Feed-forward loops: Linking Function, Plasticity, Evolvability and Abundance

Stefanie Widder

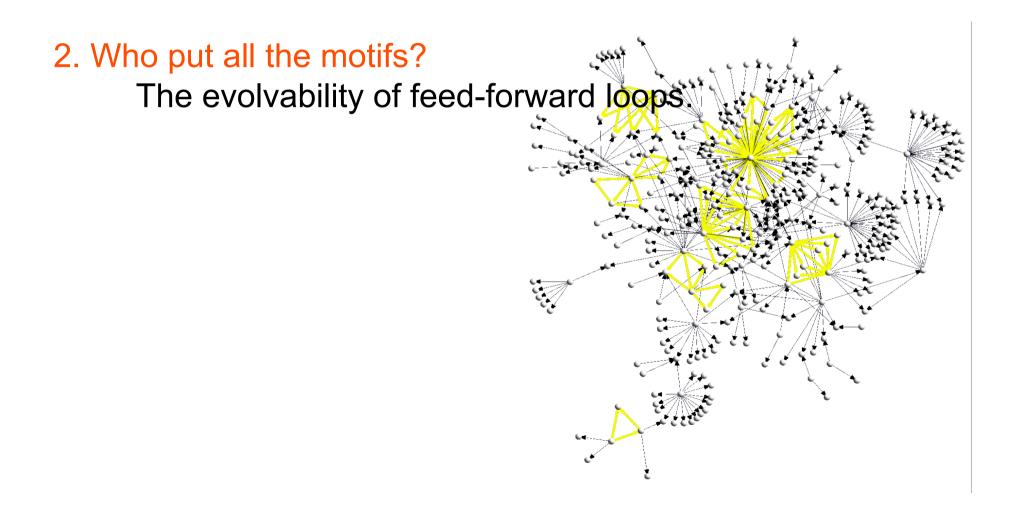
Dep. Computational Systems Biology, Uni Wien http://compsysbio.univie.ac.at/

Bled, February 2011

Outline

1.Why networks?

Systems biology and interaction webs.



Early Pioneers

Alan Hodkin

Andrew Huxley

Modelization of the nerves action potential (giant squid neuron) 1952 Noble Prize in 1963

(Biological) pattern formation as result of simple physical constraints (reaction-diffusion).

Denis Noble

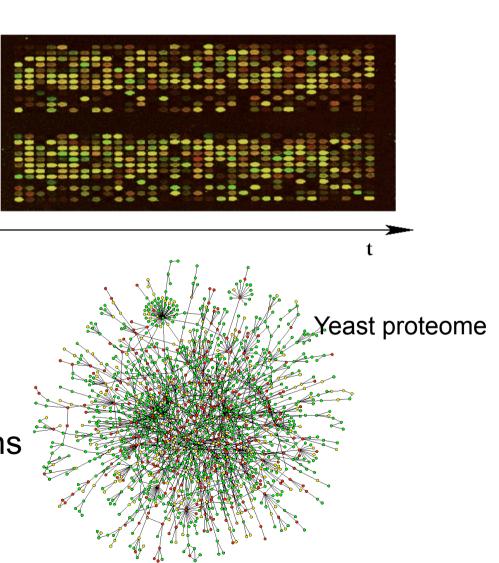
Modelization of a working heart in 1960 and development of the virtual heart using supercomputers.

Alan Turing

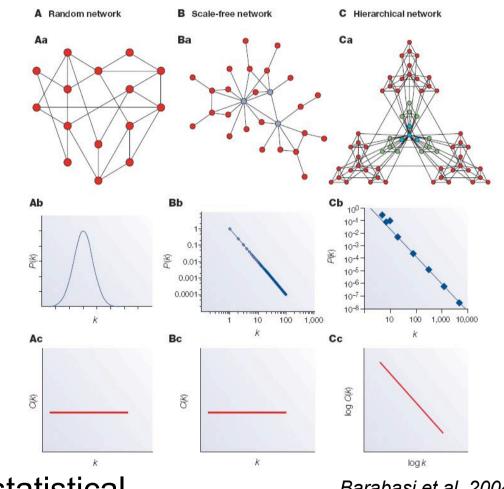
х

interactions in space and time

networks as representation for maximal physical interactions



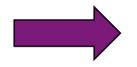
metabolic protein interaction transcriptional ecological functional: apoptosis cancer signaling



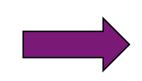
graph theory and statistical measures (eg. k, p(k), $\langle I \rangle$, C(k))

Barabasi et al. 2004

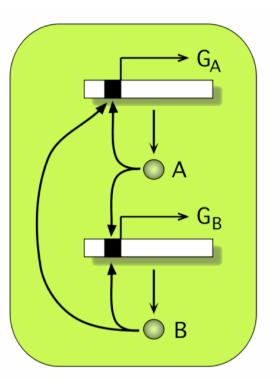
.. subsections of large NWs

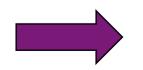


analytically calculable in their entirety for their *local* qualities

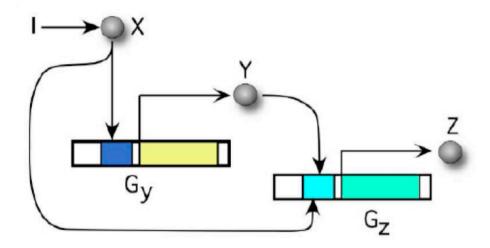


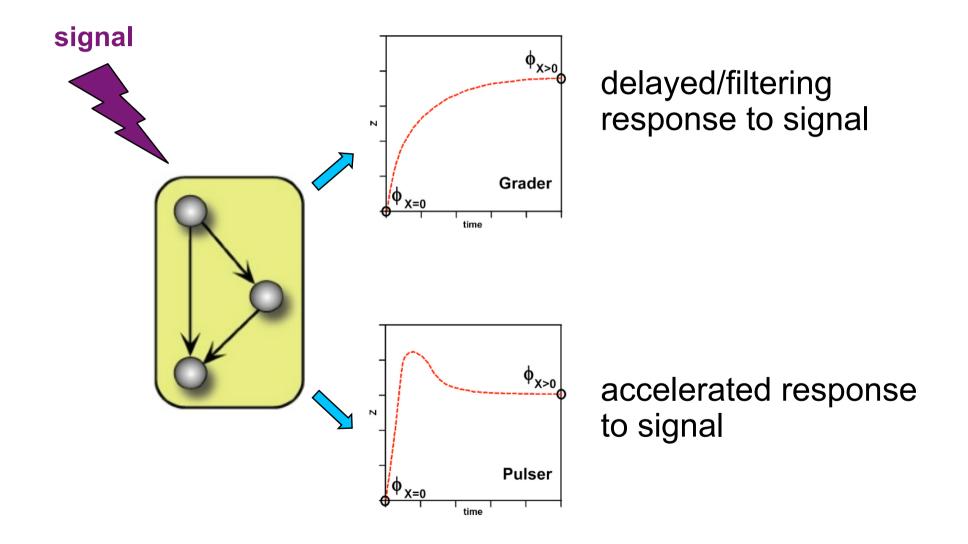
supersection crucially important for understanding their plasticity

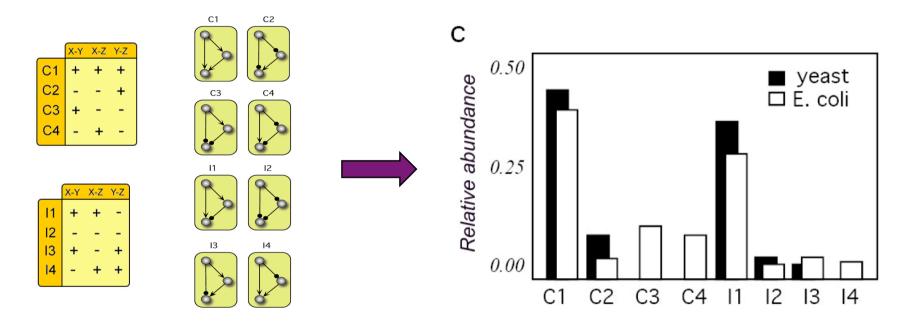




questions on the emergence of the status quo



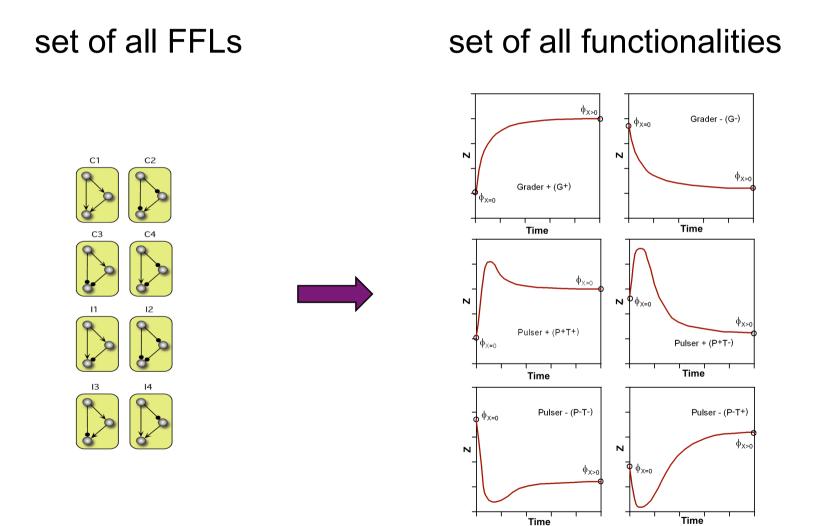




Mangan et al. 2006

The pattern of abundance cannot be explained in a satisfactory manner by functionalist (single topology -> single function) nor by neutralist (by-product of growth rules) arguments.

FFLs and their Trajectory



FFL model

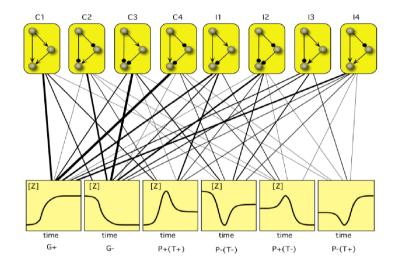
$$\dot{Y} = \gamma_{Y} \left(\frac{1 + \alpha^{X} \omega_{Y}^{X} x^{n}}{1 + \omega_{Y}^{X} x^{n}} \right) - d_{Y} Y$$

$$\dot{Z} = \gamma_{Z} \left(\frac{1 + \beta^{X} \omega_{Z}^{X} x^{n} + \beta^{Y} \omega_{Z}^{Y} y^{m} + \beta^{XY} \omega_{Z}^{XY} x^{n} y^{m}}{1 + \omega_{Z}^{X} x^{n} + \omega_{Z}^{Y} y^{m} + \omega_{Z}^{XY} x^{n} y^{m}} \right) - d_{Z} Z$$

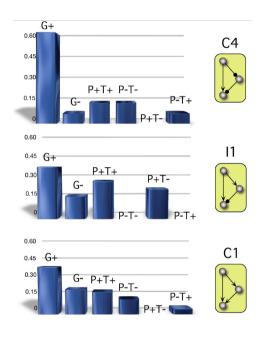
Which functionality can be expected?

- Intrinsic properties of the system allow to deduce the probability for a given function, independent from the numeric values of the parameters.
 - Key parameter define the characteristic shape of the nullcline (BR)
 - Nullclines' shape confines the trajectory
 - A separatrix defines the limit of two distinct qualit. behavior of the trajectory

Probability of Function



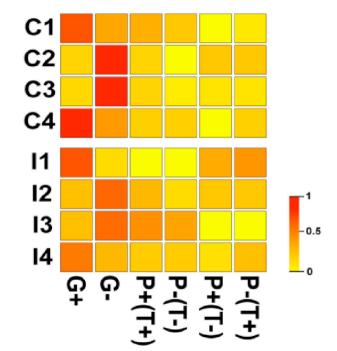
$$P_{ij} = \Omega_k \sum_{i=1}^{T_{jk}} p_{ik} \Psi_{ijk}$$



- p_{ik} prob for a certain set of parameters to implement seq. *i* for motif *k*
- P_{ij} prob for motif *k* to implement functionality *j* described by seq. *i*
- Ψ_{iik} number of equal dynamical outcomes j
- T_{ik} total number of backbone seq. *i* implementing dynamic *j*
- Ω_k normalization constant

Macía, Widder and Solé 2009

Plasticity of FFLs

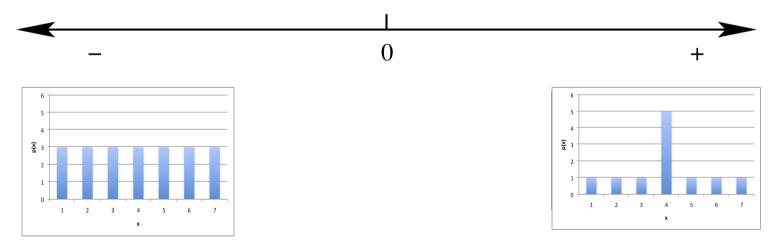


Quantitative description of the FFLs' underlying plasticity independent of parameters.

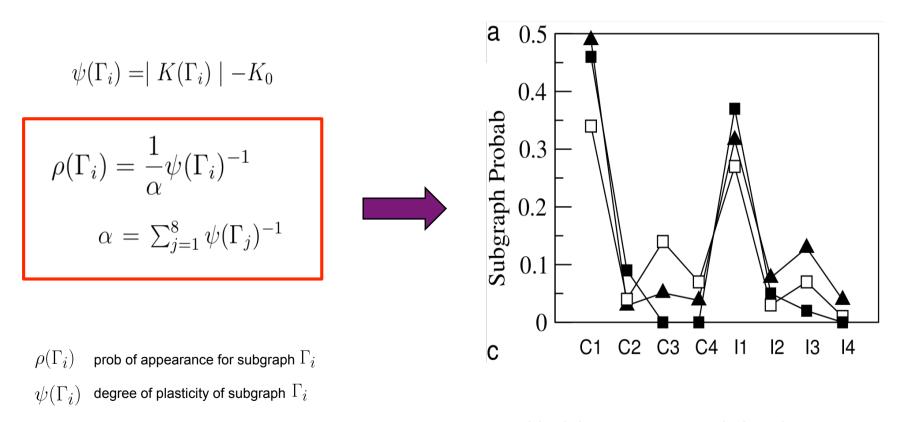
Kurtosis

$$K = \frac{\mu_4}{\sigma^2} - K_0$$

- μ_4 4th moment around the mean
- $^{\sigma}$ standard deviation
- K_0 reference value (normal dist. 3)

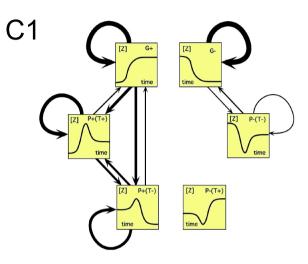


.. the peakedness of a probability distribution



black boxes.....natural abundance yeast white boxes.....natural abundance E.coli black triangles...predicted probabilities

Linking plasticity and evolvability

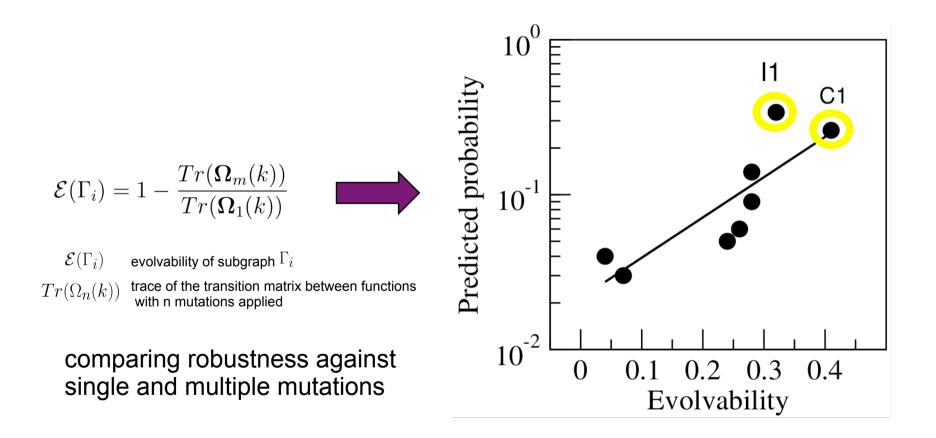


transition probabilities between different functions for a given subgraph upon mutation (of parameters)

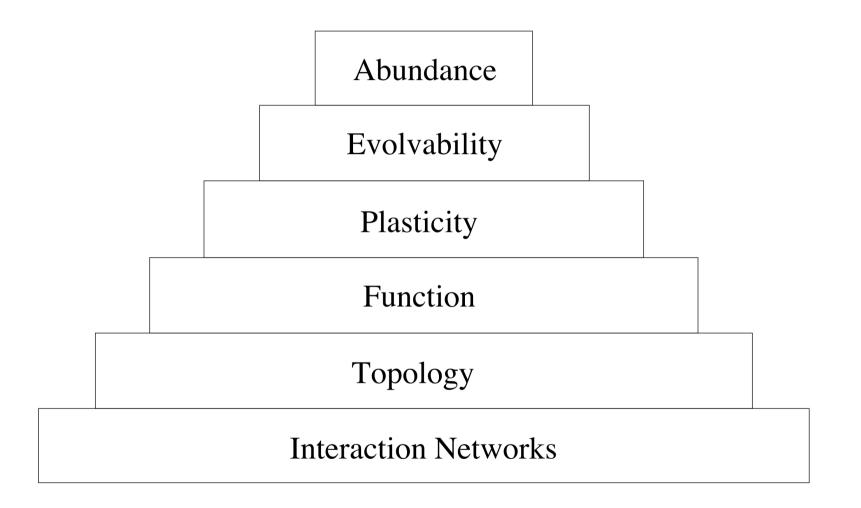
Table 1: Transition probabilities for single mutations, C1

	G^+	G^-	P^+T^+	$P^{-}T^{-}$	P^+T^-	$P^{-}T^{+}$
G^+	0.251	0	0.027	0	0	0
G^-	0	0.329	0	0	0.008	0
P^+T^+	0	0	0.180	0	0	0
$P^{-}T^{-}$	0	0	0	0.157	0	0
P^+T^-	0	0.016	0	0	0.031	0
$P^{-}T^{+}$	0	0	0	0	0	0

robustness against mutation



Conclusions



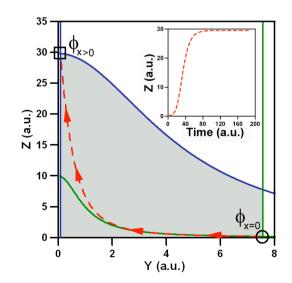
Thanks!

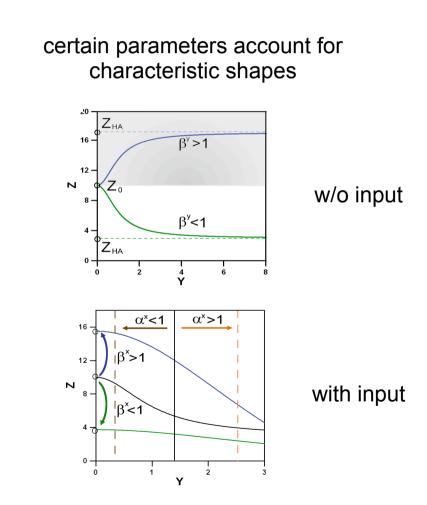
Barcelona Biomedical Research Park

$$\left(Y\right)_{\dot{Y}=0} = \frac{\gamma Y}{dY} \left(\frac{1 + \alpha X \omega_Y^X X^n}{1 + \omega_Y X^n}\right)$$

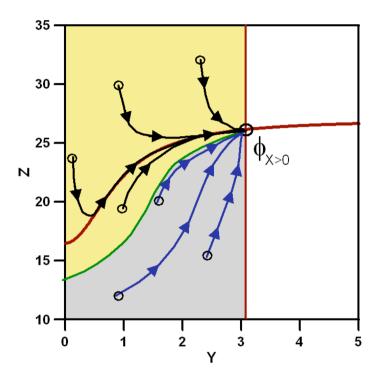
$$(Z)_{\dot{Z}=0} = \frac{\gamma Z}{dZ} \left(\frac{1 + \beta^X \omega_z^X X^n + \beta^Y \omega_Z^Y Y^m + \beta^{XY} \omega_Z^{XY} X^n Y^m}{1 + \omega_z^X X^n + \omega_Z^Y Y^m + \omega_Z^{XY} X^n Y^m} \right)$$

change of the nullcline's shape upon input confine the trajectory





Starting from different ICs in phase space, two distinct qualitative behaviours are encountered: joining of the nullcline before the FP or joining at the FP. The regions are separated by Z(Y).



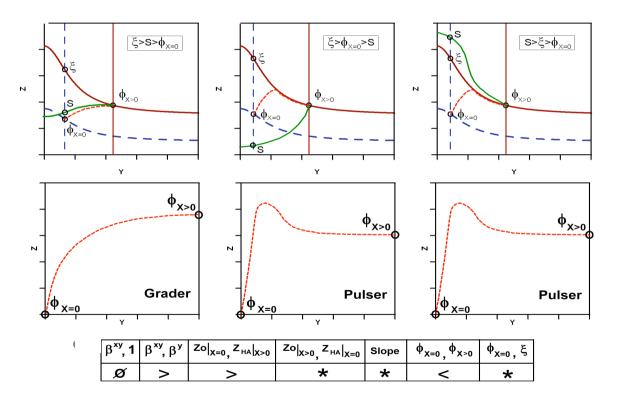
Using condition
$$\frac{Y_f - Y}{Z_f - Z} = \frac{\dot{Y}}{\dot{Z}}$$

we find the analytical expression of the separatrix

$$Z(Y) = \left(\frac{1}{1 - \frac{d_Y}{d_z}}\right) \left[\frac{\gamma_Z}{d_z} \left(\frac{1 + \beta^X \omega_z^X X^n + \beta^Y \omega_Z^Y Y^m + \beta^{XY} \omega_Z^X X^n Y^m}{1 + \omega_z^X X^n + \omega_Z^Y Y^m + \omega_Z^{XY} X^n Y^m}\right) - \frac{d_Y}{d_Z} Z_f\right]$$

The relative position of 3 points at the crossing with $Yo|_{x=0}$ determines the functionality of the trajectory for a given nullcline:

Separatrix, $Zo|_{x=0}$ and $Zo|_{x>0}$



The parametric backbone sequence determines the shape of the nullcline.