Transcript analysis using RNA-seq

What others call transcriptomics?!

Sven Findeiß

Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center for Bioinformatics, University of Leipzig

Bled, February 2010

"Transcriptomics is a powerful tool for understanding gene structures and RNA-based regulation in any organism."

"Transcriptomics is a powerful tool for understanding gene structures and RNA-based regulation in any organism."

What it might be:

"Transcriptomics is a powerful tool for understanding gene structures and RNA-based regulation in any organism."

What it might be:

Wang:2009

"The transcriptome is the complete set of transcripts in a cell, and their quantity, for a specific developmental stage or physiological condition."

"Transcriptomics is a powerful tool for understanding gene structures and RNA-based regulation in any organism."

What it might be:

Wang:2009

"The transcriptome is the complete set of transcripts in a cell, and their quantity, for a specific developmental stage or physiological condition."

Stadler and Prohaska in preparation

"In cellular and molecular biology, the suffix *-ome* refers to 'all constituents considered' collectively."

"Transcriptomics is a powerful tool for understanding gene structures and RNA-based regulation in any organism."

What it might be:

Wang:2009

"The transcriptome is the complete set of transcripts in a cell, and their quantity, for a specific developmental stage or physiological condition."

Stadler and Prohaska in preparation

"In cellular and molecular biology, the suffix *-ome* refers to 'all constituents considered' collectively."

Lederberg:2001

"...-OM signifies fullness, completeness as in divinity \cdots , it encompasses the entire universe in its unlimitedness."

Transcriptomics in Prokaryotes

Whole transcriptome studies have been started only recently.

- microbial gene structure was regraded as simple
 - \rightarrow no introns \curvearrowright no splicing
 - \rightarrow no editing
- · technical difficulties e.g. for the mRNA enrichment
 - \rightarrow lack poly(A) tails
 - $\rightarrow > 95\%$ of cellular RNA is composed of rRNA and tRNA

Transcriptomics in Prokaryotes

Whole transcriptome studies have been started only recently.

- · microbial gene structure was regraded as simple
 - \rightarrow no introns \frown no splicing
 - \rightarrow no editing
- technical difficulties e.g. for the mRNA enrichment
 - \rightarrow lack poly(A) tails
 - $\rightarrow > 95\%$ of cellular RNA is composed of rRNA and tRNA

Gained knowledge:

- \Rightarrow 5'UTR annotation
- \Rightarrow novel untranslated regulatory elements
- \Rightarrow alternative operon structures
- \Rightarrow discovery of novel ncRNAs

5) PicoTiterPlate Fixation

Image for step 1 is taken from [Sorek and Cossart, 2010] and images for step 2 to 6 are from [Marcel Margulies et al., 2005]

5) PicoTiterPlate Fixation

Image for step 1 is taken from [Sorek and Cossart, 2010] and images for step 2 to 6 are from [Marcel Margulies et al., 2005]

2) Fragment Preparation

3) One Bead = One Fragment

4) Amplification

Image for step 1 is taken from [Sorek and Cossart, 2010] and images for step 2 to 6 are from [Marcel Margulies et al., 2005]

- · library is enriched for primary transcripts
- 5'end of the transcripts are enriched over "normal" RNA

- · library is enriched for primary transcripts
- 5'end of the transcripts are enriched over "normal" RNA

- · library is enriched for primary transcripts
- 5'end of the transcripts are enriched over "normal" RNA

manual inspection

[Sharma et al., 2010]; [Albrecht et al., 2009]; [Jäger et al., 2009] Take the IGB or UCSC and go through the whole genome, basically click by click \rightarrow base by base, and annotate start sites.

- · library is enriched for primary transcripts
- 5'end of the transcripts are enriched over "normal" RNA

manual inspection

[Sharma et al., 2010]; [Albrecht et al., 2009]; [Jäger et al., 2009] Take the IGB or UCSC and go through the whole genome, basically click by click \rightarrow base by base, and annotate start sites.

- · library is enriched for primary transcripts
- 5'end of the transcripts are enriched over "normal" RNA

manual inspection

[Sharma et al., 2010]; [Albrecht et al., 2009]; [Jäger et al., 2009] Take the IGB or UCSC and go through the whole genome, basically click by click \rightarrow base by base, and annotate start sites.

- + you get in touch with the data
- biased towards annotated genes
- it is not reproducible
- takes a lot of time

- · library is enriched for primary transcripts
- 5'end of the transcripts are enriched over "normal" RNA

manual inspection

[Sharma et al., 2010]; [Albrecht et al., 2009]; [Jäger et al., 2009] Take the IGB or UCSC and go through the whole genome, basically click by click \rightarrow base by base, and annotate start sites.

- + you get in touch with the data
- biased towards annotated genes
- it is not reproducible
- takes a lot of time

automated methods:

[Wurtzel et al., 2009]; Own Methods

Establish a method that searches for start sites. Inspect some of the annotated start sites and maybe refine the method.

- · library is enriched for primary transcripts
- 5'end of the transcripts are enriched over "normal" RNA

manual inspection

[Sharma et al., 2010]; [Albrecht et al., 2009]; [Jäger et al., 2009] Take the IGB or UCSC and go through the whole genome, basically click by click \rightarrow base by base, and annotate start sites.

- + you get in touch with the data
- biased towards annotated genes
- it is not reproducible
- takes a lot of time

automated methods:

[Wurtzel et al., 2009]; Own Methods

Establish a method that searches for start sites. Inspect some of the annotated start sites and maybe refine the method.

- you do not get in touch with the complete data
- + unbiased if no annotation is used
- + it is easy to refine and reproducible
- + once the method is established it takes seconds to annotate start sites
- you could have TSS annotated that do not fit the idea

A simple approach

A simple approach

within a small window some reads should start

within a small window some reads should start

- within a small window some reads should start
- some := at least three reads

within a small window some reads should start

some := at least three reads

- within a small window some reads should start
- some := at least three reads
- **3** reads have to end on different positions

- within a small window some reads should start
- some := at least three reads
- **3** reads have to end on different positions

- within a small window some reads should start
- some := at least three reads
- **3** reads have to end on different positions

- within a small window some reads should start
- osme := at least three reads
- **3** reads have to end on different positions
- #reads in a treated library > #reads in an untreated library

- 1 within a small window some reads should start
- osme := at least three reads
- **3** reads have to end on different positions
- #reads in a treated library > #reads in an untreated library

- · library is enriched for primary transcripts
- 5'end of the transcripts are enriched over "normal" RNA

manual inspection

[Sharma et al., 2010]; [Albrecht et al., 2009]; [Jäger et al., 2009] Take the IGB or UCSC and go through the whole genome, basically click by click \rightarrow base by base, and annotate start sites.

- + you get in touch with the data
- biased towards annotated genes
- it is not reproducible
- takes a lot of time

automated methods:

[Wurtzel et al., 2009]; Own Methods

Establish a method that searches for start sites. Inspect some of the annotated start sites and maybe refine the method.

- · library is enriched for primary transcripts
- 5'end of the transcripts are enriched over "normal" RNA

manual inspection

[Sharma et al., 2010]; [Albrecht et al., 2009]; [Jäger et al., 2009] Take the IGB or UCSC and go through the whole genome, basically click by click \rightarrow base by base, and annotate start sites.

- + you get in touch with the data
- biased towards annotated genes
- it is not reproducible
- takes a lot of time

automated methods:

[Wurtzel et al., 2009]; Own Methods

Establish a method that searches for start sites. Inspect some of the annotated start sites and maybe refine the method.

- you do not get in touch with the complete data
- + unbiased if no annotation is used
- + it is easy to refine and reproducible
- + once the method is established it takes seconds to annotate start sites
- you could have TSS annotated that do not fit the idea

Publication	# Library	Enriched/Normal Total	Core Promoter	5' UTR
Own data	1	45,419/56,257 101,676	n)	
[Albrecht et al., 2009]	2	?/? 249,432		
[Sharma et al., 2010]	5	1,435,974/1,384,949 2,820,923	2 5 1 9 SAREsuses TATALANCE TO THE OWNER OF THE OWNER	

Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res, 2009

Dominik Jäger et al.

Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci U S A, 2009

Omri Wurtzel et al.

A single-base resolution map of an archaeal transcriptome.

Genome Res, 2009

Thanks to...

All the Bleden