Simulation of Cophylogenies using the Age Model

Stephanie Keller-Schmidt

Bioinformatics Group
Departement of Computer Science
University of Leipzig

TBI Winterseminar Bled/Slovenia, 16 February 2011

Outline

Phylogenetic Trees

- leaves, inner nodes
- estimated evolutionary relationship - evol. processes?
- reconstruction \rightarrow assume macro-evolutionary models

Models

- consider tree shape
- infer how diversity has arisen by fitting stochastic models to tree data

Generating a Tree

Choose leaf I with probability p given by model M. Replace leaf I by a cherry.

Generating a Tree

Choose leaf I with probability p given by model M. Replace leaf I by a cherry.

Simulation of Cophylogenies using the Age Model

Age model

Idea: The longer species *i* has not been involved in speciation, the less likely it will be.

Initialize: Set time t = 0, generate root node.

Iterate:

- Increment time t.
- From the set of leaves, choose leaf I with probability

$$p_i \propto (t-t_l)^{-1}$$

Replace I by a cherry.

t = number of leaves = current time; $t_l =$ creation time of leaf l

$$t = 1$$

$$t_A = 0 \rightarrow p_A = 1$$

$$t = 2$$

$$t_B = 1 \rightarrow p_B = \frac{1}{2}$$

 $t_C = 1 \rightarrow p_C = \frac{1}{2}$

$$t = 2$$

$$t_B = 1 \rightarrow p_B = \frac{1}{2}$$

 $t_C = 1 \rightarrow p_C = \frac{1}{2}$

$$t = 3$$

$$t_C = 1 \rightarrow p_C = \frac{1}{5}$$

$$t_D = 2 \rightarrow p_D = \frac{2}{5}$$

$$t_E = 2 \rightarrow p_E = \frac{2}{5}$$

$$t = 3$$

$$t_C = 1 \rightarrow p_C = \frac{1}{5}$$

$$t_D = 2 \rightarrow p_D = \frac{2}{5}$$

$$t_E = 2 \rightarrow p_E = \frac{2}{5}$$

$$t = 4$$

$$t_D = 2 \rightarrow p_D = \frac{1}{6}$$

 $t_E = 2 \rightarrow p_E = \frac{1}{6}$
 $t_F = 3 \rightarrow p_F = \frac{2}{6}$
 $t_G = 3 \rightarrow p_G = \frac{2}{6}$

$$t = 4$$

$$t_D = 2 \rightarrow p_D = \frac{1}{6}$$

 $t_E = 2 \rightarrow p_E = \frac{1}{6}$
 $t_F = 3 \rightarrow p_F = \frac{2}{6}$
 $t_G = 3 \rightarrow p_G = \frac{2}{6}$

$$t = 5$$

Coevolutionary System

"change of a biological object triggered by the change of a related object"

insect-plant relation

symbiotic relationships

Coevolutionary System

- hosts phylogeny
- parasite phylogeny
- leaf-to-leaf association

Coevolutionary Scenario

Goal:

Infer coevolutionary history based on given phylogenies of both groups.

Approach

Use an evolutionary model that describes the set of possible types of events that happened during coevolution.

Coevolutionary Scenario

Goal:

Infer coevolutionary history based on given phylogenies of both groups.

Approach:

Use an evolutionary model that describes the set of possible types of events that happened during coevolution.

(Cophylogenies)

Cospeciation

Cospeciation

Sorting

Duplication

Host switch

Cospeciation

Sorting

Duplication

Host switch

Cospeciation

Sorting

Duplication

Host switch

Simulation of Cophylogenies using the Age Model

Common Simulations

- generate host tree of treesize using model
- define event probabilities pevent
- generate parasite tree using pevent

Disadvantages:

- treesize must be known in advance
- parasite tree modelfree
- 4 parameter
- parasite tree can get huge
- no chronological information

Common Simulations

- generate host tree of treesize using model
- define event probabilities pevent
- generate parasite tree using pevent

Disadvantages:

- treesize must be known in advance
- parasite tree modelfree
- 4 parameter
- parasite tree can get huge
- no chronological information

Simulation using Age Model

Cophylogenies

Init: leave list for T_{host} , $T_{parasite}$ each, p_{event}

While size T_{host} or $T_{parasite}$ not reached **do**

With $p_{treetype=host}$ choose leave $l \in L_{host}$ else $l \in L_{parasite}$ according to age model probability

If $I \in T_{host}$ do host speciation

If p_{cospeciation} do cospeciation

Else do sorting

If $I \in T_{parasite}$

If p_{switch} do switch

Else do duplication

Update L_{host} or $L_{parasite}$

Alternative: merged leave list L_{host,parasite}

Reconstruction

- mapping from parasite node to host nodes
- n^m combinations (n = #host, m = #parasites)
- specify cost for each event type
- rate reconstruction by the sum of all weights
- from all find reconstruction with find minimal costs

Example

Example

Results

meanExpAssocRatio

Results

meanVarAssocRatio

Summary & Outlook

Summary

- no known models to simulate coevolution
- advantages of Age model
 - tree size not necessary in advance
 - generating host and parasite tree simultaneously
 - 3 parameters (sw./dup.; cospec./sort.; host/parasite)
 - chronological information for better simulation

Outlook

- lacktriangle parameter o further analysis of reconstructions
- compare with reconstructions using other models
- improve alternative merged list
- different event types

Summary & Outlook

Summary

- no known models to simulate coevolution
- advantages of Age model
 - tree size not necessary in advance
 - generating host and parasite tree simultaneously
 - 3 parameters (sw./dup.; cospec./sort.; host/parasite)
 - chronological information for better simulation

Outlook

- ullet parameter o further analysis of reconstructions
- compare with reconstructions using other models
- improve alternative merged list
- different event types

Thanks to Konstantin and Nic

&

