of Graph Relations

Yangjing Long

Outline

Defini

Fundame<mark>nta</mark>l Prob.

Complexity

Future Works

Computational Complexity of Graph Relations

Yangjing Long

Max Planck Institute for Math. in the Sci.

Feb. 16, 2012 Winerseminar, Bled

Outline

Computational

complexity of Graph Relations

Yangjing Long

Outline

Defini.

Fundamental Prob

Complexity

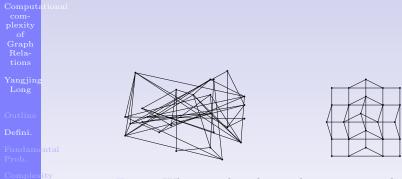
Future Works

1 Background and Definitions

2 Fundamental Problem and Properties

3 Computational Complexity

How to relate two graphs/networks?



Future Works Figure: What are the relations between networks?

Model in biology

Computational complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamental Prob.

Complexity

Future Works

• Domain interaction graph.

• **Relation**: containing relation=

 $\{d_2, d_3 \in p_1; d_4 \in p_2; d_1, d_3 \in p_3; d_1 \in p_4\}$

Model in biology

Computational complexity of Graph Relations

Yangjing Long

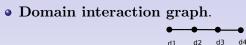
Outline

Defini.

Fundame<mark>ntal</mark> Prob.

Complexity

Future Works



• **Relation**: containing relation=

 $\{d_2, d_3 \in p_1; d_4 \in p_2; d_1, d_3 \in p_3; d_1 \in p_4\}$

• We define a **protein interaction graph**, the vertex set are proteins, two proteins have interaction if there are two interacted domains which belong to them respectively.

Figure: Protein Interaction Network

From Biology to Mathematics

Computational

complexity of Graph Relations

Yangjing Long

Outline

Defini.

Fundame<mark>n</mark> Prob.

Complexity

Future Works Firstly, we generalize the containing relation to a binary relation.

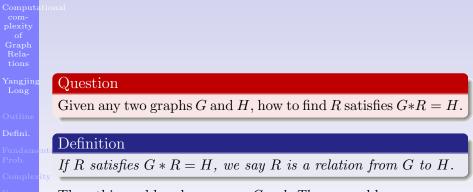
Definition

The (binary) relation R between two sets A and B is a subset of $A \times B$.

Definition

Let $G = (V_G, E_G)$ be a simple graph with loops allowed, $R \subset V_G \times B$ be a binary relation, G * R is defined as a graph with vertex set B (B is given by R). For $u, v \in B$, $u \sim v$ if and only if there exist $(x, y) \in E_G$, $(x, u), (y, v) \in R$.

Our fundamental problem



Then this problem becomes a *Graph Theory* problem.

Computational

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundame<mark>ntal</mark> Prob.

Complexity

Future Works • A graph homomorphism f from a graph $G \to H$ is a **mapping** $f: V_G \to V_H$ such that whenever (u, v) is an edge of G, we have (f(u), f(v)) is an edge of H.

Computational

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamental Prob.

Complexity

Future Works

- A graph homomorphism f from a graph $G \to H$ is a mapping $f: V_G \to V_H$ such that whenever (u, v) is an edge of G, we have (f(u), f(v)) is an edge of H.
- If the mapping $f: V_G \to V_H$ and $f^{\#}: E_G \to E_H$ are both surjective, we call it *surjective homomorphism*.

Computational

complexity of Graph Relations

Yangjing Long

Outline

Defini.

Fundamental Prob.

Complex<mark>ity</mark>

Future Works

- A graph homomorphism f from a graph $G \to H$ is a mapping $f: V_G \to V_H$ such that whenever (u, v) is an edge of G, we have (f(u), f(v)) is an edge of H.
- If the mapping $f: V_G \to V_H$ and $f^{\#}: E_G \to E_H$ are both surjective, we call it *surjective homomorphism*.
- A graph Multihomomorphism $G \to_m H$ is a mapping φ : $V_G \to 2^{V_H} / \{\emptyset\}$ (i.e., associating a nonempty subset of vertices of H with every vertex of G) such that whenever u_1, u_2 is an edge of G, we have (v_1, v_2) is an edge of H for every $v_1 \in \varphi(u_1)$ and every $v_2 \in \varphi(u_2)$.

Computational

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamental Prob.

Complex<mark>ity</mark>

Future Works

- A graph homomorphism f from a graph G → H is a mapping f : V_G → V_H such that whenever (u, v) is an edge of G, we have (f(u), f(v)) is an edge of H.
- If the mapping $f: V_G \to V_H$ and $f^{\#}: E_G \to E_H$ are both surjective, we call it *surjective homomorphism*.
- A graph Multihomomorphism $G \to_m H$ is a mapping φ : $V_G \to 2^{V_H} / \{\emptyset\}$ (i.e., associating a nonempty subset of vertices of H with every vertex of G) such that whenever u_1, u_2 is an edge of G, we have (v_1, v_2) is an edge of H for every $v_1 \in \varphi(u_1)$ and every $v_2 \in \varphi(u_2)$.
- If we consider G * R = H with **full domain**, i.e., every vertex in G has at least an image in H, then R can be seen as a surjective multihomomorphism.

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundame<mark>ntal</mark> Prob.

Complexity

Future Works

• homomorphism \iff multihomomorphism

A graph homomorphism f can be seen as a multihomomorphism (a vertex u is assigned the one-element set $\{f(u)\}$).

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamental Prob. Complex<mark>ity</mark>

Future Works

$\bullet \ homomorphism \Longleftrightarrow multihomomorphism \\$

A graph homomorphism f can be seen as a multihomomorphism (a vertex u is assigned the one-element set $\{f(u)\}$). Observely, if there exists a multihomomorphism, then these is a homomorphism induced from multihomomorphism, by retaining one vertex from the image of each vertex and removing the others.

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamental Prob. Complexity

Future

 $\bullet \ homomorphism \Longleftrightarrow multihomomorphism$

A graph homomorphism f can be seen as a multihomomorphism (a vertex u is assigned the one-element set $\{f(u)\}$). Observely, if there exists a multihomomorphism, then these is a homomorphism induced from multihomomorphism, by retaining one vertex from the image of each vertex and removing the others.

• Multihomomorphism is a generalization of homomorphism. Graph relation is a generalization of surjective graph homomorphism.

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamental Prob. Complexity

Future

$\bullet \ homomorphism \Longleftrightarrow multihomomorphism \\$

A graph homomorphism f can be seen as a multihomomorphism (a vertex u is assigned the one-element set $\{f(u)\}$). Observely, if there exists a multihomomorphism, then these is a homomorphism induced from multihomomorphism, by retaining one vertex from the image of each vertex and removing the others.

- Multihomomorphism is a generalization of homomorphism. Graph relation is a generalization of surjective graph homomorphism.
- If G * R = H, then there exist a homomorphism from G to H, but NOT vice versa.

Composition and Decomposition

Computational

complexity of Graph Relations

Yangjing Long

Outline

Defini.

Prob.

Complexity

Future Works

Proposition

Lemma

$$(G * R) * S = G * (R \circ S).$$

 $R = R_D \circ R_C, (G * R_D) * R_C = H.$

$$G \xrightarrow{R} H$$

$$R_D \xrightarrow{R_C} R_C$$

For any R satisfing G * R = H, there exists R_D, R_C such that

Our fundamental problem

Comput complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamenta Prob.

Complexity

Future Works

Question

Given any two graphs G and H, how to find R satisfies G * R = H.

The existence of the relations is non-trivial:

• it could have a relation

Figure: there exists a relation of G to H

Our fundamental problem

Comput complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamenta Prob.

Complexity

Future Works

Question

Given any two graphs G and H, how to find R satisfies G * R = H.

The existence of the relations is non-trivial:

• it could have a relation

Figure: there exists a relation of G to H

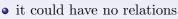


Figure: no relations of G to H

Diameter decrease

Complexity

The *distance* between two vertices in a graph is the number of edges in a shortest path connecting them. The *diameter* of a graph is the greatest distance between any pair of vertices.

Proposition

If G * R = H, then $max\{diam(G), 2\} \ge diam(H)$.

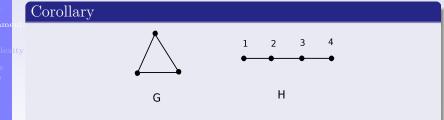


Figure: 2 < diam(H) = 3, so no relations of G to H

Chromatic number increase

Computationa

complexity of Graph Relations

Yangjing Long

Outline

Defini.

Fundam Prob.

Complexity

Future Works A coloring of a graph is a labelling of the graph's vertices with colors such that no two vertices sharing the same edge have the same color. The smallest number of colors needed to color a graph G is called its *chromatic number*, $\chi(G)$.

Proposition

Suppose G and H are simple graphs. If G * R = H, then $\chi(G) \leq \chi(H)$.

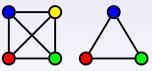


Figure: $\chi(K_4) > \chi(K_3)$, so no relation from K_4 to K_3 .

complexity of Graph Relations

Definition

Yangjing Long

Outline

Defini.

Fundame<mark>n</mark> Prob

Complex

Future Works

Two graphs G and H are strongly relationally equivalent, G ~ H, if G * R = H and H * R⁺ = G, where R⁺ is the transpose of R, i.e., $(u, x) \in R^+$ if and only if $(x, u) \in R$.

Lemma

Strongly relational equivalence is an equivalence relation on graphs.

complexity of Graph Relations

ions

Long

Outline

Defini.

Fundame<mark>n</mark> Prob

-

Distance

Future Works

Definition

Two graphs G and H are strongly relationally equivalent, G ~ H, if G * R = H and H * R⁺ = G, where R⁺ is the transpose of R, i.e., $(u, x) \in R^+$ if and only if $(x, u) \in R$.

Lemma

Strongly relational equivalence is an equivalence relation on graphs.

Question

How to find the simpliest(smallest) represented elments?

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundame<mark>ntal</mark> Prob.

Complexit

Future Works

Definition

Denote thin graph of graph G by G_{thin} , which is obtained from G by contracting the vertices with the same neighborhoods together.

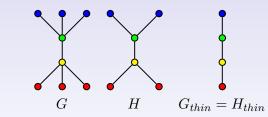


Figure: Non-isomorphic graphs G and H with isomorphic thin graphs.

Theorem

Two graph are strongly relationally equivalent iff their thin graphs are the same.

In other words, *thin graphs* ares the represented elements of <u>Fundamenta</u> strongly relational equivalent classes.

Observation

We could simplify the equation G * R = H to $G_{thin} * R = H_{thin}$.

Computation Let \mathcal{H} be a fixed graph.

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamenta Prob.

Complex

Future Works

Definition

The homomorphism problem $HOM(\mathcal{H})$ takes as input some finite \mathcal{G} and asks whether there is a homomorphism from \mathcal{G} .

Definition

The surjective homomorphism problem $\text{Sur-HOM}(\mathcal{H})$ asks whether or not an input graph \mathcal{G} admits a surjective homomorphism to \mathcal{H} .

Definition

The relation problem $\operatorname{ReL}(\mathcal{H})$ asks whether or not an input graph \mathcal{G} admits a relation to \mathcal{H} .

Clearly two relationally equivalent graphs result in the same relation problem.

Polynomial Equivalence to SUR-HOM (\mathcal{H})

Computational

complexity of Graph Relations

Yangjing Long

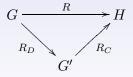
Outline Defini.

Fundamenta Prob. Complexity

Future Works

This is an observation of Prof. Jarik Nešetřil.

From decomposition lemma, we know G * R = H iff there is a graph $G' = G * R_D$ which has a (full) homomorphism to Gand has a surjective homomorphism to H. For a fixed H, given a graph G, we duplicate every vertex of G at most |H| times, there are polynomially many G'. Thus, the H relation problem is polynomial-time equivalent to SUR-HOM(\mathcal{H}).



Polynomial Equivalence to SUR-HOM (\mathcal{H})

Computational

complexity of Graph Relations

Yangjing Long

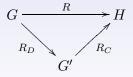
Outline Defini.

Fundamenta Prob. Complexity

Future Works

This is an observation of Prof. Jarik Nešetřil.

From decomposition lemma, we know G * R = H iff there is a graph $G' = G * R_D$ which has a (full) homomorphism to Gand has a surjective homomorphism to H. For a fixed H, given a graph G, we duplicate every vertex of G at most |H| times, there are polynomially many G'. Thus, the H relation problem is polynomial-time equivalent to SUR-HOM(\mathcal{H}).



complexity of Graph Relations

Yangjing Long

SUR-HOM(\mathcal{H}) is still *OPEN*.

• If H is K_2 , there exists relation R such that G * R = H iff G is a bipartite graph. So in this case the problem is polynomial.

Fundamental Prob.

 $\operatorname{Complex}$

Future Works • If H is K_3 , the problem is polynomial equivalent with 3colourable problem, which is NP-complete.

$\operatorname{Sur-Hom}(\mathcal{H}) \operatorname{VS} \operatorname{Hom}(\mathcal{H})$

Computational

complexity of Graph Relations

Yangjing Long

This is an observation of Jan Hubička.

Proposition

Defini. E

Fundament Prob.

 $\operatorname{Complex}$

Future Works Existence of homomorphism from G to H is the same as existence of surjective homomorphisms from G + H to H.

So SUR-HOM(\mathcal{H}) is obviously hard for all graphs where homomorphisms are *hard*.

Definition

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundame<mark>ntal</mark> Prob.

Complexity Future Two graphs G and H are (weakly) relationally equivalent, $G \sim H$, if there are relations R and S such that G * R = H and H * S = G.

Strong relational equivalence implies weak relational equivalence. To see this, simply note the definition of the weak from is obtained from the strong one by setting $S = R^T$.

Definition

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundame<mark>ntal</mark> Prob.

Complexity Future Two graphs G and H are (weakly) relationally equivalent, $G \sim H$, if there are relations R and S such that G * R = H and H * S = G.

Strong relational equivalence implies weak relational equivalence. To see this, simply note the definition of the weak from is obtained from the strong one by setting $S = R^T$.

complexity of Graph Relations

Yangjing Long

Outline

Defini

Fundamental Prob.

Complexity

Future Works

Observation

Weak and strong relational equivalence are not the same.

This is an observation of Jan Hubička

Observation

complexity of Graph Relations

Yangjing Long

This is an observation of Jan Hubička

Outline Definit Example Find among the Prob. Image: Complexity of the problem of the proble

Weak and strong relational equivalence are not the same.

Future works

Computational

Fundamenta

Represented elements of weakly relational equivalence classes are not thin graphs, and more precise than thin graphs.

Question

How to find the represented element of weakly relational equivalence classes? Complexity

Special thanks to

Computational

complexity of Graph Relations

Yangjing Long

Thank for your attention Christoph Peter Jürgen Honza Frank and Tina