DiHypergraphs

Philipp-Jens Ostermeier

Bled

02/17/2012

1 Dihypergraphs

2 Species/Reaction Digraphs

3 Thanks for your attention!!!

Dihypergraphs

A (weighted) hypergraph H = (V(H), E(H)) consists of a:

- vertex set V(H): a set of elements, called vertices
- edge set E(H): a set of (multi)sets on V(H)

A directed hypergraph / dihypergraph H is $(V(H), \mathcal{E}(H))$ where:

- V(H) is a set of elements, called *vertices*
- $\mathcal{E}(H)$ is a set of ordered pairs e = (t(e), h(e)) of (multi)sets t(e), h(e) on V(H), called *hyperarcs* / *reactions*

A directed hypergraph / dihypergraph H is $(V(H), \mathcal{E}(H))$ where:

- V(H) is a set of elements, called *vertices*
- $\mathcal{E}(H)$ is a set of ordered pairs e=(t(e),h(e)) of multisets t(e),h(e) on V(H), called hyperarcs / reactions
- t(e) is the tail of e

A directed hypergraph / dihypergraph H is $(V(H), \mathcal{E}(H))$ where:

- V(H) is a set of elements, called *vertices*
- $\mathcal{E}(H)$ is a set of ordered pairs e = (t(e), h(e)) of multisets t(e), h(e) on V(H), called *hyperarcs / reactions*
- h(e) is the head of e

A homomorphism from H_1 into H_2 is a mapping $\varphi:V(H_1)\to V(H_2)$ such that:

• $\varphi(E)$ is an arc in H_2 whenever E is an arc in H_1 with the property that $\varphi(t(E)) = t(\varphi(E))$ and $\varphi(h(E)) = h(\varphi(E))$

A mapping $\varphi: V(H_1) \rightarrow V(H_2)$ is a weak homomorphism if

arcs are mapped either on arcs or on vertices

A bijective homomorphism φ whose inverse function is also a homomorphism is called an *isomorphism*.

The bipartite digraph H_B of the dihypergraph H:

- $V(H_B) = V(H) \cup \mathcal{E}(H)$
- $(a,b) \in \mathcal{E}(H_B)$ if
 - $a \in \mathcal{E}(H)$ and $b \in h(a)$
 - $b \in \mathcal{E}(H)$ and $a \in t(b)$

Remark

 $H_B \cong H$

Species/Reaction Digraphs

The complete bipartite digraph $K(V_1, V_2)$:

- $e \in \mathcal{E}(K(V_1, V_2)) \Leftrightarrow h(e) \in V_1, t(e) \in V_2$
- $V(K(V_1, V_2)) = V_1 \cup V_2$

The species / substrate / underlying digraph H_S of a dihypergraph H has the vertex set $V(H) = V(H_S)$ and $e = (v_i, v_j)$ is an element of $\mathcal{E}(H_S)$ iff there exists an $r \in \mathcal{E}(H)$ for which holds $v_i \in t(r), v_j \in h(r)$.

The reaction digraph H_R of $H \in \mathcal{H}$ is the digraph with the vertex set $V(H_R) = \mathcal{E}(H)$. $e = (r_i, r_j)$ is an element of $\mathcal{E}(H_R)$ iff there are $r_i, r_j \in \mathcal{E}(H)$ with $h(r_i) \cap t(r_j) \neq \emptyset$.

We assume S and R are digraphs. $\ominus(H) = (H_S, H_R)$ $\oplus(S, R) = S \oplus R = \{H | \ominus (H) = (S, H_R), H_R \cong R\}$

Remark

For every $(a,b) \in E(H_S)$ exists only one $e \in \mathcal{E}(H)$ with $a \in t(e)$ and $b \in h(e)$

 H_S and H_R

Remark

Given (S, R). If the minimal number of (maximal) complete bipartite disubgraph in S is greater than the number of vertices (reactions) in R then follows $S \oplus R = \emptyset$.

- number of complete bipartite digraphs is 3
- number of reactions is 2

Remark

Every dihypergraph determines a unique species and a unique reaction digraph but a species and reaction digraph together do not always determine a unique dihypergraph.

two elements of $S \oplus R$

Corollary

S, R are digraphs. If $R \cong LS \Rightarrow |S \oplus R| \ge 1$ and $S \in S \oplus R$.

A dipath in a directed hypergraph H from a vertex u to vertex v is an alternating sequence of vertices and hyperarcs $x = (u = v_0, e_1, v_1, e_2, v_2, \dots, e_k, v_k = v) \text{ such that for } 1 \leq i, j \leq k \text{ holds:}$

- $v_{i-1} \in t(e_i)$ and $v_i \in h(e_i)$
- $e_i \neq e_j$ for |i j| < k
- $v_i \neq v_j$ for |i j| < k

A dipath is a *dicycle* if also u = v.

Remark

Relations between cycles and paths:

- Let C_1, C_2 be cycles in digraphs of same length, $C_1 \oplus C_2 = C_1$
- Let P_1, P_2 be paths in digraphs with $|\mathcal{E}(P_1)| = n$ and $|\mathcal{E}(P_2)| = n 1$, $P_1 \oplus P_2 = P_1$

U is the mapping $U : \mathcal{D} \to \mathcal{U}$ which is given by $U(V(G), \mathcal{E}(G)) = (V(G), E(G))$ such that every arc $(a, b) \in \mathcal{E}(G)$ will be mapped to $\{a, b\} \in E(G)$.

Remark

 $H \in \mathcal{H}$. If there is no isolated node in $U(H_R)$ then every arc in H is contained in a dipath of length 2.

Corollary

 $H \in \mathcal{H}$. If $U(H_S)$ is connected and $U(H_R)$ is the union of at least two vertex-disjoint cycles, then exists no dicycle in H.

Corollary

H is a dihypergraph. If $U(H_S)$ is connected and $U(H_R)$ is the vertex-disjoint union of cycles and cycle-free connected components, then follows H is dicycle-free.

Corollary

Let H be a hypergraph such that $U(H_S)$ is connected and $U(H_R)$ is the union of k vertex-disjoint graphs $\{G_1, \ldots, G_k\}$. There is no dicycle in H with arc set $\mathcal{E}(G_i)$, $1 \le i \le k$.

Remark

n-cycles can occur in a species graph S such that there are no *n*-cycles in the reaction graph R and $S \oplus R \neq \emptyset$.

$$\{H_1, H_2\} = S_4 \oplus R_4$$

S_6 and R_6

$$\{H\} = S_6 \oplus R_6$$

$$S \text{ and } R$$

Thanks for your attention!!!

Thanks to Jürgen, Peter F., Pierre-Yves, Lydia, Christoph, Marc, Alex, Nick, Bruno, Daniel, Steve, Börni, Abdullah,.....!