Introduction

Covariance Models

cmcompare

cmcws

cmcompare - Webserver

Florian Eggenhofer

Institute for Theoretical Chemistry University of Vienna

February 14, 2012

F. Eggenhofer

cmcompare webserver

Introduction	
0000	
Background	

Covariance Models

cmcompare

cmcws

ncRNA Homology Search 1

Diversification:

F. Eggenhofer	TBI
cmcompare webserver	2 / 17

ntroduction	Covariance Models	cmcompare	cmcws
0000	000	0	000000
Background			

ncRNA Homology Search 1

Diversification:

F. Eggenhofer	тві
cmcompare webserver	2 / 17

ntroduction	Covariance Models	cmcompare	cmcws
0000	000	0	0000000
Background			

ncRNA Homology Search 1

Diversification:

- Speciation event \longrightarrow ortholog gene
- ► Gene duplication → paralog gene

Introduction OOO Background Covariance Models

cmcompare 0 cmcws

ncRNA Homology Search 2

- Helpful in finding related genes
- ▶ Simple case: \longrightarrow conserved sequence \longrightarrow profile HMM
- used for protein families

Introduction OOO Background Covariance Models

cmcompare 0 **cmcws**

ncRNA Homology Search 2

- Helpful in finding related genes
- ▶ Simple case: \longrightarrow conserved sequence \longrightarrow profile HMM
- used for protein families
- what about genes with low sequence conservation?

Introduction 0000 Background Covariance Models

cmcompare

cmcws

Structure and Function 1

- ► More distantly related genes.. Sequence weakly conserved
- but function is conserved
- function \longleftrightarrow structure
- secondary RNA structure \longrightarrow basepairing

Introduction
0000
Background

Covariance Models

cmcompare

0000000

Structure and Function 2

- ncRNA gene finding \longrightarrow covariance models (cm)
- considers both basepairing and sequence
- what is a covariance model?

Introduction	Covariance Models	cmcompare	cmcws
0000	000	0	000000
Basics			

Covariance models

- represent ncRNA families with profile SCFGs
- ▶ = Stochastic Context Free Grammar

Introduction	Covariance Models	cmcompare	cmcws
0000	000	0	0000000
Basics			

Covariance models

- represent ncRNA families with profile SCFGs
- ▶ = Stochastic Context Free Grammar

- ► SCFG is very general, cm specific
- abstract representation of RNA families

Introduction	Covariance Models	cmcompare	cmcws
0000	000	0	0000000
Basics			

Covariance models

- represent ncRNA families with profile SCFGs
- ▶ = Stochastic Context Free Grammar

- ► SCFG is very general, cm specific
- abstract representation of RNA families
- How to build a covariance model?

Introduction	Covariance Models	cmcompare	cmcws
0000	000	0	000000
Basics			

Infernal + Rfam

► cm construction pipeline:

тві

Introduction	Covariance Models	cmcompare	cmcws
0000	000	0	000000
Basics			

Infernal + Rfam

F.

► cm construction pipeline:

F. Eggenhofer		
cmcompare webserver		

Introduction	Covariance Models	cmcompare	cmcws
0000	000	0	000000
Basics			

Infernal + Rfam

cm construction pipeline:

- ▶ Rfam 10.0 = 1446 RNA families, > 3M genes
- cm quality? \longrightarrow cmsearch

Introduction	
0000	

Basics

cm quality

- Search new genes with a cm:
- all substrings of given genome
- transition, transmission \longrightarrow score

Introduction
0000

Basics

cm quality

- Search new genes with a cm:
- all substrings of given genome
- transition, transmission \longrightarrow score
- Specificity
- ► 2 cms score high for same sequence
- \blacktriangleright \longrightarrow specificity is low
- $\blacktriangleright \longrightarrow cmcompare$

Introduction	Covariance Models	cmcompare	cmcws
0000	000	•	0000000
cmcompare			

cmcompare

- ► Input $\longrightarrow 2 \text{ cms}$
- MaxiMin algorithm
- \blacktriangleright Output \longrightarrow Link score and Link sequence

Introduction	Covariance Models	cmcompare	cmcws
0000	000	•	0000000
cmcompare			

cmcompare

- ► Input $\longrightarrow 2 \text{ cms}$
- MaxiMin algorithm
- ▶ Output → Link score and Link sequence
- highest scoring string in both models (suboptimals)
- Ink score is bit-score describing similarity
- shows relatedness of primary and secondary structure

Introduction	1
0000	

cmcws

Motivation

- ► Make cmcompare more accessible to rfam users
- Use power of gui to visualize cm relationships
- Improve cm quality
- \blacktriangleright \longrightarrow Clear separation of models

Introduction
0000

cmcws

Covariance Models

cmcompare

cmcws

- Provide features of commandline-tool and more
- Start comparisons with multiple sequence alignments

Introduction	
0000	

cmcws

Covariance Models

cmcompare

cmcws

- Provide features of commandline-tool and more
- Start comparisons with multiple sequence alignments
- compare cm against all other cms in rfam
- comparison of a provided set of models

Introduction 0000	Covariance Models	cmcompare O	cmcws
cmcws			

• Other models for the same family exist?

Eggenhofer	ТВІ
mcompare webserver	12 / 17

Introduction 0000	Covariance Models	cmcompare O	cmcws
cmcws			

- Other models for the same family exist?
- cm submodel of other cm?

F. Eggenhofer	тві
cmcompare webserver	12 / 17

Introduction 0000	Covariance Models	cmcompare O	cmcws
cmcws			

- Other models for the same family exist?
- cm submodel of other cm?
- cm supermodel of other cm?

Introduction	Covariance Models	cmcompare	cmcws
0000	000	0	0000000
cmcws			

- Other models for the same family exist?
- cm submodel of other cm?
- cm supermodel of other cm?
- Model duplications?

Introduction	Covariance Models	cmcompare	cmcws
0000	000	0	0000000
cmcws			

- Other models for the same family exist?
- cm submodel of other cm?
- cm supermodel of other cm?
- Model duplications?

Introduction

cmcws

Covariance Models

cmcompare

cmcws

Looking for clans 1

F. Eggenhofer	тві
cmcompare webserver	13/17

Introduction

cmcws

Covariance Models

cmcompare

cmcws 000€000

Looking for clans 1

- Clans group biologically related RNA families
- ► Rfam 10.0: 99 clans, e.g. RNase P

Introduction	Covariance Models	cmcompare O	cmcws
cmcws			

Looking for clans 2

McMoneysack/

Problem: group of families with high link score 99999 McDonald 70 80 99998

100

99997

McGyver

Introduction	Covariance Models	cmcompare O	cmcws
cmcws			

Looking for clans 2

Problem: group of families with high link score

- Biological relation?
- ► High link score = primary and secondary structure related

Introduction 0000	Covariance Models	cmcompare O	cmcws
cmcws			

Looking for clans 2

Problem: group of families with high link score

- Biological relation?
- ► High link score = primary and secondary structure related
- ► GO-terms

Introduction

cmcws

Covariance Models

cmcompare

cmcws

GO-terms

- Similarity in GO terms?
- ► GO = Gene Onthology
- Associates terms from 3 categories with genes
- ► Biological Process, Cellular Component, Molecular Function
- Sugar import, Membrane, Transporter

Introduction	Covariance Models	cmcompare	cmcws
cmcws		0	000000

GO-terms 2

► Strategy

. Eggenhofer	ТВІ
mcompare webserver	16 / 17

Introduction	Covariance Models	cmcompare	cmcws
0000		O	0000000
cmcws			

GO-terms 2

► Strategy

looking for significant overlaps in associated terms

F. Eggenhofer	тві
cmcompare webserver	16 / 17

Introduction	Covariance Models	cmcompare	cmcws
0000		O	0000000
cmcws			

GO-terms 2

► Strategy

- looking for significant overlaps in associated terms
- ► obstacle: GO-annotation

Introduction	Covariance Models	cmcompare	cmcws
0000	000	0	0000000
Thanks!			

Thanks

► Thanks for your attention!

F. Eggenhofer	TBI
cmcompare webserver	17 / 17