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Discrete Models of RNA polymers

Secondary structure: Base pairs leaving the plane are prohibited.
Example:

untwisting+planarity
→

(((((((◦◦◦ ◦◦◦ ◦◦◦((((◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦))))◦◦◦ ◦◦◦(((((◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦))))))◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦((((◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦))))))))))◦◦◦ ◦◦◦ ◦◦◦

Dot-bracket representation; obvious correspondence to tree structures.



Discrete Models of RNA polymers

Alternative representation: Contact graph

I Backbone (primary structure) linear chain of vertices (in natural
order) each representing a nucleotide;

I hydrogen bonds are represented by arcs in the upper half-plane.

( ( ( ( ◦◦◦ ◦◦◦ ◦◦◦ ) ◦◦◦ ) ) )
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If arcs do cross (right example) pseudoknot (otherwise secondary
structure).



Algorithmic challenges

Determine the structure from known sequence of bases (primary
structure)

I by minimizing free energy (most prominent),

I by stochastic approaches,

I ...

Forbidding pseudoknots this task is computationally feasible (running
time in O(n3)), allowing pseudoknots leads to an NP-complete problem
(LYNGSØ AND PEDERSEN 2000) even for a rather simple model of free
energy (nearest neighbor model).

Resort: Limit the types of legal pseudoknots.



Algorithmic challenges

Subclasses used for structure prediction:
I LYNGSØ & PEDERSEN: At most one H-type pseudoknot not

embedded under any arc with nested secondary structures.

H-type:
I CAO & CHEN: Any number of H-type pseudoknots and secondary

structures recursively embedded with restrictions.
I REEDER & GIEGERICH: Any number of H-type pseudoknots and

secondary structures recursively embedded with less restrictions.
I DIRKS & PIERCE: Any number of H-type pseudoknots and

secondary structures recursively embedded without restrictions.
I AKUTSU & UEMURA: Any number of simple pseudoknots and

secondary structures recursively embedded without restrictions.

Simple pseudoknot:
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Algorithmic challenges

Subclasses used for structure prediction (cont.):
I REIDYS & ... & NEBEL: So-called shadows of the pseudoknots

have topological genus at most 1.

I RIVAS & EDDY: Generalized notion of nesting where a single arc
may be replaced by a complete contact graph (instead of placing it
between two vertices).

Those restriction lead to prediction algorithms with a running time
between O(n4) and O(n6) making inputs of moderate size manageable.



Mathematical challenges

Question: Quantify the portion of all possible pseudoknots
(∼
√

2 · 2n ·
( n

e

)n) covered by the various subclasses.

Approach: (SAULE ET AL. 2010) bijective combinatorics

Remark: In the before mentioned investigation and in all what follows,
unpaired nucleotides (symbols ◦◦◦) are neglected!!



Mathematical challenges

SAULE ET AL. were not able to apply this approach to the RIVAS &
EDDY class; the corresponding enumeration problem was again left
open (for almost 12 years). Furthermore, the newly introduced REIDYS

& NEBEL class asked for enumeration.

Our solution:
I Get unified descriptions of the different classes first,

I translate them into multiple context-free grammars,

I which are used for enumeration purposes (by means of generating
functions).

Stay tuned for details!



Unified description of pseudoknot classes

Definition

For Σ = {[i ,]i | i ∈ N} let A,C ⊂ Σ∗. We call B ⊂ Σ∗ resulting from A
(resp. A and C) by

I nesting if B = n ′(A,C) := A ∪ {w1uw2 | w1w1 ∈ A, u ∈ C}, or
B = n(A) := n ′(A,A),
B = n ′′(A) := A ∪ {w1uw2 | w1w2, u ∈ A, (w1,w2) = (w ′1[i ,]jw

′
2)⇒

i = j}.

I stem extension if B = s(A) := A ∪ {w1[i [iw2]i ]iw3 | w1[iw2]iw3 ∈
A and w2 i-balanced}.

I knot extension if B = k(A) := A ∪ {w1[j [i ]jw2]iw3 | w1[iw2]iw3 ∈
A, j 6= i and w2 i-balanced} ∪ {w1[iw2[j ]i ]jw3 | w1[iw2]iw3 ∈ A, j 6=
i and w2 i-balanced} ∪ {w1[i [jw2]i ]jw3 | w1[iw2]iw3 ∈ A, j 6=
i and w2 i-balanced and j-balanced}.



Unified description of pseudoknot classes

Definition

For Σ = {[i ,]i | i ∈ N} let A,C ⊂ Σ∗. We call B ⊂ Σ∗ resulting from A
(resp. A and C) by

I nesting: B = n ′(A,C), or B = n(A) := n ′(A,A), or B = n ′′(A);

I stem extension: B = s(A);

I knot extension: B = k(A).



Unified description of pseudoknot classes

Example: For D := {[1]1} we find that k(D) is D extended by the
shadow of any H-type pseudoknot [1[2]1]2 (modulo re-indexing).

Shadow: The shadow of a contact graph (diagram) is obtained by

I removing all non-crossing arcs,

I collapsing all isolated vertices and

I replacing all remaining stacks (i.e., adjacent parallel arcs) by single
arcs.

Example:

shadowdiagram



Unified description of pseudoknot classes

Lemma

For S := D extended by the shadows of simple pseudoknots and
G := D extended by the shadows of genus-1-pseudoknots we have

PKF = n∞(D),

L&P = n ′∞(s∞(k(D)),n∞(D)),

C&C = s∞(n ′′∞(k(D))),

R&G = s∞(n∞(k(D))),

D&P = (s ◦ n)∞(k(D)),

A&U = (s ◦ n)∞(S),

R&N = (s ◦ n)∞(G),

R&E = (s ◦ n ◦ k)∞(D).



Unified description of pseudoknot classes

Corollary

I PKF ⊂ C&C ⊂ R&G ⊂ D&P ⊂ A&U ⊂ R&E,

I PKF ⊂ L&P ⊂ R&N ⊂ R&E,

I R&N # A&U.

Proof: Immediate from definitions. �
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Enumeration by multiple context-free grammars
Basic concepts and definitions

A context-free grammar

I is a mechanism to generate sets of strings (language L),

I which allows to derive a system of equations for the generating
function

∑
w∈L z |w |.

Such a grammar is given by

I two disjoint alphabets I and T of intermediate and terminal
symbols respectively, and

I a distinguished intermediate symbol S called axiom, and

I a set of rules/productions P specifying how intermediate symbols
can be replaced by strings over I ∪ T .
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Basic concepts and definitions

Example

I CFG G = (I,T ,P,S) =
(
{S}, {(, )}, {S → (S)S,S → ε},S

)
I S ⇒ (S)S ⇒ (S)(S)S ⇒ ((S)S)(S)S︸ ︷︷ ︸

sentential form

⇒ (())()

I S → (S)S,S → ε ≡ S(z) = z2S(z)2 + 1

Bad news: Representation of pseudoknot classes cannot be generated
(without bijection) by context-free grammar, i.e. use of CFGs leads to
bijective combinatorics.
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Basic concepts and definitions

Multiple context-free grammars (MCFGs): Intermediate symbols now
have multiple components

I which are replaced in a coupled way,

I while appearing detached in the sentential forms.

Example: ...αA1βA2γ...⇒ α[β]γ for A1,A2 → [,] ∈ P.

Goal: Find unambiguous (one tree per word) MCFGs which generate
the (language of the) R&E class (without bijection).

Key ideas:
I Represent pair of corresponding brackets [· · · ] by two dimensional

intermediate A1 · · ·A2 (plus rule A1,A2 → [,]).

I To enforce unambiguity, different intermediates are used
depending on which operation introduces the brackets.

I Find set of rules to generate the different ways gapped structures
may be combined.
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Grammar for the R&E class

Modulo ambiguity, the following grammar allows to simulate the
recursive decomposition of R&E:

S → T1T2

T1,T2 → [S,]S

T1T ′1 ,T
′

2 T2

T1T ′1 T2,T ′2

T1,T ′1 T2T ′2

T1T ′1 ,T2T ′2

T ′1 ,T
′

2 a distinguished copy of T1,T2.

Note that for enumeration purposes we do not need to distinguish
between different kinds of brackets.



Grammar for the R&E class

S → ε+ ◦◦◦S + [S]S + K1[SK2]S,

K1,K2 → K1I1, I2K2 + I1K1I2,K2 + D1, I1D2I2 + L1K1, L2K2 + [S, ]S,

I1,I2 → I1K1I2,K2 + D1, I1D2I2 + L1K1, L2K2 + [S, ]S,

D1,D2 → K1I1, I2K2 + D1, I1D2I2 + L1K1, L2K2 + [S, ]S,

L1, L2 → K1I1, I2K2 + I1K1I2,K2 + D1, I1D2I2 + [S,]S,

automatically derived from above algebraic description of the
pseudoknot class.



A general enumeration lemma

What do we gain? A lot when considering the ring of formal power
series.

Advantage: Going forth and back from grammar to series to grammar
allows to

I reorder the terminal symbols in the words generated (by
commutativity of the series) without affecting their numbers (similar
to bijective combinatorics) and the size of the language generated,

I find a plain context-free grammar which generates the
corresponding (reordered) language of exactly the same sizes,

I use well-known enumeration techniques for context-free
languages.

This heuristic explanation opens the way to prove the following lemma.
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A general enumeration lemma

Lemma

Let G = (I,d ,T ,P,~X<1>), I = {~X<1>, . . . ,~X<k>}, an unambiguous
MCFG without ε-rules1 and SE the system of equations where for each
~X<i> ∈ I the following variable and corresponding equation is
introduced:

X (i) =
∑

~α:~X<i>→~α∈P

∏
16k6d(X<i>)

h(αk ),

where h is the substitution that maps a ∈ T to variable z, the first
component X<j>

1 of any intermediate symbol to X (j) and its other
components to 1 (replacing concatenation of symbols by multiplication).
If X (1)(z) denotes the generating function obtained from solving SE for
X (1), choosing the unique solution compatible with initial conditions,
then [zn]X (1)(z) = |L(G) ∩ T n| holds.

1For MCFGs an ε-rule is given by a rule like ~A→ (ε, . . . ,ε)T .



Application

Using the lemma provides systems of equations like e.g. (Rivas&Eddy)

S = zS2 + 1 + GzS2,

G = A + B + D + zS2,

A = G(B + D + zS2),

B = G(A + D + zS2),

D = (G2 + 2G)(A + B + zS2).

No need to solve it; expansion at dominant singularity is sufficient.

 −0.0176036308 . . .
√

1 − 15.7923959885 . . . z + O
(
(1 −

15.7923959885 . . . z)
)
.

Under mild conditions (isolated singularity, expansion valid beyond disc
of convergence) we have for f (z) =

∑
n>0 fnzn and g(z) =

∑
n>0 gnzn

[zn]
(
f (z) + O(g(z)

)
= fn + O(gn).
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Asymptotic of coefficients

For f (z) =
∑

n>0 fnzn we have [zn]f (z) = 1
2πi

∮ f(z)
zn+1 dz.

Plot for Catalan generatingfunction (discontinuities marked red).
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For f (z) =
∑

n>0 fnzn we have [zn]f (z) = 1
2πi

∮ f(z)
zn+1 dz.

Plots for f (z) = 1 −
√

1 − z (discontinuities marked red).



Asymptotic of coefficients

If function is analytic in a pac-man like domain,validity of termwise
translation (asymptotic and error term) can be proved by integrating
along the so-called Hannkel-contour (green line).

 Analytic Combinatoric (O-transfer method and similar).



Results

Table: The asymptotical number of pseudoknot structures of size n.

size = arcs size = all Run time
Class Asymp. α ω α ω algo.
L&P αωn 1

2 4 1
4 3 O(n5)

C&C α

2
√
πn3ω

n 1.6651 5.857 4.0599 3.2864 O(n6)

R&G α

2
√
πn3ω

n 0.1651 6.576 2.7058 3.5129 O(n4)

D&P α

2
√
πn3ω

n 0.7535 7.315 1.7082 3.7046 O(n5)

A&U α

2
√
πn3ω

n 0.6575 7.547 1.4813 3.7472 O(n6)

R&N α

2
√
πn3ω

n 0.6429 8.284 1.4222 3.8782 O(n6)

R&E α

2
√
πn3ω

n 0.0176 15.792 0.0348 4.9739 O(n6)



Results

Table: The exact number of structures (roman), the corresponding asymptotic
(italics) and their quotient (boldface).

20 50 100 200

L&P
3.561142614 . . .× 1011

5.49756 × 1011

0.647768

4.864448066 . . .× 1029

6.33825 × 1029

0.767475

6.694392900 . . .× 1059

8.03469 × 1059

0.833186

1.137720591 . . .× 10120

1.29112 × 10120

0.881186

C&C
1.112250463 . . .× 1013

1.18424× 1013

0.939212

3.128096400 . . .× 1035

3.20821× 1035

0.975028

2.704589242 . . .× 1073

2.7391× 1073

0.9874

5.611595985 . . .× 10149

5.64734× 10149

0.993671

R&G
8.025197758 . . .× 1013

8.40499 × 1013

0.954814

7.219431757 . . .× 1037

7.35462 × 1037

0.981618

2.038002911 . . .× 1078

2.05702 × 1078

0.990756

4.530232923 . . .× 10159

4.55133 × 10159

0.995364

D&P
4.426689974 . . .× 1014

4.57142 × 1014

0.968341

9.632041531 . . .× 1039

9.75745 × 1039

0.987147

5.562927773 . . .× 1082

5.59909 × 1082

0.993541

5.197760759 . . .× 10168

5.21464× 10168

0.996762

A&U
7.251213289 . . .× 1014

7.45787 × 1014

0.972291

4.022948569 . . .× 1040

4.06881× 1040

0.988729

1.109324813 . . .× 1084

1.11565 × 1084

0.994333

2.365677112 . . .× 10171

2.37242 × 10171

0.997158

R&N
4.532472408 . . .× 1015

4.70002 × 1015

0.964352

4.134959215 . . .× 1042

4.19553 × 1042

0.985563

1.204325100 . . .× 1088

1.21312 × 1088

0.992751

2.858258052 . . .× 10179

2.86868 × 10179

0.996368

R&E
5.937168927 . . .× 1019

5.16907 × 1019

1.14859

1.238646791 . . .× 1055

1.17474× 1055

1.0544

3.565692041 . . .× 10114

3.47376 × 10114

1.02646

8.703449007 . . .× 10233

8.59127 × 10233

1.01306



Conclusion

Making use of multiple context-free grammars, formal power series and
generating functions, we have

I introduced a new enumeration lemma applicable to objects with
mildly context sensitive encodings,

I making the search for a bijection superfluous.

Those general findings allowed to solve the long open problem to
quantify the size of R&E class.
Our ideas can be used to handle a special kind of couplings within
recursive decompositions. Accordingly, we also made used of our
approach to the analysis of algorithms e.g. to analyze the size of the
intersection of two random trees (as a proof of concept).



Conclusion

Thanks for your attention!


