How to find Cartesian Product Graphs in "Graphs with Square Property"

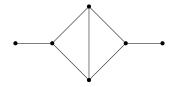
Lydia Ostermeier

Bioinformatics Group
Department of Computer Science
University Leipzig

February 18, 2012 BLED

Introduction

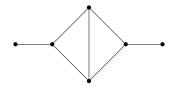
- We consider graphs that have nontrivial equivalence relation on their edge set that satisfy the square property
- The square property is closely related to the factorization of a Cartesian product
- Any product relation on the edge set of a connected Cartesian product satisfies the square property


Introduction

- We consider graphs that have nontrivial equivalence relation on their edge set that satisfy the square property
- The square property is closely related to the factorization of a Cartesian product
- Any product relation on the edge set of a connected Cartesian product satisfies the square property

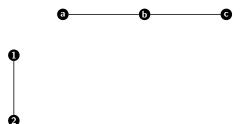
Q: Conversely, does a graph with equivalence relation having the square property yield a product like structure?

Graphs


Graph
$$G = (V, E)$$

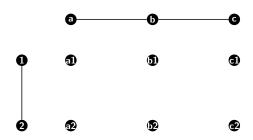
• here: finite, undirected, simple graphs

Graphs


Graph
$$G = (V, E)$$

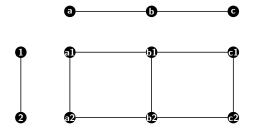
• here: finite, undirected, simple graphs

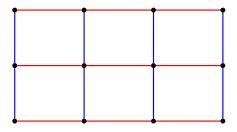
The Cartesian Product


$$G_1 = (V_1, E_1) \ G_2 = (V_2, E_2)$$

The Cartesian Product

$$G_1 = (V_1, E_1) \ G_2 = (V_2, E_2)$$

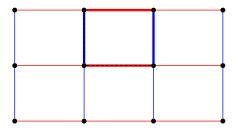

$$V(G_1 \square G_2) = V_1 \times V_2$$

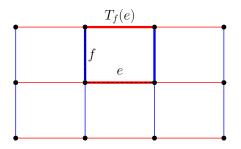

The Cartesian Product

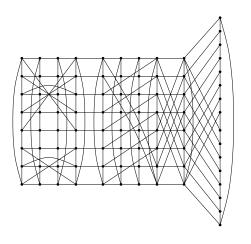
$$G_1 = (V_1, E_1) \ G_2 = (V_2, E_2)$$

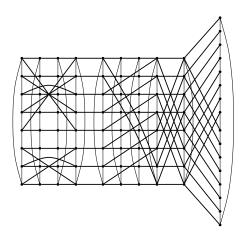
$$V(G_1 \square G_2) = V_1 \times V_2$$

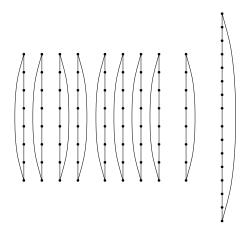
 $E(G_1 \square G_2) = \{ [(u_1, u_2), (v_1, v_2)] \mid [u_1, v_1] \in E_1, u_2 = v_2, \text{ or } u_1 = v_1, [u_2, v_2] \in E_2 \}.$

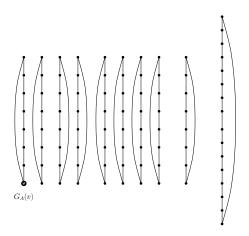

equiv. relation R on E(G) has square property if two adjacent edges of different equiv. classes span exactly one square.

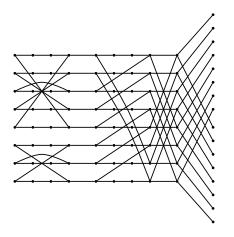

equiv. relation R on E(G) has square property if two adjacent edges of different equiv. classes span exactly one square.

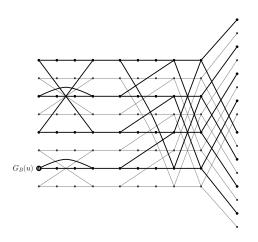

equiv. relation R on E(G) has square property if two adjacent edges of different equiv. classes span exactly one square.

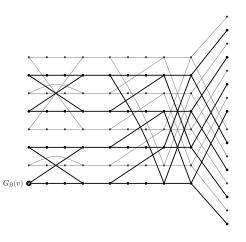

equiv. relation R on E(G) has square property if two adjacent edges of different equiv. classes span exactly one square.

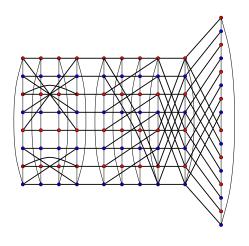

• e, f adjacent edges of different equiv. classes Translation of e along f, $T_f(e)$:= opposite edge of e in the (unique) square spanned by e and f.


- Graph G with nontrivial equiv. rel. R on E(G) with square property
- equiv. classes A and B
- G_A: spanning subgraph of G generated by A
- $G_A(v)$: conn. comp. of G_A containing v
- G_B: spanning subgraph of G generated by B
- G_B(u), G_B(v): conn. comp. of G_B containing u resp. v


- Graph G with nontrivial equiv. rel. R on E(G) with square property
- equiv. classes A and B
- G_A: spanning subgraph of G generated by A
- $G_A(v)$: conn. comp. of G_A containing v
- G_B: spanning subgraph of G generated by B
- $G_B(u)$, $G_B(v)$: conn. comp. of G_B containing u resp. v


- Graph G with nontrivial equiv. rel. R on E(G) with square property
- equiv. classes A and B
- G_A: spanning subgraph of G generated by A
- G_A(v): conn. comp. of G_A containing v
- G_B: spanning subgraph of G generated by B
- $G_B(u)$, $G_B(v)$: conn. comp. of G_B containing u resp. v


- Graph G with nontrivial equiv. rel. R on E(G) with square property
- equiv. classes A and B
- G_A: spanning subgraph of G generated by A
- G_A(v): conn. comp. of G_A containing v
- G_B: spanning subgraph of G generated by B
- $G_B(u)$, $G_B(v)$: conn. comp. of G_B containing u resp. v


- Graph G with nontrivial equiv. rel. R on E(G) with square property
- equiv. classes A and B
- G_A: spanning subgraph of G generated by A
- G_A(v): conn. comp. of G_A containing v
- G_B: spanning subgraph of G generated by B
- $G_B(u)$, $G_B(v)$: conn. comp. of G_B containing u resp. v

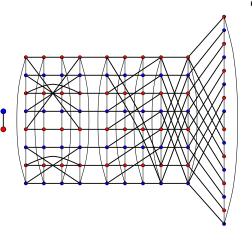
- Graph G with nontrivial equiv. rel. R on E(G) with square property
- equiv. classes A and B
- G_A: spanning subgraph of G generated by A
- G_A(v): conn. comp. of G_A containing v
- G_B: spanning subgraph of G generated by B
- G_B(u), G_B(v): conn. comp. of G_B containing u resp. v

- Graph G with nontrivial equiv. rel. R on E(G) with square property
- equiv. classes A and B
- G_A: spanning subgraph of G generated by A
- G_A(v): conn. comp. of G_A containing v
- G_B: spanning subgraph of G generated by B
- G_B(u), G_B(v): conn. comp. of G_B containing u resp. v

- Graph G with nontrivial equiv. rel. R on E(G) with square property
- equiv. classes A and B
- G_A: spanning subgraph of G generated by A
- G_A(v): conn. comp. of G_A containing v
- G_B: spanning subgraph of G generated by B
- G_B(u), G_B(v): conn. comp. of G_B containing u resp. v

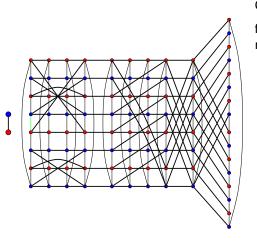
Conjecture:

Let G be a graph and R a nontrivial equiv. rel. on E(G) satisfying the square property with equivalence classes A and B. Then there exists connected subgraphs T ⊆ G_A, U ⊆ G_B such that there is a spanning subgraph H ⊆ G with H ≅ T□U.

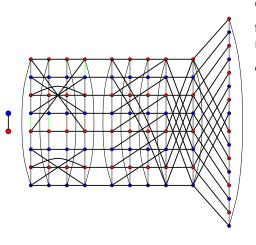

Problem:

• How to find H, T, U?

Idea:

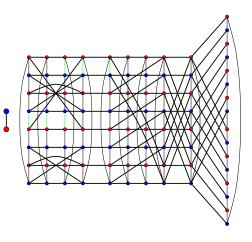

"peel" H out of G

Some More Notation

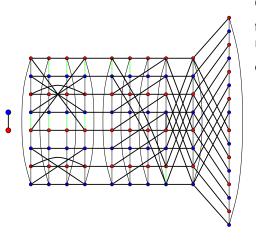


quotient graph Q_B w.r.t. B:

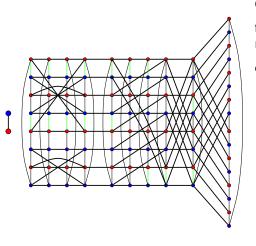
- $V(Q_B) = \{G_B(x) \mid x \in V(G)\}$
- $[G_B(u), G_B(v)] \in E(Q_B) \Leftrightarrow \exists x \in V(G_B(u)) \ y \in V(G_B(v)) : [x,y] \in A$



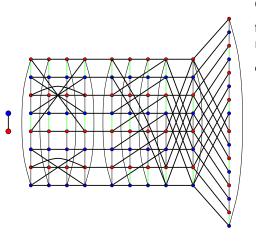
Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$


Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$

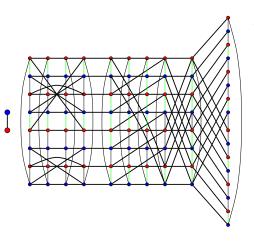
- e ∈ E₁(e)
- $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow T_f(e') \in E(e)$
- $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$


Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$

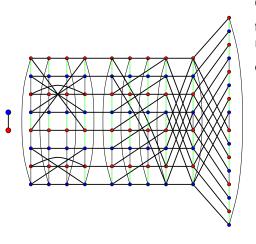
- e ∈ E₁(e)
- $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow T_f(e') \in E(e)$
- $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$


Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$

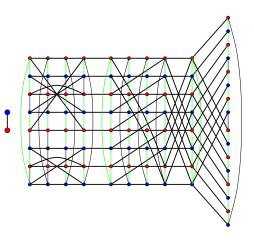
- e ∈ E₁(e)
- $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow T_f(e') \in E(e)$
- $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$


Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$

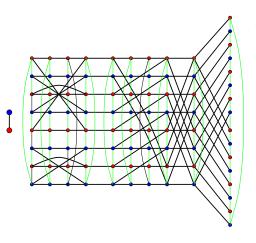
- e ∈ E₁(e)
- $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow T_f(e') \in E(e)$
- $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$


Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$

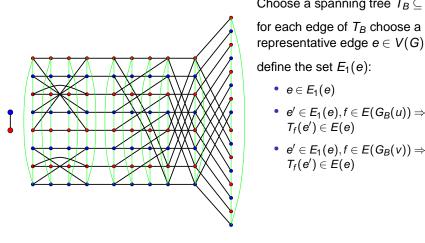
- define the set $E_1(e)$: • $e \in E_1(e)$
 - $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow$ $T_f(e') \in E(e)$
 - $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$


Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$

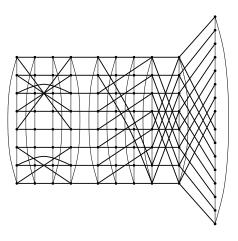
- define the set $E_1(e)$: • $e \in E_1(e)$
 - $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow T_f(e') \in E(e)$
 - $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$


Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$

- e ∈ E₁(e)
- $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow T_f(e') \in E(e)$
- $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$

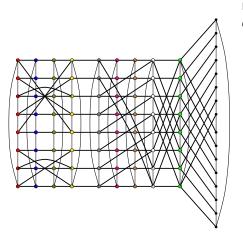

Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$

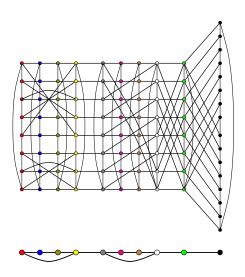
- e ∈ E₁(e)
- $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow T_f(e') \in E(e)$
- $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$


Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a representative edge $e \in V(G)$

- define the set $E_1(e)$: • $e \in E_1(e)$
 - $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow T_f(e') \in E(e)$
 - $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$

Choose a spanning tree $T_B \subseteq Q_B$ for each edge of T_B choose a

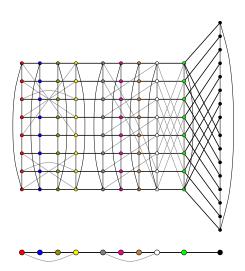

- e ∈ E₁(e)
- $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow$ $T_f(e') \in E(e)$
- $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow$ $T_f(e') \in E(e)$


Choose a spanning tree $T_B \subseteq Q_B$

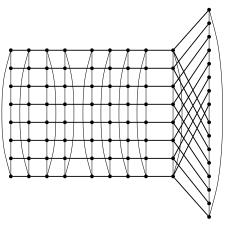
for each edge of T_B choose a representative edge $e \in V(G)$

- e ∈ E₁(e)
- $e' \in E_1(e), f \in E(G_B(u)) \Rightarrow T_f(e') \in E(e)$
- $e' \in E_1(e), f \in E(G_B(v)) \Rightarrow T_f(e') \in E(e)$
- \hookrightarrow new graph G_1 :
 - $V(G_1) = V(G)$
 - $E(G_1) = B \cup \bigcup_e E_1(e)$

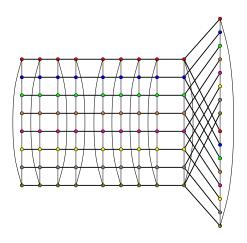
repeat this procedure on G_1 with equiv. class $A_1 \subseteq A$:

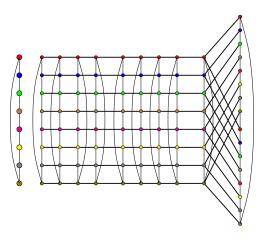

repeat this procedure on G_1 with equiv. class $A_1 \subseteq A$:

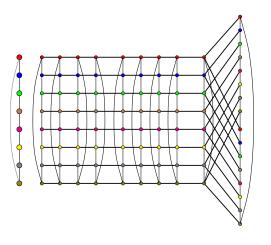
- Choose a spanning tree $T_B \subseteq Q_B$
- for each edge of T_B choose a representative edge e ∈ V(G)
- define the set E₂(e)

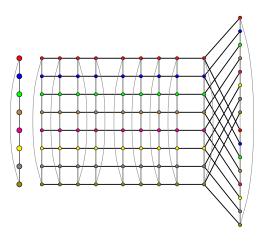

repeat this procedure on G_1 with equiv. class $A_1 \subseteq A$:

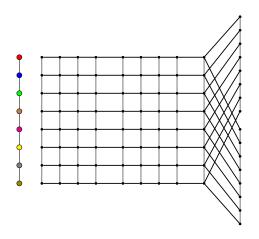
- Choose a spanning tree $T_B \subseteq Q_B$
- for each edge of T_B choose a representative edge e ∈ V(G)
- define the set E₂(e)

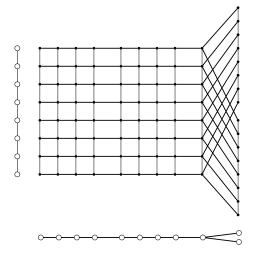

repeat this procedure on G_1 with equiv. class $A_1 \subseteq A$:


- Choose a spanning tree $T_B \subseteq Q_B$
- for each edge of T_B choose a representative edge e ∈ V(G)
- define the set E₂(e)




repeat this procedure on G_1 with equiv. class $A_1 \subseteq A$:


- Choose a spanning tree $T_B \subseteq Q_B$
- for each edge of T_B choose a representative edge e ∈ V(G)
- define the set E₂(e)
- \hookrightarrow new graph G_2 :
 - $V(G_2) = V(G)$
 - $E(G_2) = A_1 \cup \bigcup_e E_2(e)$



• a Cartesian product graph

a Cartesian product graph

What do we have

For the G_i holds

- $G_{i+1} \subseteq G_i \subseteq G$, $V(G_i) = V(G)$
- · Gi connected
- \exists equivalence relation R_i on $E(G_i)$ having square property
- R_i has equivalence classes A_i, B_i with $A_{i+1} \subseteq A_i \subseteq A$, $B_{i+1} \subseteq B_i \subseteq B$
- $G_i = G_{i+1} \Rightarrow G_j = G_i \forall j > i \hookrightarrow H := G_i$

???

- under which conditions is H a nontrivial product?
 e.g. a neccessary condition is that
 gcd{G_A(x) | x ∈ V(G)}, gcd{G_B(x) | x ∈ V(G)} > 1
- is there an estimate for the number of steps needed?

• ...

Thank you for your attention!