some resemblance to it
in its general point of view.)

7.8. Slater-Koster scheme.

SLATER AND G. F. KOSTER

out with the same answer in the end. The only ad-
vantage in one choice of atomic orbitals over another
is convenience in calculating the matrix components
or solving the secular equation. We shall be dealing in
the present paper with cubic crystals, and shall use
orbitals of the ps, py, ps, xy, ¥3, etc,, type, since they
give about as much simplification as we can get. But
in addition, these are just as useful in discussing the
diamond structure as tetrahedral orbitals would be. At
an arbitrary point of k space, in any case the matrix
components will not simplify, no matter what form of
atomic orbitals we use. Along special symmetry lines
and planes, we can sometimes choose atomic orbitals
leading to a factoring of the secular equation, and this
is obviously useful; but the choice is different for
different symmetry lines and planes.

For solving the one-electron problem, in other words,
there is no advantage in using hydridized or directed
orbitals when dealing with crystals, or similarly in
using directed or equivalent orbitals in solving the
molecular orbital problem in a molecule. The advan-
tages of such orbitals, if there are any, seem to lie in
treating the many-electron problem, either by methods
of configuration interaction or by other methods. It
seems likely that by using directed or hybridized or
equivalent orbitals, one can set up approximate treat-
ments of electron correlation which express the prefer-
ence of two electrons of opposite spin to be found in
an orbital representing a covalent bond. But this use
of such orbitals lies entirely outside the scope of the
present paper, which deals with energy band theory,
or one-electron solutions of Schrédinger’s equation for
a periodic potential,

II. SIMPLIFICATION OF THE LCAO METHOD

We have seen in the preceding section the general
outlines of the LCAO method for solids. We shall now
examine it in more detail, show how complicated it is
when applied rigorously, but indicate the simplifications
which can be made if we treat it as an interpolation
method. There is one complication which we can
remove at the outset. If we start with the atomic
orbitals ¢, located on the various atoms of a unit cell,
and make Bloch sums from them, then we shall find
that these Bloch sums are not orthogonal to each other.
The reason is that the ¢,’s connected with orbitals on
different atoms are not orthogonal to each other. We
can remove this difficulty by immediately setting up
new atomic orbitals, linear combinations of the original
ones, which are orthogonal to each other. This can be
done most symmetrically by the method of Lowdin.!
We shall assume that this is done, and shall call the
resulting orbitals ,. By this procedure we still have
not solved the periodic potential problem. We shall
still find nondiagonal matrix components of energy
between the Bloch sums formed from different Léwdin

2 P.-0. Léwdin, J. Chem. Phys. 18, 365 (1950).



Simplified LACO Method "with modern digital computers”. Bloch-wave in k-space and Molecular
Orbitals shown below:

sp SK parameters

ssog<0 spo=>0 ppc>0 ppr <0

d SK parameters




8. EXTENDED HUCKEL THEORY / TIGHT BINDING

8.1. Generalized Eigenvalue Problem.

Hc = eSc (8.1)
where ¢ is the eigenvector for eigenvalue e. if S is a identity matrix the generalized Eigenvalue

Problem reduces to the Special Eigenvalue Problem

8.2. analogy to FEM (finite element method).

In the language of the finite element method, structural analysis, structural engineering, etc. the
discrete Hamiltonian Hy; is the Stiffness Matrix Ay; and the overlap matrix Sy; is the mass matrix
Mj,; (aka inertia matrix).

8.3. Overlap Matrix S.

Sij = (i lxi) (8.2)
where the value S;; is within the range |0, 1]
0,]]={zeR |02 <1} (8.3)

physics: (x;|x;) is the probability amplitude for the state y; to collapse into state x;
math: Gram Matrix, positive-(semi)definite

8.4. Hamiltonian Matrix H. The inverse of the VISP (Valence State lonization Potential)
value P; is used for the diagonal matrix elements:

Hy=—P, (3.4)

Whereas non-diagonal matrix elements are guesstimated through some crude Wolfsberg-Helmholz
formula. The literature offers some variety here:



e arithmetic-mean Wolfsberg-Helmholz / Mulliken-Wolfsberg-Helmholz
M. Wolfsberg and L. Helmholz, J. Chem. Phys., 20, 837 (1952)

H;+ Hj;
where k = 1.75 (An Extended Hiickel Theory, R. Hoffmann, J. Chem. Phys.; 39,1397 (1963))

or k = 1.3681 (Empirically adjusted and consistent set of EHT valence orbital parameters for

all elements of the periodic table, A. Herman, Modelling Simul. Mater. Sci. Eng. 12, 21-32

(2004)) Most well-known, since it was the initial favorite pet of Hoffmann. Like generations

before them Gil et al also used it and the well-trained eye of a sound and sober chemist can
easily spot some similarity to the AEN | rule from the chemistry lab:

HZ'J':KJ

AEN = Hy; — H;

e Ballhausen-Gray expression / geometric mean Wolfsberg-Helmholz C.J. Ball-
hausen and H. B. Gray, Inorg. Chem., 1, 111 (1962)

Hij =K Hz'iHjj Sij (86)
e Cusachs expression
L. C. Cusachs and B. B. Cusachs, J. Phys. Chem., 71, 1060 (1967)
Hi;+ H;j
However either way there are obviously very serious issues due to oversimpification. And
in 1978 finnally even Hoffmann himself wrote about the so called ”counterintuitive orbital
mizing” (COM) [?], (a similar if not the same issue was also known as “lower molecular

orbital catastrophe” (LMOC) .

Hij = (2 —154])


http://de.wikipedia.org/wiki/Delta-EN

To combat this problem Hoffmann proposed some vodoo-corrections:
e weighted H;; formula / weighted Wolfsberg-Helmholz
J. H. Ammeter, H. B. Biirgi, J. C. Thibeault and R. Hoffmann, J. Amer. Chem. Soc., 100,
3686-3692 (1978)

Hij =K % Sz'j (88)
k=k+A+AY1—k) (8.9)
H; — H,,
S (8.10)
H; + Hjj’
where A is the so-called “orbital asymmetry parameter” .
(e.g. implemented in the YAeHMOP code)
e Anderson expression, distance-dependent
A. B. Anderson, J. Chem. Phys. 62, 1187 (1975)
Hij = K % Sij (8.11)
k=kexrp(—0R) (8.12)
where k£ = 2.25 and § = 0.13 A~ and R some distance dependency.
e distance-dependent weighted Wolfsberg-Helmholz
G. Calzaferri, L. Forss and . Kamber, J. Phys. Chem., 93, 5366-5371 (1989)



exp(—A(R — dy))
L+ ((R—do) — |R —do|A)?

(8.14)

k=1+

(8.15)

where A = 0.35 and dy the average bond distance .
(implemented e.g. in the BICON-CEDIT and ICON-EDIT codes)

Distance dependency is a good thing but given the brokeness of the underlying assumptions it
neither solves the problem.



8.5. Parametrization of Slater-Koster Tables.

e LUTs (Look-Up Tables)

e In the TB-community these pre-calulated tables are known as Slater-Koster Tables.

e different naming convention btwn. the EHT (mainly chemists) and the TB community (mainly
material physicists). (Linus Pauling Hybrid-Orbitals notation vs. Slater TB notation)

e Gil according to the hints given in his PHD Thesis used the formulae and data-tables from
the infamous Mulliken paper [?]. Unfortunately it is well known amongst the experts of
the field that this paper is old and contains subtle errors. (cf. also http://www.ccl.net/
chemistry/resources/messages/1997/11/05.007-dir/index.html )

e sch: tried to abuse popular off-theshelf Electronic-Structure Prediction Packages (e.g. Gauss-
ian 03, Jaguar, etc.) to generate the LUT.
The plan turned out to be possible but useless.


http://www.ccl.net/chemistry/resources/messages/1997/11/05.007-dir/index.html
http://www.ccl.net/chemistry/resources/messages/1997/11/05.007-dir/index.html

8.6. Parametrization of Slater-Koster Tables, cont.

e Roger Sayle: PDB — Cruft to Content (Perception of Molecular Connectivity from 3D Coor-
dinates) http://www.daylight.com/meetings/mug01l/Sayle/m4xbondage.html

e General AMBER Force Field (GAFF) http://ambermd. org/antechamber/gaff.html

e Thomas Kleinoeder: Prediction of Properties of Organic Compounds — Empirical Meth-
ods and Management of Property Datahttp://deposit.ddb.de/cgi-bin/dokserv?idn=
978268148&dok var=d1&dok ext=pdf&filename=978268148.pdf (J. Gasteiger, T. Clark)


http://www.daylight.com/meetings/mug01/Sayle/m4xbondage.html
http://ambermd.org/antechamber/gaff.html
http://deposit.ddb.de/cgi-bin/dokserv?idn=978268148&dok_var=d1&dok_ext=pdf&filename=978268148.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=978268148&dok_var=d1&dok_ext=pdf&filename=978268148.pdf

4. ATOM TYPE DEFINATION

Compared to traditional AMBER force field, atom types in GAFF are more general and
cover most of the organic chemical space.Table | lists the basic (a) and special (b)
atom types in GAFF.

Table | (a). Basic Atom Types in GAFF

Atom type  |Description Atom type  |Description
C sp2 Cin C=0, C=5 0 sp2 0 in C=0, CO0-
cl spl C oh sp3 0 in hydroxyl group
c2 sp2 C, aliphatic 0s sp3 O in ether and ester
c3 sp3 C
ca sp2 C, aromatic
n sp2 Nin amide s2 sp2 S (p=S, C=5 etc)
nl spl N sh sp3 S in thiol group
n2 sp2 N with 2 subst. 55 sp3 Sin -SR and SS

read| double bond s4 hypervalent 5, 3 subst.
n3 sp3 N with 3 subst. s6 hypervalent S, 4 subst.
n4 sp3 N with 4 subst. he H on aliphatic C
na sp2 N with 3 subst ha H on aromatic C
nh amine N connected hn Hon N

to the aromatic rings ho Hon O
no N in nitro group hs Hon S

hp Hon P

f any F p2 sp2 P (C=P etc)
cl any Cl p3 sp3 P, 3 subst.
br any Br p4 hypervalent P, 3 subst.
i any | p5 hypervalent P, 4 subst.

Table I (b). Special Atom Types in GAFF

Atom - Atom -
type Description type Description

H on aliphatic C with 1 EW inner sp2 C in conj. ring

. systems

group; inner sp2 Cin conj. chain

H on aliphatic C with 2 EW p J-
hl ) ccled) systems
h2 group; ce(cf) bridge aromatic C

H on aliphatic C with 3 EW .
h3 group: cp(cq) sp2 Cin three-memberred
ha H on aromatic C with 4 EW cu nngs .
h5 group: v sp2 Cin four-memberred rings

H on aromatic C with 5 EW X .

. cy sp3 Cin three-memberred
group; ;
rings
sp3 Cin four-memberred rings

n aromatic nitrogen aromatic phosphorus
nb inner sp2 N in conj. ring pb inner sp2 P in conj. ring
nc(nd) systems pc(pd) systems
SX inner sp2 N in conj. chain pe(pf) inner sp2 P in conj. chain
sy systems px systems

conj. S, 3 subst. py conj. P, 3 subst.

conj. S, 4 subst. conj. P, 4 subst.




9. SEMI-EMPIRICAL METHODS

use only valence electrons, ignore core electrons, neglect some integrals Parametrize the other
integrals from experimental values
Neglect of differential overlap approaches:

e CNDO complete neglect

e INDO intermediate neglect

e MINDO modified intermediate neglect

e MNDO - modified neglect

e AMI1 - Austin model 1

e PM3 - Parametrization 3

e RM1 - Recife Model 1 (a reparameterization of AM1) G. B. Rocha, R. Oliveira Freire, A.
Mayall Simas and J. J. P. Stewart. J. of Comp. Chem. 27(10), 1101-1111, 2006



10. DENSITY FUNCTIONAL THEORY

Density functional theory is based on the notion that for a many electron system there is a
one-to-one mapping between the electron density and the external potential:

P(T) A ext(r) (10-1)

In other words: The (ground-state) density po(r) of a many electron system is uniquely determined
given an external potential V,,+(r) and vice versa. (Most often the external potential is given by
the Coulomb potential of a set of nuclei in a molecule or a crystal.)

A functional is a function which takes a function as its input (aka argument) and returns a scalar
as output (aka return value).

It is thus possible for any operator F' (e.g. the Hamilton operator H ) to construct a density-
functional:

Fplr) — Flolr)] = f (10.2)

which takes the density-function p(r) as input and returns the quantum-mechanical expecation
value f of the requested operator I,



Thus the get the energy in the following way:

Let p(r) be an arbitrary electron density from we construct p(r) the external potential V,.(r)
according to the Hohenberg-Kohn theorem. The external potential now determines the ground
state electron density p(r) of a any quantum-mechanical operator F'.

From the one-electron Schrodinger equation we obtain the one-electron wavefunction W|p| and the
expectation value f of the operator F:

(Wlpl| F [Wlp]) = f (10.3)

Thus in our case the expectation value f is the energy E|p| since our operator F’ was the Hamilton
operator H :

(Ulp]| H |V[p]) = Elp] > Eqy|p] (10.4)

The density determines the potential, which determines the Hamilton operator H . which deter-
mines the energy E|p).

10.1. Kohn-Sham ansatz.
Given a electron density p we write the total energy F[p| as a linear combination of functionals:

Evulp) = Exinlp) / Voae(£)p(e)dr + Virlo] + Evell (10.5)

V= [ e 109
(10.7)



where Fj,|p] is the kinetic energy (of a non-interacting electron gas with density p), Vi the
classical electrostatic (Hartree / Coulomb) energy of the electrons. These are all terms which can
be given exact in practial implementation. The only term which needs to be approximated is E,.[p]
the exchange-correlation functional which accounts for everything not contained in the other terms.



10.2. Why are we doing this?
The DF'T formulation therefore allows to decompose any full self-interacting quantum system with

one system-wide many-electron Schrodinger wave equation into a equivalent system which features
only single-electron Schroedinger wave equations. All one-electron Schrodinger wave equations are
linked to each other via the exchange-correlation functional, which needs to be approximated.



10.3. Exchange-Correlation functionals.

Exchange interaction is the increase or decrease of the energy or distance expectation value of
between two or more electrons with overlapping wave functions.

And electronic correlation refers to the interaction between an electron and its neighbor electrons.

The Exchange-correlation functional therefore accounts for effects like due to Pauli exclusion
principle and kinetic energy contributions that are not taken into account in the idealized kinetic
energy T'[p]

Further since we do not know the exact Exchange-correlation functional, we have to approximate
it - obviously at an affordable price in FLOPS and memory cost.

10.4. local-density approximation (LDA).

"We do not expect an accurate description of chemical bonding with the Local Density Approxi-
mation (LDA)” — Kohn and Sham, 1965

In solid-state physics the most widely used approximation is the local-density approximation
(LDA), where the functional depends only on the electron density at the coordinate where the
functional is evaluated which keeps computational cost low):

BLDA] = / exe(p(r))o(r)dF (10.8)

where €,.(p(r)) is the exchange correlation energy density function:

ey T
ze( 10.9
‘ /7“—7" (10.9)

Vosko-Wilk-Nusair (VWN) is a popular LDA correlation functional. It was fitted to accurate
numerical results by Ceperley and Alder, (quantum Monte-Carlo calculations on a uniform electron
gas at low- and high-spin limits for several electron densities.)




In covalent systems the LD-approximation can (sometimes) quite accurately predict structures,
vibrations, and relative energies of covalent systems. However, bond energies are seriously over-
estimated. The LDA should not be used for systems with weak bonds, such as hydrogen bonds.
These problems with the LSD method can be corrected to a large extent by using the so-called
gradient-corrected (or non-local) functionals.



10.5. generalized gradient approximation (GGA).
The generalized gradient approximation (GGA) is still local but includes the gradient of the
density (very useful for chemistry!) at the price of increased computational cost:

ESGAp, Vp(r)] = / ee(p(r), ¥ p(r))p(r)dF (10.10)

Eye = Eyclp(r), Vp(r)]. (10.11)
very popular choice is the Becke [?] exchange functional which defines the exchange and correlation

energy per particle as:

CE’Q

oS = —pp!/? 10.12
e op (14 6Bzsinh ™" ) ( )
r = ’;—/’;’ (10.13)

where 3 = 0.0042 is an empirical parameter fitted to reproduce the exact exchange energies of
the first six noble gas elements.
One note-worthy deficiency of Becke’s functional is that the potential decays asymptotically:

1
lim 0% (r) = . (10.14)
r—00 T
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instead of the correct
1

lim v,(r) = - (10.15)
r

r—00



Often the Becke exchange functional (B88) is used in conjunction with the Perdew-Wang corre-
lation functional (BP) or the Lee-Yang-Parr correlation functional (BLYP). The latest, so-called
generalized gradient corrected (GGA) functional, by Perdew and Wang (P91) was derived by con-
sidering low- and high-density regimes and by enforcing various summation rules.



10.6. meta-GGA functional (mGGA).
Like a GGA electron density and its gradient but additionally the laplacian (aka "non-interacting
kinetic energy density”) 7g(r) enters the equation:

Enf o] = / €rc(p(1), Vp(r), V2 pir(r)) p(r)d7 (10.16)
(10.17)

A Meta-GGA is quite expensive



10.7. hybrid functional.

A hybrid functional is an exchange-correlation functional that incorporates portions of ”exact”
exchange EM derived from rigorous Hartree-Fock calculation with exchange and correlation from
other sources (ab inito, LDA, GGA, empirical, etc.) by linear combination. The parameters relating
the amount of each functional can be arbitrarily assigned and is usually fitted to reproduce well
some set of observables (bond lengths, band gaps, etc.). For example, the very popular B3LYP
(Becke Exchange Functional, 3 empirical fitting parameters, and Lee-Yang-Parr) functional com-
bines the Hartree-Fock exchange term with the Becke [?] exchange and Lee-Yang-Parr [?] correlation
functionals according to the formula proposed by Becke [?]:

EPYP = pEDA 4 qo(BNY — BEPAY 4 a, (BESSY — EEPAY 4 a (ESSY — EEPA) (10.18)

where ag = 0.20 , a, = 0.72 and a. = 0.81 are three empirical parameters.

Becke functionals A D Becke, Phys. Rev. A 38, 3098 (1988).

Lee-Yang-Parr C Lee, W Yang and R G Parr, Phys. Rev. B 37, 785 (1988).

Formula A D Becke, " Density-functional thermochemistry. III The role of exact exchange”, J.
Chem. Phys. 98, 5648 (1993).



10.8. Harris / Harris-Foulkes functional approximation.
J. Harris, Simplified method for calculating the energy of weakly interacting fragments, Phys.
Rev. B 31, 1770 (1985)



11. REACTION RATE

Arrhenius equation, Eyring equation
Activation energy, saddle-point energy

11.1. Koopmans’ theorem.

11.2. Klopman-Salem equation.
Fuki Frontier Orbital Theory

11.3. Janak’s theorem.
J. F. Janak, Proof that 0E/On; = € in density-functional theory, Phys. Rev. B, 18, 7165 - 7168
(1978)



12. APPENDIX

e http://cccbdb.nist.gov/

e http://physics.nist.gov/PhysRefData/DFTdata/Tables/ptable.html
e http://www.ccdc.cam.ac.uk/products/csd/radii/

e http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4

e http://en.wikipedia.org/wiki/Covalent radius

e http://en.wikipedia.org/wiki/Covalent radius of fluorine

e http://en.wikipedia.org/wiki/Hydrogen bond

e Bilbao Crystallographic Server


http://cccbdb.nist.gov/
http://physics.nist.gov/PhysRefData/DFTdata/Tables/ptable.html
http://www.ccdc.cam.ac.uk/products/csd/radii/
http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4
http://en.wikipedia.org/wiki/Covalent_radius
http://en.wikipedia.org/wiki/Covalent_radius_of_fluorine
http://en.wikipedia.org/wiki/Hydrogen_bond
http://www.cryst.ehu.es/

FE-mail address: 'scb@tbi.univie.ac.at
URL: http://www.tbi.univie.ac.at/ scb/
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