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How do we predict 3D Structures

Start with a structure and repeat the following lots of times.
@ Change the structure slightly
® Evaluate its quality (Energy)
© Decide if we like it (Metropolis criterion)

o If yes, keep it
o If no, reverse the change from step 1

O Go back to step 1



Exercise 1

What does this RNA look like in 3D?
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Exercise 2
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Exercise 3

And finally... this one?
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And finally... this one?




Key Features

Why do these two molecules fold so differently?

[
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Small elements lead to large changes in the 3D structure

e Bending

e Long range interactions




Are These Features Useful in 3D Modelling

Long range interactions inferred from mutate and map experiments !

Secondary Structure Native Structure (1Y26)

1Kladwang et al. - Nature Chemistry - 2011 - A two-dimensional mutate-and-map strategy for
non-coding RNA structure
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Are These Features Useful in 3D Modelling

Long range interactions inferred from mutate and map experiments !
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Secondary Structure

No long-range constraints (21.6 A

RMSD) Long-range constraints (8.3 A RMSD)

1Kladwang et al. - Nature Chemistry - 2011 - A two-dimensional mutate-and-map strategy for
non-coding RNA structure
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Are These Features Useful in 3D Modelling

What about the bends?

[

e Where are they likely to occur?

e How do we characterize them?



Bend/Kink Modelling

Where are bends/kinks likely to
occur?

How do we characterize them?



Bend/Kink Modelling

Where are bends/kinks likely to
occur?

e In bulge regions

How do we characterize them?



Bend/Kink Modelling

Where are bends/kinks likely to
occur?

e In bulge regions
e In branching regions

How do we characterize them?



Bend/Kink Modelling

Where are bends/kinks likely to
occur?

e In bulge regions
e In branching regions
How do we characterize them?

e Distance Constraints



Bend/Kink Modelling

Where are bends/kinks likely to
occur?

e In bulge regions
e In branching regions

How do we characterize them?
e Distance Constraints

e Non-canonical Base Pairs

o 4,

A4



What is a distance constraint?



What is a distance

e It's a modification of the energy
function.

e High energy when two atoms
are not the ideal distance apart

e Low energy when the are the
ideal distance

constraint?

Constraint
.~ Distance
-

Energy Contribution

~
-

pe
Distance between some atoms




Selecting Non-canonical Base Pair Constraints

Problem

Which non-canonical base pairs do
we include? How exactly do we
include them?

Solution

Find a common constraint among all
particular base pair types. For

example, the distribution of distances
between particular nucleotide atoms.



Non-canonical Base Pair Distance Distribution

Type 1 o %
CG Ww/Ww 10.60 0.17 45%
AU Ww/Ww 10.45 0.22 43%
GU Ww/Ww 1041 0.19 5%
AG Hh/Ss 937 027 5%
AG Ss/Ss 8.17 017 2%
AU Hh/Ws 9.60 0.15 2%

The distribution of C1*-C1* distances in various base pair types (as
annotated by MC-Annotate):



Non-canonical Base Pair Distance Distribution

Type i o %
CG Ww/Ww 10.60 0.17 45%
AU Ww/Ww 10.45 0.22 43%
GU Ww/Ww 1041 0.19 5%
AG Hh/Ss 937 027 5%
AG Ss/Ss 8.17 0.17 2%
AU Hh/Ws 9.60 0.15 2%

The distribution of C1*-C1* distances in various base pair types (as
annotated by MC-Annotate):
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Adding the non-canonical base pair constraints lowers the mean and
minimum rmsd of sampled structures.
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Adding the non-canonical base pair constraints lowers the mean and
minimum rmsd of sampled structures.

Next: Use predicted non-canonical interactions, along with a more diverse
test set.



Results

Using real non-canonical base pair constraints improves structure
prediction.

1L2X
Information Provided Minimum RMSD
Sequence 10.3
-+ Secondary Structure 7.2
+ Noncanonical Bases 5.3
1KXK
Information Provided Minimum RMSD
Sequence 17.1
+ Secondary Structure 12.5

+ Noncanonical Bases 9.1



Secondary Structure Prediction Failure

Q: Why is the red base pair predicted but not actually present?
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Secondary Structure Prediction Failure

Q: Why is the red base pair predicted but not actually present?

A: Steric hinderance and non-canonical interactions.
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Possible Solution: Modified Constraints As Bonuses

e Give bonuses for correct base
pairs.

e Don't penalize incorrect base
pairs.

Bonus
. " Distance
7

Energy Contribution

e Potentially vary bonus as a
function of base pair probability. Distance between some atoms




Application

Real Predicted

Ideally, the major energy contribution will be from the large groups of high
confidence base pair prediction bonuses.



Current Methods

MC-Fold | MC-Sym: Sequence — Secondary Structure — 3D Structure
(using nucleic cyclic motifs) 2

>SRL
GGGUGCUCAGUACGAGAGGAACCGCACCC
COCOOOOOE CCEE2)000))3)0))))

NCM Fusion

2Image from MC-Fold | MC-Sym Manual



Current Methods
NAST: Nucleic Acid Simulation Tool 3

e Coarse grained model using knowledge-based potential

e Works reasonably well when long range tertiary interactions are known

Crystal Structure GroupA Group 8 Group C
5Ce 5C

GDT-TS=0202003 GDT-TS = 0082001 GDT-T5 =007£001
RMSD=80A03A RMSD=136A+05A RAMSD=158A+08A

PDBID 1GID GOT-T5 = 0,06 £ 0.01 GDT-T5 = 0032001

RMSD=163A%10A RMSD=189A =104

3 Jonikas - 2009 - Bioinformatics - Coarse-grained modelling of large RNA molecules with knowledge-based
potentials and structural filters



Current Methods

FARNA / FARFAR: Fragment Assembly of RNA / Fragment Assembly
of RNA with Full-Atom Refinement

e Based on the popular Rosetta protein modelling tool

e Very good at predicting small RNA structures

1ESY 12X
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Summary

RNA Structure Prediction tools exist
None of them are very good
Non-canonical constraints improve structure prediction

Sub optimal base pair bonuses will be tried in the near future
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