## Leontis Westhof Notation for RNA-Protein Complexes?

Axel Wintsche

Computational EvoDevo Leipzig

27th TBI Winterseminar in Bled

| Motivation |                | Methods | Results | Outlook |
|------------|----------------|---------|---------|---------|
| Obiective  | and Motivation | I       |         |         |

- RNA molecules present a vital part of life
- Secondary structure vs. tertiary interactions
- Growing number of 3D RNA structures enables systematic investigation of tertiary interactions
- Led to catalogs of non-WC base pairs and definition of recurring 3D modules [1, 2, 3]
- How do nucleotides interact with amino acids?

| Motivation | Background   | Methods | Results | Outlook |
|------------|--------------|---------|---------|---------|
|            | <br><u>.</u> |         |         |         |

## Classification of base pairs

Base pair classification by Saenger in '84 [4]



taken from http://ndbserver.rutgers.edu/atlas/legends/saenger.html

#### Axel Wintsche

 Motivation
 Background
 Methods
 Results
 Outlook

 Classification of base pairs (cont.)

Leontis Westhof (LW) notation defines 3 edges [2]



• Other bp classifications exists like in Lee and Gutell, 2004 [3]

| Motivation | Background | Methods | Results | Outlook |
|------------|------------|---------|---------|---------|
| Hydrogen   | bonding    |         |         |         |

- Base pairs are established via hydrogen bonding (H-bonds)
- H-bonds contribute to stability of 3D fold
- Electronegative atoms form donor/acceptor pairs

| Motivation                    |            |            | Ba         | ackgro     | und       |            |            |            | lethod     |            |            |            | Resi       | ılts       |            |            | Οι         |            |
|-------------------------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Hydrog                        | gen        | bo         | ond        | ing        |           |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <b>Period</b><br>(horizontal) |            |            |            |            |           |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 1                             | Н<br>2.20  |            |            |            |           |            |            |            |            |            |            |            |            |            |            |            |            | He         |
| 2                             | Li<br>0.98 | Be<br>1.57 |            |            |           |            |            |            |            |            |            |            | В<br>2.04  | C<br>2.55  | N<br>3.04  | 0<br>3.44  | F<br>3.98  | Ne         |
| 3                             | Na<br>0.93 | Mg<br>1.31 |            |            |           |            |            |            |            |            |            |            | Al<br>1.61 | Si<br>1.90 | Р<br>2.19  | S<br>2.58  | Cl<br>3.16 | Ar         |
| 4                             | K<br>0.82  | Ca<br>1.00 | Sc<br>1.36 | Ті<br>1.54 | V<br>1.63 | Cr<br>1.66 | Mn<br>1.55 | Fe<br>1.83 | Co<br>1.88 | Ni<br>1.91 | Cu<br>1.90 | Zn<br>1.65 | Ga<br>1.81 | Ge<br>2.01 | As<br>2.18 | Se<br>2.55 | Br<br>2.96 | Kr<br>3.00 |
| 5                             | Rb<br>0.82 | Sr<br>0.95 | Y<br>1.22  | Zr<br>1.33 | Nb<br>1.6 | Mo<br>2.16 | Тс<br>1.9  | Ru<br>2.2  | Rh<br>2.28 | Pd<br>2.20 | Ag<br>1.93 | Cd<br>1.69 | In<br>1.78 | Sn<br>1.96 | Sb<br>2.05 | Те<br>2.1  | I<br>2.66  | Xe<br>2.60 |
| 6                             | Cs<br>0.79 | Ba<br>0.89 | *          | Hf<br>1.3  | Та<br>1.5 | W<br>2.36  | Re<br>1.9  | Os<br>2.2  | Ir<br>2.20 | Pt<br>2.28 | Au<br>2.54 | Hg<br>2.00 | Tl<br>1.62 | Pb<br>2.33 | Bi<br>2.02 | Po<br>2.0  | At<br>2.2  | Rn<br>2.2  |
| 7                             | Fr<br>0.7  | Ra<br>0.9  | **         | Rf         | Db        | Sg         | Bh         | Hs         | Mt         | Ds         | Rg         | Cn         | Uut        | Uuq        | Uup        | Uuh        | Uus        | Uuo        |

Axel Wintsche

| Motivation | Background | Methods | Results | Outlook |
|------------|------------|---------|---------|---------|
| Hydrogen b | onding     |         |         |         |

- Base pairs are established via hydrogen bonding (H-bonds)
- H-bonds contribute to stability of 3D fold
- Electronegative atoms form donor/acceptor pairs

## H-atoms missing in most 3D structures

| Motivation | Background          | Methods         | Results | Outlook |
|------------|---------------------|-----------------|---------|---------|
| Dataset    |                     |                 |         |         |
| ∎ 3D       | Structures from Pro | otein Data Bank |         |         |
|            | Polymer Ty          | ype             |         |         |
|            |                     |                 |         |         |





Axel Wintsche

Computational EvoDevo Leipzig

| Motivation | Background          | Methods     | Results | Outlook |
|------------|---------------------|-------------|---------|---------|
| Dataset    |                     |             |         |         |
| ■ 3D Struc | ctures from Proteir | n Data Bank |         |         |

Polymer Type



60.4% Protein/DNA (2181 hits) 32.8% Protein/RNA (1184 hits) 2.8% Protein/DNA/RNA (101 hits) 2.8% DNA-RNA Hybrid (100 hits) 1.2% DNA/RNA (43 hits)

#### Axel Wintsche

Computational EvoDevo Leipzig

## Predicting non-canonical base pairs

#### Computational identification of base pairs

- Reference structures give empirical values for
- 1 distances between (donor/acceptor) atoms
- 2 angles between planes of bases

| Motivation | Background | Methods | Results | Outlook |
|------------|------------|---------|---------|---------|
|            |            |         |         |         |
|            |            |         |         |         |
|            |            |         |         |         |
|            |            |         |         |         |

Characterizing the geometry of nucleic acids interacting with proteins, obviously, brings up a whole new host of geometrical issues.

Olson et al., 2001 [5]

| Motivation |         | Methods | Results | Outlook |
|------------|---------|---------|---------|---------|
| Predicting | H-bonds |         |         |         |

#### Scanning for putative H-bonds

- Donor/acceptor atoms: N, O, [C, S, Se]
- Minimum euklidean distance to find putative atom pair
- Distance cutoff ( $d \leq 3$  angstrom)
- Penalty for atoms from adjacent nucleotides

|      | Methods    | Results            | Outlook                    |
|------|------------|--------------------|----------------------------|
| anda |            |                    |                            |
|      | Background | Background Methods | Background Methods Results |

#### Scanning for putative H-bonds

- Donor/acceptor atoms: N, O, [C, S, Se]
- Minimum euklidean distance to find putative atom pair
- Distance cutoff ( $d \leq 3$  angstrom)
- Penalty for atoms from adjacent nucleotides

### Recap: H atoms missing

| Motivation | Methods | Results | Outlook |
|------------|---------|---------|---------|
|            |         |         |         |

## H-bond donor/acceptor atoms



| Motivation | Methods | Results | Outlook |
|------------|---------|---------|---------|
|            |         |         |         |

## H-bond donor/acceptor atoms



Axel Wintsche

| Motivation     |              | Methods | Results | Outlook |
|----------------|--------------|---------|---------|---------|
| Effect of miss | sing H atoms |         |         |         |

- Use all structures that contain H atoms
- Treat them as:
  - a) containing no H atoms
  - b) containing H atoms
- Compare predicted H-bonds

| Motivation |                | Methods | Results | Outlook |
|------------|----------------|---------|---------|---------|
| Effect of  | missing H atom | S       |         |         |
| Effect of  | missing H atom | S       |         |         |

- Use all structures that contain H atoms
- Treat them as:
  - a) containing no H atoms
  - b) containing H atoms
- Compare predicted H-bonds

## Calculate number of equal and different predictions b

**X-H** type: add 1 to  $\begin{cases} equal & \text{if } b(X) = b(H) \\ different & \text{if } b(X) \neq b(H) \end{cases}$ 

| Motivation    |               | Methods | Results | Outlook |
|---------------|---------------|---------|---------|---------|
| Effect of mis | ssing H atoms |         |         |         |

- Use all structures that contain H atoms
- Treat them as:
  - a) containing no H atoms
  - b) containing H atoms
- Compare predicted H-bonds

## Calculate number of equal and different predictions b

**X-H** type: add 1 to 
$$\begin{cases} equal & \text{if } b(X) = b(H) \\ different & \text{if } b(X) \neq b(H) \end{cases}$$
  
**H**<sub>1</sub>-**X-H**<sub>2</sub> type: add 1 to 
$$\begin{cases} equal & \text{if } b(X) = b(H_i) \\ different & \text{if } b(X) \neq b(H_i) \\ different & \text{if } b(X) \neq b(H_i) \end{cases}$$

| Motivation     |                 | Methods | Results | Outlook |
|----------------|-----------------|---------|---------|---------|
| Quality of H k | oond prediction |         |         |         |

## Number of equal and different predictions

| type            | all  | equal | %    | different | %    |
|-----------------|------|-------|------|-----------|------|
| X-H             | 4021 | 3499  | 0.87 | 522       | 0.13 |
| $H_1$ -X- $H_2$ | 2758 | 1600  | 0.58 | 1158      | 0.42 |

| Motivation  |          | Methods | Results | Outlook |
|-------------|----------|---------|---------|---------|
| H-bond dist | ribution |         |         |         |

Relative frequency of having an H-bond with another nucleotide or amino acid

| )2    |
|-------|
| 13    |
| J4/O4 |
| 5     |
|       |
| )2'   |
| )5'   |
| )     |
| )P1   |
| )P2   |
|       |



### Nucleotide-Nucleotide

Nucleotide-Amino Acid



#### Axel Wintsche

Computational EvoDevo Leipzig

| Motivation | Methods | Results | Outlook |
|------------|---------|---------|---------|
|            |         |         |         |
| Outlook    |         |         |         |

- More sophisticated model for H-bonds
- Redundancy/Bias of structures in PDB
- Definitions of pair and stacking interactions
- Empirical rules for nucleotide amino acid interactions
- Do we see all possible interactions in the PDB data?

# Acknowledgements

- Sonja
- Peter
- Christian Otto
- Winterseminar organizers

## Thank you for your attention!





Gefördert aus Mitteln der Europäischen Union

| Motivation   | Methods | Results | Outlook |
|--------------|---------|---------|---------|
| References I |         |         |         |

- N.B. Leontis and E. Westhof.
  - Analysis of rna motifs.

Current opinion in structural biology, 13(3):300–308, 2003.

N.B. Leontis and E. Westhof.

Geometric nomenclature and classification of rna base pairs. *Rna*, 7(4):499–512, 2001.

J.C. Lee and R.R. Gutell.

Diversity of base-pair conformations and their occurrence in rrna structure and rna structural motifs.

Journal of molecular biology, 344(5):1225–1249, 2004.

| Motivation    | Background | Methods | Results | Outlook |
|---------------|------------|---------|---------|---------|
| References II |            |         |         |         |
| 📄 W. Saer     | iger.      |         |         |         |

- vv. Jaenger.
  - Principles of nucleic acid structure. Springer-Verlag New York, 1984.
- W.K. Olson, M. Bansal, S.K. Burley, R.E. Dickerson, M. Gerstein, S.C. Harvey, U. Heinemann, X.J. Lu, S. Neidle, Z. Shakked, et al.

A standard reference frame for the description of nucleic acid base-pair geometry.

Journal of molecular biology, 313(1):229–237, 2001.