Metabolomics

Introduction to statistical analysis and visualisation

Dipl.Inf. Henry Wirth

Interdisciplinary Center for Bioinformatics, University of Leipzig

Department of Proteomics, UFZ - Helmholtz-Centre for Environmental Research

Metabolites:

- small molecules
- intermediates and products of metabolisms
- form large networks of interaction

Metabolomics:

- study of global metabolite profiles in a system
- "Show me your trashcan, so I'll tell you how you live!" (by Andreas Oberbach)

Study: Oberbach, spring 2007

7BI

Dataset : Kit : "Biocrates AbsoluteIDQ"

quantify concentrations of 163 metabolite in 5 groups:

carnitines:	transport of fatty acids into mitochondria	
aminoacids:	building blocks and breakdown products of proteins / other molecules	
phospholipids: sphingolipids:	major components of cell membranes components of membranes;important mediators	
	in signaling cascades	
sugar:	energy provider	

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

C

Analysis Agenda:

Analysis Agenda:

Analysis Agenda:

		time				
		before exercise	after exercise	after 24h regeneration		
		"pre"	"post"	"24h"		
_	"obese"	" T-Test : <u>which metabolites change among groups ?</u>				
groups		PCA : <u>can groups be recovered with a certain set of metabolites ?</u>				
	"lean"	Clustering : are there structures in a specific data(sub)set ?				

Idea:

- we have: 2 groups and a set of features (concentrations, spotvolumes, attributes...)
- objective: feature extraction
- \rightarrow decide, which of the features are significant different

RESEARCH – UFZ

Insight:

carnitines: underlie changes while akute physical load (consumption and regeneration) not capable to distinguish groups more carnitines changing in lean people C2 acts different than most carnitins phospolipids: underlie changes caused by phenotype sugar: hint of correlation obesity <> diabetes type 2

are there differences in metabolism despirte of clinical accordance ??

YES, in normal state as under stress

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH - UFZ

Idea:

- PCA = "principle component analysis"
- unsupervised \rightarrow "blind" processing no information about grouping

afterwards: recover group separation

- concept: dimension reduction to visualizeable "principle components"

?

Example dimensions and spaces:

v = (3, 4, 5)

3-dimensional vector

Example dimensions and spaces:

v = (3, 4, 5, 1)

4-dimensional vector

?

not visualizable

4-dimensional space

Example dimensions and spaces:

v = (163 metabolite concentrations) 1

v = (56000 gene expresions)

163-dimensional vector

56000-dimensional vector

dimension reduction to 2 or 3 dimensions

Example dimension reduction:

Insight:

- PCA cannot guarantee a separation of your groups within the first 2 or 3

principle components

Insight:

- PCA cannot guarantee a separation of your groups within the first 2 or 3 principle components
- PCA can help validating the ability of a set of features (genes, gel-spots, metabolites) to separate the given groups
- remarkably better result while working with filtered metabolites

PCA : can groups be recovered with a certain set of metabolites ?

YES, with p-filter in first 3 principal components

Idea of Hierarchical agglomerative clustering:

- objective: unsupervised grouping within a similarity-structure,

afterwards recovering groups in features and samples

 concept: beginning with n clusters and step-by-step putting together the 2 most similar clusters

Clustering of 5 people

- beginning with n clusters and step-by-step putting together the 2 most similar clusters

Clustering of 5 people

- beginning with n clusters and step-by-step putting together the 2 most similar clusters

similarity-measurement: weight

Clustering of 5 people

- beginning with n clusters and step-by-step putting together the 2 most similar clusters

similarity-measurement: weight

- beginning with n clusters and step-by-step putting together the 2 most similar clusters

similarity-measurement: weight

- beginning with n clusters and step-by-step putting together the 2 most similar clusters

- beginning with n clusters and step-by-step putting together the 2 most similar clusters

Example:

Clustering of 5 people

- dendrogram shows a trace of the clustering process:

here: the 5 people form 2 groups with regard to the similarity-measurement weigth

Results:

Obese - Lean pre (significant metabolites)

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

Results:

Obese - Lean pre (significant metabolites)

Results:

Obese pre-post-24h (significant metabolites)

Results:

CENTRE FOR

ENVIRONMENTAL RESEARCH – UFZ

Insight:

- many uninteresting metabolites (no change with regard to groups)
- \rightarrow noise / bad group separation
- using only significant metabolites (p-value-filter) leads to clear structured heatmaps and good group separations

Clustering : are there structures in a specific data(sub)set ?

YES, [pathway linked] structures

Other Analysis Techniques

quality control: density analysis, scatterplots, M-A-Plots

significance analysis: ANOVA, Shrinkage-T-Statistics, SAM

discriminant analysis: ICA, SOM, PAM, RDA

cluster analysis: DCA

Outlook

"Trans-Omic": combining metabolomic data with proteomic data

Analysis: reproducing pathways and protein-metabolite-connections with an artificial neural net

development of advanced t-tests adaptive to the datas nature

Don't eat too much junk food

