Efficient Likelihood Estimation for Growth Models

Stephanie Keller-Schmidt

Group of Bioinformatics
Group of Parallel Computing and Complex Systems
Departement of Computer Science
University of Leipzig

TBI Winterseminar
Bled/Slovenia February 2010

Stephanie Keller-Schmidt 1



Outline

Outline

Reasons for considering probability models of phylogenetic trees and
generate random trees with models :

@ Understand speciation and extinction.

@ Do predictions that models make about tree shape which can be
used to test hypothesis concerning speciation.

@ Testing models: how likely is it that model reconstructs a
observed tree

Aim: infer how diversity has arisen.
How: fitting stochastic models to tree data.
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Basics

Databases of Phylogenetic Trees

TreeBASE PANDIT
@ 5212 trees @ 46428 trees
@ leaves are species @ leaves are proteins
@ amount of leaves: 4...960 @ amount of leaves: 2...5121
@ monotomies and polytomies @ monotomies and polytomies
solved randomly solved randomly

Stephanie Keller-Schmidt 3



Models

ERM model

Null model of growing trees (simple continous-time branching
process).

Assumption: Each branch has an equal probability of splitting.
Initialize t = 0: Generate root with target number of leaves |.

Iterate while J leaf | with label n > 1:
@ Replace leaf | by a cherry.
@ Assign new leaves with labels i and n —i.

@ Probability that the left sister clade contains i taxa is independent
of n
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Models

Likelihood for ERM model example
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Models

Likelihood for ERM model example
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Models

Likelihood for ERM model example
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Models

Likelihood for ERM model example
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Models

Likelihood for ERM model example

Lerm (T) = Pa(2/5) - po(1]2)-
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Models

Likelihood for ERM model example

Lerm (T) = Pa(2(5) - Po(1]2) - pc(1[3)-
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Models

Likelihood for ERM model example

Lerm (T) = Pa(2]5) - pp(1]2) - pc(1]3) - pg (1]2)
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Models

Age model

Idea: The longer species i has not been involved in speciation, the
less likely it is to do so now.

Initialize: Settime t = 0, generate root node.

Iterate:
@ Increment time t.

@ From the set of leaves, choose leaf | with probability
pO(t—t)"

@ Replace | by a cherry.

t = number of leaves = current time; t; creation time of leaf |
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Models

Age model - Example

t=20
Li=o = {Aage:()}
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Models

Age model - Example

t=1
old : Li—g = {Aage:O}
new: Li—1 = {Bage:OaCage:()}
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Models

Age model - Example

t=2
old : Li—1 = {Bage—0,Cage—0}
new: Li—z = {CagezlyDage:mEage:O}
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Models

Age model - Example

t=3
old : Li—> = {Cage:LDage:O:Eage:O}
new: Li—3 = {Dagezla Eage:17Fage:07Gage:O}
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Models

Age model - Example

t=4 & O
old : Li=3 = }Dagezl, Eage=1, Fage:O,GageZO}

new: Li—4 = Dage:27Eage:27Hage:O7|age:0}
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Likelihoods

Likelihood - Exact Calculation

@ For ERM model
Lerm(T) = [ pa(s(left(x))Is(x))
x€l(T)

@ For AGE model
@ Calculate Page (T) exactly by adding up probabilities of all
sequences of branchings for T

LAGE(T): Z p(S,T)
sES¢(t)
with
(m@i)~*
)= T] S 500 S

and

B(s,t) = {i e \{1}[s(m(i)) <t <s(i)}u {i e A\I|s(m(j)) <t}



Likelihoods

Likelihood for AGE model example
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Likelihoods

Likelihood for AGE model example
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Likelihoods

Likelihood for AGE model example
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Likelihoods

Likelihood for AGE model example
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Likelihoods

Likelihood for AGE model example
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Likelihoods

Likelihood for AGE model example
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Likelihoods

Likelihood for AGE model example

Lace(T)= > p(s,T)
sES(t)

LAGE(T) = p((b,C,g),T)+p((C,b,g),T)—i—p((C,g,b),T)
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Likelihoods

Likelihood - Estimation for growth models

Naive ways of sampling:
@ Enough calculation capacity
Or
@ B is set of all branching sequences leading to “target tree”
@ C C B is sample of B with |C| << |B|
@ Each possible path has same probability

_ 8]

L_E*Sgcp(ﬁ)
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Likelihoods

Likelihood - Estimation for growth models

What if |Z| is too large?
Naive Approach: Sample each trajectory with equal probability.

Problem: # trajectories T and # samples | | small Z, ~ L(© € Z,) |

loglikelihood estimation
21

22 [y

-23

24
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LLH

26 [ AGE (naive sampling)
L ERM (exact llh calculation) --------

-27

-28

-29

-30

-31

0 10000 20000 30000 40000 50000
nr of repeats
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Likelihoods

Likelihood - Estimation for growth models
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Likelihoods

Likelihood - Estimation for growth models

= g-dynamics restricted to Zy,...Zp

alyl) =20

ie{l,...n—1},x€Z,y€Z
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Likelihoods

Likelihood - Estimation for growth models

= g-dynamics restricted to Zy,...Zp

alyl) =20

ie{l,...n—1},x€Z,y€Z

=> normalization

s(x) = ZZHp(y\X)-
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Likelihoods

Likelihood - Estimation for growth models

= g-dynamics restricted to Zy,...Zp

alyl) =20

ie{l,...n—1},x€Z,y€Z

=> normalization

s(x) = ZZHp(y\X)-

=> probability with which system
produces © € Z

Xn @ ° . ° n—1

N S(©) = [14ai(©i+1/01)

Zn i=
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Likelihoods

Likelihood - Estimation for growth models

Assign “output” A for each trajectory © € Z

A(©) = |‘|1 s() .

Expectation value of A over trajectories under g-dynamics = probability
L that p-dynamics ends up in the target set Z,.

= (A)=L
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Likelihoods

Likelihood - Estimation for growth models

loglikelihood estimation

LLH

AGE (naive sampling) *
AGE 1st run (efficient sampling)
AGE 2nd run (efficient samplin *

20000 30000 40000 50000
nr of repeats
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Summary

Summary

@ Sample loglikelihood of growth models using an importance
sampling method.
@ Applicable if for eachi € {1,...,n—1} and all states x € X;
© it can be decided efficiently (fast) if x € Z; or not.
© the normalization s(x) can be computed efficiently.
@ Requirements are fullfilled by the models of tree growth
= Use the most probable branching sequences only.
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Thanks to Konstantin

and
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Expectation value of A over trajectories under g-dynamics = probability L that
the p-dynamics ends up in the target set Z,, as shown by the following
sequence of term replacments.

(A) = eZs(e)A(e) (1)
_ 62_"|-|qi(ei+1ei)n|-|s(ej) @
cz i=1 j=1
n—1
= |_| Gi(©i+1/©i)s(6) G
Oczi=1
= 5 [p(ewe) @
= 6ZR(@) ®)
= R(©) (6)
ocX
= L (7
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