Design of artificial RNA-switches A coarse-grained method for RNA refolding

Stefan Badelt

Institute for Theoretical Chemistry
Theoretical Biochemistry Group

February 19, 2010

What is a Riboswitch?

Mechanism:

Markus Wieland and Jörg S. Hartig. Artificial Riboswitches: Synthetic mRNA-Based Regulators of Gene

What is a Riboswitch?

• Artificial riboregulation:

Isaacs et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnology 22,841-847 (2004)

- Generate two sequences (crRNA, taRNA) that...
 - have certain constraints (AUG, AGGAGG, ...)
 - can fold into given conformations ⇒ switch

- Generate two sequences (crRNA, taRNA) that...
 - have certain constraints (AUG, AGGAGG, ...)
 - can fold into given conformations ⇒ switch
- Find all possible refolding-schemata for trans-activation

- Generate two sequences (crRNA, taRNA) that...
 - have certain constraints (AUG, AGGAGG, ...)
 - can fold into given conformations ⇒ switch
- Find all possible refolding-schemata for trans-activation
- Assign energies to pseudo-knot transition states

- Generate two sequences (crRNA, taRNA) that...
 - have certain constraints (AUG, AGGAGG, ...)
 - can fold into given conformations ⇒ switch
- Find all possible refolding-schemata for trans-activation
- Assign energies to pseudo-knot transition states
- Compute
 - local minima, energy-barriers ⇒ barriers
 - folding dynamics by local minima \Rightarrow treekin

Overview

Overview

Overview


```
\begin{split} &\mathsf{ARC}\text{-}\mathsf{ARRAY} = \left[ \begin{array}{c} \mathsf{PrevVert},\, \mathsf{SEQ},\, \mathsf{NextVert} \end{array} \right] \\ &\mathsf{VERT}\text{-}\mathsf{ARRAY} = \left[ \begin{array}{c} \mathsf{PrevArc},\, \mathsf{SEQ},\, \mathsf{NextArc},\, (\mathsf{KG}) \\ \mathsf{PrevArc},\, \mathsf{SEQ},\, \mathsf{NextArc},\, (\mathsf{KG}) \end{array} \right] \end{split}
```


- Input:
 - Sequence
 - Initial State
 - Switched State

- Input:
 - Sequence
 - Initial State
 - Switched State
- Generate all Neighbours +/- one Vertex

- Input:
 - Sequence
 - Initial State
 - Switched State
- Generate all Neighbours +/- one Vertex
- Evaluate the Structures (discard waste)

- Input:
 - Sequence
 - Initial State
 - Switched State
- Generate all Neighbours +/- one Vertex
- Evaluate the Structures (discard waste)
- Repeat Neighbourgeneration while ...

- Input:
 - Sequence
 - Initial State
 - Switched State
- Generate all Neighbours +/- one Vertex
- Evaluate the Structures (discard waste)
- Repeat Neighbourgeneration while ...
- Output:
 - Refolding-Scheme(s) St1 ⇒ St2
 - Energy-Barrier seperating the states
 - ...

Energy model

- Forbid intramolecular pseudo knots
- Sum up Secondary Structures (((...[[[...))&...]]].. = (((....[[[....&..]]]... +[[[[....&..]]]]...
- Assign Penalties for Loop-Interaction-Type

Energy model

- Forbid intramolecular pseudo knots
- Sum up Secondary Structures (((...[[[...))&...]]].. = (((......))&....... +[[[[....&..]]]]..
- Assign Penalties for Loop-Interaction-Type

Exterior Interior Multi Hairpin

Exterior Interior Multi Hairpin

Energy model

- Forbid intramolecular pseudo knots
- Sum up Secondary Structures (((...[[[...))&...]]].. = (((....[...))&........ +[[[[....&..]]]]..
- Assign Penalties for Loop-Interaction-Type

Energy model - Example

- HP size 7
 - no bases paired
 - 4 bases paired (loss of entropy)
 - ⇒ treat as a worm-like-chain
 - ⇒ compute persistence length
 - ⇒ compute radius of gyration [RG]
 - \Rightarrow assign penalty in relation to the change of RG.

Summary

- RNArefold
 - refolds two interacting sequences
 - can handle all types of intermolecular pk structures

Summary

- RNArefold
 - refolds two interacting sequences
 - can handle all types of intermolecular pk structures

Thank you for your attention!