MedØIDatschgerl and Beyond

Jakob Lykke Andersen, Christoph Flamm, Daniel Merkle, Peter F. Stadler

Department of Mathematics and Computer Science University of Southern Denmark

Bled, February 2012

MedØIDatschgerl and Beyond

Jakob Lykke Andersen, Christoph Flamm, Daniel Merkle, Peter F. Stadler

Department of Mathematics and Computer Science University of Southern Denmark

Bled, February 2012

UNIVERSITY OF SOUTHERN DENMARK

Graph Grammars

Grammar: $\mathcal{H} = (\mathcal{G}, \mathcal{R})$, starting graphs and transformation rules

Example: Formose

- Starting graphs:
 - g0 formaldehyde
 - g1 glycolaldehyde
- Transformation rules:
 - r₀ keto-enol-tautomerism, one direction
 - r_1 keto-enol-tautomerism, the other direction
 - r₂ aldol addition, one direction
 - r_3 aldol addition, the other direction

Derivation Graphs (Reaction Networks)

Input: a graph grammar (e.g., Formose) Output: a directed hypergraph of (all) graph derivations

Visualization: $\{g_1, g_2\} \stackrel{r}{\Rightarrow} g_3$ is represented as

UNIVERSITY OF SOUTHERN DENMARK

Generation 4

Pathways in Reaction Networks

Idea: use network flows as model for chemical pathways, and find interesting flows Problem: derivation graphs are hypergraphs Solution: use integer linear programming (ILP)

Examples of interesting questions::

General pathway:

6 ribulose-5-phosphate \rightarrow 5 fructose-6-phosphate Is it possible? and how?

Autocatalysis:

2 formaldehyde + 1 glycolaldehyde \rightarrow 2 glycolaldehyde ls it possible? and how?

Basis Model

Input: a derivation graph, (V, E)

Augment with input and output edges:

$$E_{I} = \{e_{in}^{v} = (\emptyset, \{v\}) | v \in V\} \qquad \overline{E} = E \cup E_{I} \cup E_{O}$$
$$E_{O} = \{e_{out}^{v} = (\{v\}, \emptyset) | v \in V\}$$

Variables:

$$x_e \in \mathbb{N}_0$$
 , $orall e \in ar{E}$

Constraints:

$$\sum_{e \in in(v)} x_e = \sum_{e \in out(v)} x_e \quad , \quad \forall v \in V$$

Change of the Basis Model

Replace each vertex with a bipartite graph

 e_1

 e_2

 e_3

 e_4

The extension Autocata

Variables:

Desired constraints:

$$\begin{split} Z_v &= 1 \Leftrightarrow 0 < x_{in}^v < x_{out}^v \\ Z_v^{in} &= 1 \Leftrightarrow 0 < x_{in}^v \end{split}$$

$$\sum_{v \in V} Z_v \ge 1$$

The extension Autocata Constraints:

$$Z_{\nu}^{in} \le x_{in}^{\nu} \tag{1}$$

$$M \cdot Z_v^{in} \ge x_{in}^v \tag{2}$$

$$Z_{\nu} \leq x_{in}^{\nu} \tag{3}$$

$$x_{in}^{\nu} < x_{out}^{\nu} + M \cdot (1 - Z_{\nu}) \tag{4}$$

$$M \cdot Z_v \ge x_{out}^v - x_{in}^v - M \cdot (1 - Z_v^{in}) \tag{5}$$

x ^v _{in}	x_{out}^{v}	${}^{1}Z_{v}^{in}$	$^{2}Z_{v}^{in}$	$^{3}Z_{v}$	$^{4}Z_{v}$	${}^{5}Z_{v}$
0	0	0	-	0	0	_
0	42	0	_	0	-	_
42	0	-	1	-	0	_
	=	-	1	-	0	_
	<	_	1	_	-	1
	>	-	1	-	0	-

MedØIDatschgerl Code – Detection of Autocatalysis

```
load smiles
               C=0
               0CC=0
load r
          keto_enol_forward.gml
          keto_enol_backward.gml
          aldol_addition_forward.gml
          aldol_addition_backward.gml
dg size 16
autocata sources input; sinks sources;
list autocata
print dg
set DGFlow::printOnlyFiltered false
set DGFlow::printOnlyFlowLabels true
print autocata
```


Autocatalysis in Formose

Autocatalysis in Metabolic Networks

Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks [Kun et al. Genome Biology 2008]

Networks:

- Escherichia coli
- Heliobacter pylori
- Staphylococcus aureus
- Mycobacterium tuberculosis
- Methanosarcina barkeri

Runs: for each network, run the detection with each internal molecule added to the input and output sets, individually 2898 runs in total (\approx 3 days with 17 computers (3 cores each))

Autocatalysis in Metabolic Networks

Networks	Auto. molecules	Molecules	Percentage
Escherichia coli	226	625	36%
Heliobacter pylori	118	412	29%
Staphylococcus aureus	193	577	35%
Mycobacterium tuberculosis	255	740	34%
Methanosarcina barkeri	143	558	26%

Autocatalysis in Metabolic Networks

32 molecules, autocatalytic in all 5 networks						
13dpg	4pasp	gdp	nad	ppi	ump	
23dhdp	adp	gln-L	nadh	prpp	utp	
26dap-M	arg-L	gmp	nadp	pser-L		
2pg	aspsa	gtp	nadph	so3		
Зрg	atp	hom-L	рер	thdp		
3php	coa	lac-L	phom	udp		

Model for Catalysis, Part 1 of 2

$$0 < x_{in}^{\nu} - x_{out}^{\nu} + M \cdot (1 - Z_{\nu}^{>}) (1) \qquad 0 < x_{out}^{\nu} - x_{in}^{\nu} + M \cdot (1 - Z_{\nu}^{<}) (3)$$

$$M \cdot Z_{\nu}^{>} \ge x_{in}^{\nu} - x_{out}^{\nu} \qquad (2) \qquad M \cdot Z_{\nu}^{<} \ge x_{out}^{\nu} - x_{in}^{\nu} \qquad (4)$$

$$1 - Z_{v}^{0} \le x_{in}^{v} + x_{out}^{v}$$
 (5)

$$M \cdot (1 - Z_v^0) \ge x_{in}^v + x_{out}^v \tag{6}$$

x_{in}^{v}	x_{out}^{v}	${}^{1}Z_{v}^{>}$	${}^{2}Z_{v}^{>}$	${}^{3}Z_{v}^{<}$	${}^{4}Z_{v}^{<}$	${}^{5}Z_{v}^{0}$	${}^{6}Z_{v}^{0}$
0	0	0	_	0	-	1	_
0	42	0	_	_	1	-	0
42	0	_	1	0	_	-	0
	=	0	_	0	_	-	0
	<	0	—	_	1	-	0
	>	-	1	0	-	-	0

Model for Catalysis, Part 2 of 2

$$Z_{\nu}^{c} \ge 1 - Z_{\nu}^{<} - Z_{\nu}^{>} - Z_{\nu}^{0} \tag{7}$$

$$0 \le x_{in}^{\nu} - x_{out}^{\nu} + M \cdot (1 - Z_{\nu}^{c})$$

$$\tag{8}$$

$$0 \le x_{out}^{v} - x_{in}^{v} + M \cdot (1 - Z_{v}^{c})$$
(9)

$$Z_{\nu}^{c} \le x_{in}^{\nu} + x_{out}^{\nu} \tag{10}$$

x _{in} ^v	x ^v _{out}	$^{7}Z_{v}^{c}$	$^{8}Z_{v}^{c}$	${}^{9}Z_{v}^{c}$	$^{10}Z_{v}^{c}$
0	0	_	-	_	0
0	42	_	0	-	-
42	0	_	_	0	-
	=	1	-	-	-
	<	_	0	-	-
	>	-	-	0	-

The Pentose-phosphate Pathway

6 ribulose-5-phosphate \rightarrow 5 fructose-6-phosphate

Is it possible? and how?

Composition of Rules

r1: aldol-addition, backwards

 $\begin{array}{c|c} & O \\ H \\ & C \\ & I \\ O \\ & C \\ & C \\ & H \\ & H \end{array} \qquad H \\ \begin{array}{c} O \\ & O \\ & C \\ & C \\ & I \\ & H \\ & H \end{array} \qquad O \\ O \\ & C \\ & C \\ & H \\ & H \\ & H \end{array}$

 $r_2 \circ r_1$

Composition of Rules

Abstract example:

Partial Composition

Autocatalysis in Formose

Composition with the Formose Grammar

 $r_1 \circ r_3 \circ r_1 \circ r_0 \circ r_2 \circ r_0 \circ r_2 \circ r_0 \circ g_1$

Current algorithm: breadth-first application of rules repeat($\{r1 \ r2 \ ... \ rN\}$) Idea: general framework for generation

Current algorithm: breadth-first application of rules repeat({r1 r2 ... rN}) Idea: general framework for generation Examples: Limit reaction participation for molecule size:

repeat(filter(size < 42) . {r1 r2 ... rN})

Current algorithm: breadth-first application of rules repeat({r1 r2 ... rN}) Idea: general framework for generation Examples: Limit reaction participation for molecule size:

repeat(filter(size < 42) . {r1 r2 ... rN}) Prioritize expansion by yield:

repeat(limit[-10]{r1 r2 ... rN} . sort(yield)) Catalan:

Summary

- Generation of reaction networks from grammars
- Model for chemical pathways: flows in hypergraphs with ILP
- Strict model for autocatalysis and catalysis
- Detection of autocatalysis in metabolic networks
- Composition of transformation rules

Summary

- Generation of reaction networks from grammars
- Model for chemical pathways: flows in hypergraphs with ILP
- Strict model for autocatalysis and catalysis
- Detection of autocatalysis in metabolic networks
- Composition of transformation rules

Future work:

- Pathways, catalysis, and autocatalysis in more chemistries (Citric acid cycle, Calvin cycle, HCN, ...)
- Detection of polymerization (Terpene, Polyketide, HCN, ...)
- Synthesis planning
- Strategy framework for network generation
- (Use graph grammars to solve more games)

Thanks

- Daniel Merkle
- Christoph Flamm
- Peter F. Stadler
- Martin Mann

Bonus – Exampple of Problemaic Flow

The problematic flow is no longer feasible

Bonus – Optimization

Example: e_1 is the inverse of e_2

Bonus – Autocatalysis in Escherichia coli, NAD⁺

Graph Binding

