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Dihypergraphs



Definition

A (weighted) hypergraph H = (V (H), E(H)) consists of a:

- vertex set V (H): a set of elements, called vertices

- edge set E(H): a set of (multi)sets on V (H)
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Definition

A directed hypergraph / dihypergraph H is (V (H), E(H)) where:

- V (H) is a set of elements, called vertices

- E(H) is a set of ordered pairs e = (t(e), h(e)) of (multi)sets
t(e), h(e) on V (H), called hyperarcs / reactions

-

Example
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Definition

A directed hypergraph / dihypergraph H is (V (H), E(H)) where:

- V (H) is a set of elements, called vertices

- E(H) is a set of ordered pairs e = (t(e), h(e)) of multisets
t(e), h(e) on V (H), called hyperarcs / reactions

- t(e) is the tail of e

Example
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Definition

A directed hypergraph / dihypergraph H is (V (H), E(H)) where:

- V (H) is a set of elements, called vertices

- E(H) is a set of ordered pairs e = (t(e), h(e)) of multisets
t(e), h(e) on V (H), called hyperarcs / reactions

- h(e) is the head of e

Example
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Definition

A homomorphism from H1 into H2 is a mapping
ϕ : V (H1) → V (H2) such that:

• ϕ(E) is an arc in H2 whenever E is an arc in H1 with the
property that ϕ(t(E)) = t(ϕ(E)) and ϕ(h(E)) = h(ϕ(E))

A mapping ϕ : V (H1) → V (H2) is a weak homomorphism if

• arcs are mapped either on arcs or on vertices

A bijective homomorphism ϕ whose inverse function is also a
homomorphism is called an isomorphism.
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The bipartite digraph HB of the dihypergraph H:

• V (HB) = V (H) ∪ E(H)

• (a, b) ∈ E(HB) if
• a ∈ E(H) and b ∈ h(a)
• b ∈ E(H) and a ∈ t(b)

Remark

HB
∼= H

Example
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E = ({1, 2, 3}, {4, 5, 6})
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Species/Reaction Digraphs



Definition

The complete bipartite digraph K(V1, V2):

- e ∈ E(K(V1, V2)) ⇔ h(e) ∈ V1, t(e) ∈ V2

- V (K(V1, V2)) = V1 ∪ V2

Example
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Definition

The species / substrate / underlying digraph HS of a dihypergraph
H has the vertex set V (H) = V (HS) and e = (vi, vj) is an
element of E(HS) iff there exists an r ∈ E(H) for which holds
vi ∈ t(r), vj ∈ h(r).

Example
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Definition

The reaction digraph HR of H ∈ H is the digraph with the vertex
set V (HR) = E(H). e = (ri, rj) is an element of E(HR) iff there
are ri, rj ∈ E(H) with h(ri) ∩ t(rj) 6= ∅.

Example
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Definition

We assume S and R are digraphs.
⊖(H) = (HS , HR)
⊕(S, R) = S ⊕ R = {H| ⊖ (H) = (S, HR), HR

∼= R}

Remark

For every (a, b) ∈ E(HS) exists only one e ∈ E(H) with a ∈ t(e)
and b ∈ h(e)
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Example
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Example
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Remark

Given (S, R). If the minimal number of (maximal) complete
bipartite disubgraph in S is greater than the number of vertices
(reactions) in R then follows S ⊕ R = ∅.

Example

• number of complete bipartite digraphs is 3

• number of reactions is 2
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Remark

Every dihypergraph determines a unique species and a unique
reaction digraph but a species and reaction digraph together do
not always determine a unique dihypergraph.

Example
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Example
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Corollary

S, R are digraphs. If R ∼= LS ⇒ |S ⊕ R| ≥ 1 and S ∈ S ⊕ R.

Example
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Definition

A dipath in a directed hypergraph H from a vertex u to vertex v is
an alternating sequence of vertices and hyperarcs
x = (u = v0, e1, v1, e2, v2, . . . , ek, vk = v) such that for
1 ≤ i, j ≤ k holds:

- vi−1 ∈ t(ei) and vi ∈ h(ei)

- ei 6= ej for |i − j| < k

- vi 6= vj for |i − j| < k

A dipath is a dicycle if also u = v.
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Remark

Relations between cycles and paths:

- Let C1, C2 be cycles in digraphs of same length, C1 ⊕ C2 = C1

- Let P1, P2 be paths in digraphs with |E(P1)| = n and
|E(P2)| = n − 1, P1 ⊕ P2 = P1

Example
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Definition

U is the mapping U : D → U which is given by
U(V (G), E(G)) = (V (G), E(G)) such that every arc (a, b) ∈ E(G)
will be mapped to {a, b} ∈ E(G).

Example

G and U(G)
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Remark

H ∈ H. If there is no isolated node in U(HR) then every arc in H

is contained in a dipath of length 2.

Corollary

H ∈ H. If U(HS) is connected and U(HR) is the union of at least
two vertex-disjoint cycles, then exists no dicycle in H.

Example
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Corollary

H is a dihypergraph. If U(HS) is connected and U(HR) is the
vertex-disjoint union of cycles and cycle-free connected
components, then follows H is dicycle-free.

Example
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Corollary

Let H be a hypergraph such that U(HS) is connected and U(HR)
is the union of k vertex-disjoint graphs {G1, . . . , Gk}. There is no
dicycle in H with arc set E(Gi), 1 ≤ i ≤ k.

Example

Remark

n-cycles can occur in a species graph S such that there are no
n-cycles in the reaction graph R and S ⊕ R 6= ∅.
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Example

S1

R1
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Example

{H} = S1 ⊕ R1

DiHypergraphs Philipp-Jens Ostermeier 26/44



Example

S2

R2
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Example

{H} = S2 ⊕ R2
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Example

S3 and R3
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Example

{H} = S3 ⊕ R3
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Example

S4 and R4
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{H1, H2} = S4 ⊕ R4
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Example

S5 and R5

DiHypergraphs Philipp-Jens Ostermeier 33/44



Example

{H1, H2} = S5 ⊕ R5
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Example

S6 and R6
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Example

{H} = S6 ⊕ R6
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Example

S7 and R7

{H} = S7 ⊕ R7
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R
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Example

S and R
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Example

{H} = S ⊕ R
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{H} = S ⊕ R
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Thanks for your attention!!!
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