Gene expression in artificial genomes after perturbations: gene insertion and knock-out

TBI Winterseminar Bled, February 2011

Lydia Hopp

Supervisors: Dr. Jörg Galle Dr. Hans Binder Prof. Volkmar Liebscher

Outline

- Objective
- Random genome model
 - **Random genome model**
 - Thermodynamical model of genomic regulation
- Insertions and knock-out in artificial genomes
- Experimental data
- Summary

Objective of the work

 Artificial genome modeled by "Random genome model" (T. Reil)

Objective: analyzing effects of perturbations of artificial genome on its expression

Random genome model

Insertion/KO

Experiments $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

2013121103210101022302012 ... 1011213121101201010221223012303120301010020100302 ... 012101 0 Lgenome

Experiments

 Random genome of particular length is generated as a chain of numbers (0-3)

- Random genome of particular length is generated as a chain of numbers (0-3)
- Sequence is scanned for a string which encodes the promoter of a gene

Introduction

Random genome model

Insertion/KO

Experiments

Promoter determines the start of the coding sequence
Region between coding region and next promoter determines regulatory region

Introduction

Random genome model

Insertion/KO

Experiments

 Transcription factors (TF) are obtained by simple modification of coding sequence

- Transcription factors (TF) are obtained by simple modification of coding sequence
- TFs are bound to the regulatory region of a gene in a sequencespecic fashion \rightarrow regulate gene expression of downstream gene
- TFs can have an enhancing or repressing effect

Introduction

Random genome model

Insertion/KO

Experiments

00000

Thermodynamical model of genomic regulation

- Regulation factor F_i of gene i reflects the interactions of the k regulators with RNAP
- **Promoter occupancy** Θ_i of gene *i*: probability that RNAP binds to promoter of gene *i* ($0 \le \Theta_i \le 1$)

Insertion/KO

00000

Experiments

00000

Expression rate E_i is directly proportional to Θ_i

Random genome model

- *E_i*<1 repressed gene,
- *E_i*=1 unregulated gene,
- *E_i*>1 activated gene

Introduction

Regulation

Network of a random genome

Insertion and knock-out of genes

- Modifications used to discover the role of the inserted or knockedout gene in considered organism
- RGM allows straightforward modeling of insertion/knock-out
- Effect of modifications on expression rate was analyzed

Insertion

Insertion

- In-degree of downstream gene doesn't change
- In-degree of downstream gene may change

Experiments

00000

Expression E=500

- May differ from E=500 if regulated
- Expressions of insert and original are summed up \rightarrow overexpression

Introduction

Random genome model

Insertion/KO $\bigcirc \bigcirc$

Knock-out (KO)

Perturbations of the genome after modifications

Perturbations of the genome after modifications

Perturbations of the genome after modifications

Modeling inhomogeneous networks by introducing Hubs

- Connectivity is defined by the length of the coding sequence
- Higher connectivity of a gene is achieved by reducing its coding length

Modeling inhomogeneous networks by introducing Hubs

- Connectivity is defined by the length of the coding sequence
- Higher connectivity of a gene is achieved by reducing its coding length

Homogeneous

- ⇒ increased probability of autoregulation of modified gene
- This gene is called hub

Experiments

- Microarray datasets of gene overexpression/ KO were analyzed
- Datasets contained rawintensities of genes of chips:
 - At least 1 "control-chip" (no overexpression/KO of the gene)
 - At least 1 chip containing measurements of the overexpression/KO
- After data preprocessing difference spectra were established

$$\log ratio = \ln E_{Treatment} - \ln E_{control}$$

Analysis of the effect of a gene on the expression profile of the cell

Insertion/KO

Experiments

Introduction Random genome model

Experiments-

Overexpression of PRDM5 (H. sapiens)

- Expression profiles of overexpression of tumorsuppressor PRDM5 were analyzed after 8, 24 and 48 h
- Dataset contained 12 chips

Experiments-

Overexpression of PRDM5 (H. sapiens)

- Black curve: distribution of differential expression
- Red curve: noise distribution (difference of expression rates of two control chips)
- PRDM5 rank 1 of differentially expressed genes
- ⇒ PRDM5 overexpressed
- Connectivity of PRDM5 could be calculated
- With increasing time the connectivity increases

⇒PRDM5 highly connected gene, which affected diff. exp. of other genes

Introduction Random genome model Insertion/KO Experiments

Experiments-

KO of genes

- Considered KO experiments didn't result in differential expression of the genome
- Initially the knocked-out gene itself wasn't highly expressed
- Often: difference specta of differential expression has the same slope as noise spectra

Experiments

Summary

- □ Gene insertion/KO in artificial genome was modeled → Insertion has global effects, KO local effects on expression
- Inhomogeneous networks modeled with the help of hubs → bigger effect on expression profile
- In KO experiments chosen the considered genes had local effects on expression as the gene wasn't highly connected

Thank you for your attention!

