Proceedings of Locarna-Scan

Michael Siebauer

MPI FVA

February 17, 2011

Introduction

- Locarna-Scan is a branch of Locarna in terms of homology search
- Homology search is the process of finding sequences homologous to a certain query sequence within a much longer target sequence.
- in this work by means of semi-global sequence-structure alignments

Locarna-algorithm

- base-pairing probabilities for all combinations are calculated in advance using RNAplfold
- The idea is to split the alignment into an unstructured (M) and a arc-enclosed alignment part (D).
- this arc-enclosed alignment consists again of unstructured and arc enclosed alignment

Optimization

There are several ways to reduce this last recursion step:

- calculate and store all arc enclosed alignments on-the-fly only when needed(!)
- ② Minimal arc probability cutoff (p_{\min}) limits arcs per position to linear number $\frac{1}{p_{\min}}$
- **3** Every length difference between two arcs has to be paid by gaps. Thus calculate arc combinations (ij;kl) only if: $|(j-i)-(l-k)| \leq \Delta$ cutoff

Locarna-Scan

- tmp-matrix is a global suffix alignment
- all eventual arc-enclosed alignments WITHIN have already been calculated
- calculation only for the longest arcs → all shorter are contained in the matrix

Optimizations

- D-Matrix is very sparse → using of a sparse matrix
- multiple (profile) queries → combined into PSSM
- preprocessing of the arc-probability matrix (dotplot) → arc sorting and determination of important values (like maximal arc span)
- ullet only very small part of the scoring matrix has to remain in memory o query-length imes longest-arc-span + 1

Matrix tricks

- ullet scoring matrix is a rotation matrix o overwrites outdated (no longer needed) values with new ones
- mapping of the matrix structure onto a linear array avoids costly memory jumps

Output

- Locarna-Scan gives you a score for each position along the target
- \bullet scores should increase along a hidden query, reach its maxima at the end and decrease afterwards \to local maxima point to "good" alignment ends
- starting from the global(!) maxima, other local maxima within a certain distance are discarded (at least one query length distance in both directions)

Verification

- For verification a comparison against Infernal and RSearch was made.
- 450 ncRNA sequences from 51 RNA families were hidden in a $20 \times 500 \text{kb}$ artificial genome.
- The aim was to retrieve those sequences again.

Runtime

- 2 different query sets (single query against RSearch, Profile query (alignment of several) against Infernal)
- different minimum arc-probabilities (10%, 50%, 90%, 99%)
- scanning of fwd. and rev. compl. strand separate

Comparison single vs. profile

- Locarna-Scan discovers more hidden RNAs
- Profile queries perform better
- higher arc probabilities increase scanning performance

ROC curves

- curves of all families are combined (averaged ROC-curves)
- a prediction is called *hit* when at least 50 or 90% of the region overlaps the hidden sequence, and vice versa!

Expectation values

ROC-curves showed worse sensitivity compared to Infernal \rightarrow Infernal and RSearch use e-value ranked predictions

Expectation values

ROC-curves showed worse sensitivity compared to Infernal → Infernal and RSearch use e-value ranked predictions Finding a probability distribution to approximate our observed score distribution showed to be quite difficult!

Distributions approximating one RNA family ...

... often failed for other families

better solution

finally Jana showed us a better idea during the Herbstseminar.

better solution

finally Jana showed us a better idea during the *Herbstseminar*. idea is not to fit against a certain probability function, but to approximate the score distribution slope using a polynomial

 converting distribution to log-scale

- converting distribution to log-scale
- select a subset of the slope

- converting distribution to log-scale
- select a subset of the slope
- fit a tangent along this subset → intersections determine score fitting range

- converting distribution to log-scale
- select a subset of the slope
- fit a tangent along this subset → intersections determine score fitting range
- calculate a polynomial distribution through these scores → deviation from this distribution determines e-values

ROC curves - single query

single sequence

ROC curves - profile query

Z-Scores

- give an estimation about the deviation of the Gibbs free energy for a structure within the window from the expected energy for structures from random sequences of that size and base composition
- are calculated for each window of a certain size along the target sequence (using RNAplfold2 and GetZofPL)
- Z-scores below zero indicate better energetics

Z-Scores

z-score distributions for pseudogenome (0 < length <= 120)

problems

- Our current problem is how to integrate z-scores into our alignment scores
- $\bullet \to \text{simply removing local maxima whose z-score} > 0$ also reduced sensitivity

problems

- Our current problem is how to integrate z-scores into our alignment scores
- ullet \to simply removing local maxima whose z-score > 0 also reduced sensitivity
- If only few local maxima remained after filtering, the score distribution fitting failes → edges of the polynomial bend upwards → "better" scores get higher e-values

problems

- Our current problem is how to integrate z-scores into our alignment scores
- ullet \to simply removing local maxima whose z-score > 0 also reduced sensitivity
- If only few local maxima remained after filtering, the score distribution fitting failes → edges of the polynomial bend upwards → "better" scores get higher e-values
- Time!

Thank you for your attention!

Special thanks goes to Kristin Reiche, Jana Hertel, Stephan Bernhart, Sven Findeiß and Steffen Heyne

Latest version:

svn co https://yaseto.svn.sourceforge.net/svnroot/yaseto

michael_siebauer@eva.mpg.de

