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How to relate two graphs/networks?

Figure: What are the relations between networks?
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Model in biology

Domain interaction graph.

Relation: containing relation=

{d2, d3 ∈ p1; d4 ∈ p2; d1, d3 ∈ p3; d1 ∈ p4}



Computational

com-

plexity

of

Graph

Rela-

tions

Yangjing

Long

Outline

Defini.

Fundamental

Prob.

Complexity

Future

Works

Model in biology

Domain interaction graph.

Relation: containing relation=

{d2, d3 ∈ p1; d4 ∈ p2; d1, d3 ∈ p3; d1 ∈ p4}

We define a protein interaction graph, the vertex set
are proteins, two proteins have interaction if there are two
interacted domains which belong to them respectively.

P1 P2

P3P4

Figure: Protein Interaction Network
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From Biology to Mathematics

Firstly, we generalize the containing relation to a binary relation.

Definition

The (binary) relation R between two sets A and B is a subset
of A×B.

Definition

Let G = (VG, EG) be a simple graph with loops allowed, R ⊂
VG × B be a binary relation, G ∗ R is defined as a graph with
vertex set B (B is given by R). For u, v ∈ B, u ∼ v if and only
if there exist (x, y) ∈ EG, (x, u), (y, v) ∈ R.
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Our fundamental problem

Question

Given any two graphsG andH, how to findR satisfiesG∗R = H.

Definition

If R satisfies G ∗R = H, we say R is a relation from G to H.

Then this problem becomes a Graph Theory problem.
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Compare to Graph Homomorphisms

A graph homomorphism f from a graph G → H is a map-

ping f : VG → VH such that whenever (u, v) is an edge of
G, we have (f(u), f(v)) is an edge of H.
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Compare to Graph Homomorphisms

A graph homomorphism f from a graph G → H is a map-

ping f : VG → VH such that whenever (u, v) is an edge of
G, we have (f(u), f(v)) is an edge of H.

If the mapping f : VG → VH and f# : EG → EH are both
surjective, we call it surjective homomorphism.
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Compare to Graph Homomorphisms

A graph homomorphism f from a graph G → H is a map-

ping f : VG → VH such that whenever (u, v) is an edge of
G, we have (f(u), f(v)) is an edge of H.

If the mapping f : VG → VH and f# : EG → EH are both
surjective, we call it surjective homomorphism.

A graph Multihomomorphism G →m H is a mapping ϕ :
VG → 2VH/{∅} (i.e., associating a nonempty subset of ver-
tices of H with every vertex of G) such that whenever u1, u2
is an edge of G, we have (v1, v2) is an edge of H for every
v1 ∈ ϕ(u1) and every v2 ∈ ϕ(u2).
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Compare to Graph Homomorphisms

A graph homomorphism f from a graph G → H is a map-

ping f : VG → VH such that whenever (u, v) is an edge of
G, we have (f(u), f(v)) is an edge of H.

If the mapping f : VG → VH and f# : EG → EH are both
surjective, we call it surjective homomorphism.

A graph Multihomomorphism G →m H is a mapping ϕ :
VG → 2VH/{∅} (i.e., associating a nonempty subset of ver-
tices of H with every vertex of G) such that whenever u1, u2
is an edge of G, we have (v1, v2) is an edge of H for every
v1 ∈ ϕ(u1) and every v2 ∈ ϕ(u2).

If we consider G ∗ R = H with full domain, i.e., every
vertex in G has at least an image in H, then R can be seen
as a surjective multihomomorphism.
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homomorphism ⇐⇒ multihomomorphism

A graph homomorphism f can be seen as a multihomomor-
phism (a vertex u is assigned the one-element set {f(u)}).



Computational

com-

plexity

of

Graph

Rela-

tions

Yangjing

Long

Outline

Defini.

Fundamental

Prob.

Complexity

Future

Works

homomorphism ⇐⇒ multihomomorphism

A graph homomorphism f can be seen as a multihomomor-
phism (a vertex u is assigned the one-element set {f(u)}).
Observely, if there exists a multihomomorphism, then these
is a homomorphism induced from multihomomorphism, by
retaining one vertex from the image of each vertex and re-
moving the others.
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homomorphism ⇐⇒ multihomomorphism

A graph homomorphism f can be seen as a multihomomor-
phism (a vertex u is assigned the one-element set {f(u)}).
Observely, if there exists a multihomomorphism, then these
is a homomorphism induced from multihomomorphism, by
retaining one vertex from the image of each vertex and re-
moving the others.

Multihomomorphism is a generalization of homomorphism.
Graph relation is a generalization of surjective graph homo-
morphism.
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homomorphism ⇐⇒ multihomomorphism

A graph homomorphism f can be seen as a multihomomor-
phism (a vertex u is assigned the one-element set {f(u)}).
Observely, if there exists a multihomomorphism, then these
is a homomorphism induced from multihomomorphism, by
retaining one vertex from the image of each vertex and re-
moving the others.

Multihomomorphism is a generalization of homomorphism.
Graph relation is a generalization of surjective graph homo-
morphism.

If G ∗R = H, then there exist a homomorphism from G to
H, but NOT vice versa.
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Composition and Decomposition

Proposition

(G ∗R) ∗ S = G ∗ (R ◦ S).

Lemma

For any R satisfing G ∗ R = H, there exists RD, RC such that
R = RD ◦RC , (G ∗RD) ∗RC = H.

G

RD   A
AA

AA
AA

R // H

G′

RC

>>}}}}}}}}
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Our fundamental problem

Question

Given any two graphsG andH, how to findR satisfiesG∗R = H.

The existence of the relations is non-trivial:

it could have a relation
P1 P2

P3P4

Figure: there exists a relation of G to H
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Our fundamental problem

Question

Given any two graphsG andH, how to findR satisfiesG∗R = H.

The existence of the relations is non-trivial:

it could have a relation
P1 P2

P3P4

Figure: there exists a relation of G to H

it could have no relations

Figure: no relations of G to H
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Diameter decrease

The distance between two vertices in a graph is the number of
edges in a shortest path connecting them. The diameter of a
graph is the greatest distance between any pair of vertices.

Proposition

If G ∗R = H, then max{diam(G), 2} ≥ diam(H).

Corollary

Figure: 2 < diam(H) = 3, so no relations of G to H

.
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Chromatic number increase

A coloring of a graph is a labelling of the graph’s vertices with
colors such that no two vertices sharing the same edge have the
same color. The smallest number of colors needed to color a
graph G is called its chromatic number, χ(G).

Proposition

Suppose G and H are simple graphs. If G∗R = H, then χ(G) ≤
χ(H).

Figure: χ(K4) > χ(K3), so no relation from K4 to K3.
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Definition

Two graphs G and H are strongly relationally equivalent,
G ∼ H, if G ∗ R = H and H ∗ R+ = G, where R+ is the
transpose of R, i.e., (u, x) ∈ R+ if and only if (x, u) ∈ R.

Lemma

Strongly relational equivalence is an equivalence relation on
graphs.
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Definition

Two graphs G and H are strongly relationally equivalent,
G ∼ H, if G ∗ R = H and H ∗ R+ = G, where R+ is the
transpose of R, i.e., (u, x) ∈ R+ if and only if (x, u) ∈ R.

Lemma

Strongly relational equivalence is an equivalence relation on
graphs.

Question

How to find the simpliest(smallest) represented elments?
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Definition

Denote thin graph of graph G by Gthin, which is obtained from G
by contracting the vertices with the same neighborhoods together.

G H Gthin = Hthin

Figure: Non-isomorphic graphs G and H with isomorphic thin graphs.
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Theorem

Two graph are strongly relationally equivalent iff their thin
graphs are the same.

In other words, thin graphs ares the represented elements of
strongly relational equivalent classes.

Observation

We could simplify the equation G ∗R = H to Gthin ∗R = Hthin.



Computational

com-

plexity

of

Graph

Rela-

tions

Yangjing

Long

Outline

Defini.

Fundamental

Prob.

Complexity

Future

Works

Let H be a fixed graph.

Definition

The homomorphism problem Hom(H) takes as input some finite
G and asks whether there is a homomorphism from G.

Definition

The surjective homomorphism problem Sur-Hom(H) asks
whether or not an input graph G admits a surjective homomor-
phism to H.

Definition

The relation problem Rel(H) asks whether or not an input graph
G admits a relation to H.

Clearly two relationally equivalent graphs result in the same re-
lation problem.
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Polynomial Equivalence to Sur-Hom(H)

This is an observation of Prof. Jarik Nešetřil.
From decomposition lemma, we know G ∗ R = H iff there is
a graph G′ = G ∗ RD which has a (full) homomorphism to G
and has a surjective homomorphism to H. For a fixed H, given
a graph G, we duplicate every vertex of G at most |H| times,
there are polynomially many G′. Thus, the H relation problem
is polynomial-time equivalent to Sur-Hom(H).

G

RD   A
AA

AA
AA

R // H

G′

RC

>>}}}}}}}}
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Polynomial Equivalence to Sur-Hom(H)

This is an observation of Prof. Jarik Nešetřil.
From decomposition lemma, we know G ∗ R = H iff there is
a graph G′ = G ∗ RD which has a (full) homomorphism to G
and has a surjective homomorphism to H. For a fixed H, given
a graph G, we duplicate every vertex of G at most |H| times,
there are polynomially many G′. Thus, the H relation problem
is polynomial-time equivalent to Sur-Hom(H).

G

RD   A
AA

AA
AA

R // H

G′

RC

>>}}}}}}}}
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Sur-Hom(H) is still OPEN.

If H is K2, there exists relation R such that G ∗ R = H
iff G is a bipartite graph. So in this case the problem is
polynomial.

If H is K3, the problem is polynomial equivalent with 3-
colourable problem, which is NP-complete.
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Sur-Hom(H) VS Hom(H)

This is an observation of Jan Hubička.

Proposition

Existence of homomorphism from G to H is the same as exis-
tence of surjective homomorphisms from G+H to H.

So Sur-Hom(H) is obviously hard for all graphs where homo-
morphisms are hard.
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Definition

Two graphs G and H are (weakly) relationally equivalent,
G ∼ H, if there are relations R and S such that G ∗R = H and
H ∗ S = G.

Strong relational equivalence implies weak relational equivalence.
To see this, simply note the the definition of the weak from is
obtained from the strong one by setting S = RT .
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Definition

Two graphs G and H are (weakly) relationally equivalent,
G ∼ H, if there are relations R and S such that G ∗R = H and
H ∗ S = G.

Strong relational equivalence implies weak relational equivalence.
To see this, simply note the the definition of the weak from is
obtained from the strong one by setting S = RT .
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Observation

Weak and strong relational equivalence are not the same.

This is an observation of Jan Hubička
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Observation

Weak and strong relational equivalence are not the same.

This is an observation of Jan Hubička

Example

Figure: relations exist in both directions with different thin graphs.
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Future works

Represented elements of weakly relational equivalence classes are
not thin graphs, and more precise than thin graphs.

Question

How to find the represented element of weakly relational equiv-
alence classes?
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