Identifying unknown sRNAs in Listeria monocytogenes

Sebastian Behrens

Dep. for Computational Systems biology , University Vienna

15.02.2012 - Winterseminar Bled

Overview

- Listeria & small RNAs
- Data & methods
- Results

Listeria moncytogenes

- Facultative intracellular bacterium
- Causative agent of listeriosis
 - high lethality (30%-70%)
 - food born
- Growth in harsh conditions
 - fridge temperatures
 - high salt
 - Iow pH

Small RNA in Listeria

- Switch to pathogenicity proposed to be regulated by sRNAs.
- Several studies found a total number of ~250 sRNAs in Listeria species

15.02.2012

Data - Overview

Resequencing of Listeria transcriptome [mraheil et al.]

SOLiD platform (previously 454)

Transcriptome under two growth conditions

Intracellular (pathogenic) growth in mouse MΦ

Extracellular (saprophytic) growth in BHI medium

RNA split into three fractions

x > 150

- 150nt > x > 40nt
- 40nt > x
- Total of six data sets

Mapping

- Shrimp and BWA for mapping
- ~50% of reads could be mapped to reference

	>150	<150;>40	<40	Extra	Intra
Bwa	57.56%	9.66%	11.10%	34.41%	17.79%
Shrimp	89.71%	51.74%	68.88%	82.77%	57.45%

- Mapping correlates with fraction
- Mapping correlates with growth condition
- Bwa and Shrimp have different sensitivity

Filtering for Candidates

- Using two filter approaches
 - Annotation-dependent: Masking regions within annotated CDS

Annotation-independent: Making use of the size fractioning of samples to mask regions

Classification of Candidates

- Manual inspection of randomly selected candidates to identify classes of sRNAs in the data
- We built classifiers for the four most common classes found

Example 1 - putative transcriptions starts

15.02.2012

Example 2 - antisense RNA

15.02.2012

Example 3 - sense RNA

Example 4 - 3' end of long transcript

15.02.2012

27th TBI Winterseminar in Bled

Classification of sRNA candidates

- Majority of candidates are putative transcription start sites
- 50 candidates need to be categorized manually

Differential Expression

- Majority of candidates show differential expression with regard to growth condition
- Indication for role in transition from saprophytic and pathogenic

Overlap with previous studies

- 66% of candidates found in previous studies were confirmed.
- Total of 668 previously undescribed sRNAs

Conclusion

- We constituted a list of 778 sRNAs, 668 of which were previously unknown.
- We propose 581of to have a possible role in regulation of pathogenicity
- The SOLiD platform is suitable to detect sRNAs from bacterial transcriptomes
- We find increased frequency of sRNAs at the putative transcription start of larger RNAs

Perspective

- Small-ORF prediction
- Target prediction and functional analysis of possible sRNA targets
- Functional analysis of differentially expressed sRNAs

I would like to thank...

Stefanie Widder

Thomas Rattei

Torsten Hain

You

[1] A. Toledo-Arana et al. The listeria transcriptional landscape from saprophytism to virulence. Nature, 459(7249):950–956, 2009.

[2] H. Oliver et al. Deep rna sequencing of L.monocytogenes reveals overlapping and extensive stationary phase and sigma b-dependent transcriptomes, including multiple highly transcribed noncoding rnas. BMC genomics, 10(1):641, 2009.

[3] M.A. Mraheil et al. The intracellular srna transcriptome of listeria monocytogenes during growth in macrophages. Nucleic acids research, 39(10):4235, 2011.

[4] J. Livny, H. Teonadi, M. Livny, and M.K. Waldor. High-throughput, kingdom-wide prediction and annotation of bacterial non-coding rnas. PLoS One, 3(9):e3197, 2008.

[5] Portnoy, D.; Auerbuch, V. & Glomski, I. The cell biology of Listeria monocytogenes infection The Journal of cell biology, Rockefeller Univ Press, 2002, 158, 409

15.02.2012