Canonicalization of Data Structures

Jakob Lykke Andersen

Research Group Bioinformatics and Computational Biology
Faculty of Computer Science
University of Vienna

Institute for Theoretical Chemistry
University of Vienna

Bled, February 2018

1/24

Introduction

Model

A mathematical object in some class M.

Example: a rational number, %

2/24

Introduction

Model
A mathematical object in some class M.
3

Example: a rational number, 3

Representation
An object of an abstract data type R used to store the model.
Example: a pair of integers, (3,4)

2/24

Introduction

Model
A mathematical object in some class M.
3

Example: a rational number, 3

Representation
An object of an abstract data type R used to store the model.
Example: a pair of integers, (3,4)

Implementation
An object of a concrete type used to store the model.
Example: std::pair<int, int>(3, 4)

2/24

Introduction
Model
A mathematical object in some class M.

Example: a rational number, 3 1

Representation
An object of an abstract data type R used to store the model.
Example: a pair of integers, (3,4)

Implementation
An object of a concrete type used to store the model.
Example: std::pair<int, int>(3, 4)

What if a model has multiple representations?

Example
M = Q, the rational numbers
R= Z X Z pairs of integers

But Z = 15, so (2,5) should be considered “equal” to (4, 10).
Notat|o (2,5) = (4,10) (“isomorphic to”)
(2,5) = (2,5) (“representationally equal to")

2/24

Canonicalization

Given a representation G € R find a new representation C(G),
such that:

> It represents the same model: C(G) = G

» All canonicalized isomorphic representations are the same:
VG'€R,G'=G: C(G)=C(G)

How do we specify and implement canonicalization in practice?

3/24

Representations
Besides the = operation we need:
> A class of operations, OP, that do not change the model.

r
» A total order < among (isomorphic) representations.

Fraction Example:
Op:

2
» Dividing with a common factor. (4’210) = <%, 7) = (4,10)

» (and compositions of those operations)
r

<:
» Prefer both positive over both negative: (2, 5) < (—2,-5)

> Prefer (neg., pos.) over (pos., neg.): (—2,5) < (2,—5)
> Prefer smaIIer (absolute) numbers (lexicographically):

(2,5) < (4 10), (1,2) < (2 3)

4/24

Canonicalization
Given G € R:
» Find op € OP that minimizes op(G), wrt. <
» Return op(G) as the canonical form.

Fraction Example:
Given (a, b),
» Find f = GCD(|a|, |b])
» If b<0: let op=Div(f)oMuL(-1)
else: let op = D1v(f)
» Return op((a, b))

In Practice:
» Probably return op. The user can compute op(G) if needed.

> < may be implicitly defined by the canonicalization algorithm.

5/24

Example: Circular RNA (circRNA) /U/ \A\
Representation: A sequence of symbols A, C, G, U. G\ (\ /G
Example: AGUGCAGUGC A U
~ -

Operations: ROTATE(i), for i € Z
Example: ROTATE(2, AGUGCAGUGC) = UGCAGUGCAG

r r
= and <: component-wise and lexicographic comparison

Canonicalization: find the lexicographically smallest rotation
(can be done in linear time)

6/24

Example: Circular RNA (circRNA) /U/ \A\
Representation: A sequence of symbols A, C, G, U. G\ (\ /G
Example: AGUGCAGUGC A U
~ -

Operations: ROTATE(i), for i € Z
Example: ROTATE(2, AGUGCAGUGC) = UGCAGUGCAG

r r
= and <: component-wise and lexicographic comparison

Canonicalization: find the lexicographically smallest rotation
(can be done in linear time)

Symmetry Discovery: op is a symmetry if op(G) = G
Example: ROTATE(5) is a symmetry of AGUGCAGUGC, because
RoTATE(5, AGUGCAGUGC) = AGUGCAGUGC
= AGUGCAGUGC
ROTATE(0) is a trivial symmetry

6/24

Example: Double Stranded RNA

Representation:

A pair of sequences of symbols A, C, G, U, of equal length.

. AGUGC
Example: {jCacc

Operations: REVERSE 0 SWAP
, AGUGC) _ GCACU
Example: (REVERSE o SWAP) (UCACG) = CCUCA

r r
= and <: component-wise and lexicographic comparison

_ AGUGC " GCACU
Example: jcace < ccuca

r
Canonicalization: take the <-smallest of the two possibilities

7/24

Example: Double Stranded RNA, Only Binding Structure
Swapping all A with U and G with C preserves structure.

Representation:
A pair of sequences of symbols A, C, G, U, of equal length.

Operations: REVERSE o SWAP and INVERT (= SWAP)

, AGUGC) __ [UCACG
Example: INVERT (UCACG) = (AGUGC)

r r
= and <: component-wise and lexicographic comparison

.
Canonicalization: take the <-smallest of the four possibilities

8/24

Example: Anti-Parallel Strong Traces, Take 1
Model: A graph G (representing a polygon), with a closed walk

visiting all edges twice and (more constraints).

Representation: A sequence of vertices t = (vj, Vi, . .

Operations: REVERSE(t), ROTATE(/, t), and

.y V,'2m).

PERMUTE("y, t) for any automorphism (i.e., symmetry) v of G.

r r
= and <: component-wise and lexicographic comparison

r
Canonicalization: take the <-smallest
(not trivial to do efficiently)

[Basi¢ et al., MATCH, 2017]

0

Ay

Z

via

N

3

[Hellmuth et al., ALENEX, 2018]

1

9/24

Example: Anti-Parallel Strong Traces, Take 1

Model: A graph G (representing a polygon), with a closed walk
visiting all edges twice and (more constraints).

Representation: A sequence of vertices t = (vj,, Vi, - . -, Viy,,)-

Operations: REVERSE(t), ROTATE(/, t), and
PERMUTE("y, t) for any automorphism (i.e., symmetry) v of G.

r r
= and <: component-wise and lexicographic comparison

r
Canonicalization: take the <-smallest
(not trivial to do efficiently)

But what about the graph?
What is a vertex?
What is the representation?

[Basi¢ et al., MATCH, 2017]

0 N 2
>
<
4
Aly Ay
y <
[a »- N
3 v 1

[Hellmuth et al., ALENEX, 2018]

9/24

Example: Graphs, Part 1
Model: A graph G = (V, E).

Representation: An adjacency list which implicitly assigns
1,2,...,nto V.

Operations: PERMUTE(7) for any permutation of 1,2,...,n.

r r
= and <: component-wise and lexicographic comparison

Canonicalization: (more on this later)

10/24

Graph Representation and Graph Permutation
G=(V,E) V={12...,n

Isomorphic graphs, different representations:

1 2 1
4 1 4
3 3 2
2 4 3
Gy G G,
Adjacency list representation (with sorted neighbour lists):
1:4 1:2,3,4 1:4
2:3,4 2:1 2:3,4
3:2,4 3:1,4 3:2,4
4:1,2,3 4:1,3 4:1,2,3

11/24

Graph Representation and Graph Permutation
G=(V,E) V={12...,n

Isomorphic graphs, different representations:

2 1
™ =(124)(3) T =(1234)
1T 7 4
3
4 3
G G' =G =Gy G
Adjacency list representation (with sorted neighbour lists):
1:4 1:2,3,4 1:4
2:3,4 2:1 2:3,4
3:2,4 3:1,4 3:2,4
4:1,2,3 4:1,3 4:1,2

w

11/24

Example: Anti-Parallel Strong Traces, Take 2

Model: A graph G (representing a polygon), with a closed walk
visiting all edges twice and (more constraints).

Representation: An adjacency list, and a sequence of integers
t = (Vigy Vigy -+ s Viy,)
Operations:
» REVERSE(t)
ROTATE(/, t)
PERMUTE(~, t) for any automorphism ~y of G.

v

v

» PERMUTE(", t, G) for any permutation « of V.

r r
= and <: component-wise and lexicographic comparison

r
Canonicalization: take the <-smallest

[Bagi¢ et al., MATCH, 2017]
12/24

Example: Anti-Parallel Strong Traces, Take 3

Model: A graph G (representing a polygon), with a closed walk
visiting all edges twice and (more constraints).

Representation: An adjacency list, and a sequence of integers
representing a gap vector g = (al, an,. .. a2m).

0 2

Ay

via

3 1
t=1(0,2,1,4,2,0,3,4,1,3,0,4,3,1,2,4)
g =(5,3,6,4,10,5,3,4,5,3,6,4,10,5,3,4)

[Hellmuth et al., ALENEX, 2018]

13/24

Example: Anti-Parallel Strong Traces, Take 3

Model: A graph G (representing a polygon), with a closed walk
visiting all edges twice and (more constraints).

Representation: An adjacency list, and a sequence of integers
representing a gap vector g = (al, an,. .. a2m).

Operations:
» ROTATE(/, g)
» MAKEGAP o REVERSE o MAKETRACE

r r
= and <: component-wise and lexicographic comparison

. r . -
Canonicalization: find the <-smallest rotation of g and its reverse.

[Hellmuth et al., ALENEX, 2018]
13/24

Example: Graphs, Continued
Model: A graph G = (V, E).

Representation: An adjacency list which implicitly assigns
1,2,...,nto V.

Operations: PERMUTE(7) for any permutation of 1,2,...,n.

r r
= and <: component-wise and lexicographic comparison

Computational Complexity: exp (O (v/nlogn))
Brute-Force Algorithm:
1. Construct G” for all permutations v € S,,.

r
2. Select the "best” one (for example the <-smallest).

[Babai and Luks, STOC, 1983]

[Babai, Handbook of Combinatorics, 1996]
14/24

Existing Tools for Canonicalization in Practice
Published Tools: nauty, Traces, Bliss (and Saucy and Conauto)

All based on the idea of individualization-refinement.
Different sets of heuristics and variations.

Many more algorithm variations are possible.

Which is the best? for a specific class of graphs?
What if the graph has vertex and edge labels?

vV VY V. vV VY

What if those labels are “complicated”? (e.g., stereo-info)

[McKay, Congressus Numerantium, 1981] [McKay and Piperno, J. Symb. Comp.,
2014] [Junttila and Kaski, ALENEX, 2007] [Darga et al., DAC, 2008] [Lépez-Presa

and Ferndndez Anta, SEA, 2009]
15/24

Existing Tools for Canonicalization in Practice
Published Tools: nauty, Traces, Bliss (and Saucy and Conauto)

All based on the idea of individualization-refinement.
Different sets of heuristics and variations.

Many more algorithm variations are possible.

Which is the best? for a specific class of graphs?

What if the graph has vertex and edge labels?

What if those labels are “complicated”? (e.g., stereo-info)

vV VY V. vV VY

GraphCanon: [Andersen and Merkle, ALENEX, 2018]

» A generic C++ library for canonization algorithms.
Algorithm variations implementable as individual plugins.
Allows direct comparison of algorithm variations.

Lower barrier of entry for implementing new ideas.

vV v VY

Generality wrt. vertex/edge attributes.

[McKay, Congressus Numerantium, 1981] [McKay and Piperno, J. Symb. Comp.,
2014] [Junttila and Kaski, ALENEX, 2007] [Darga et al., DAC, 2008] [Lépez-Presa

and Ferndndez Anta, SEA, 2009]
15/24

Individualization-Refinement Paradigm
Initially: all vertices are unordered (same colour).

[123456780910]

16/24

Individualization-Refinement Paradigm

Refine the ordering by propagation of “cheap” local information.
Example: sort and partition by degree (1D Weisfeiler-Leman).

[123456780910] 1234567809 10]

16/24

Individualization-Refinement Paradigm

Refine the ordering by propagation of “cheap” local information.
Example: sort and partition by degree (1D Weisfeiler-Leman).

[12(345678910] [12]78910[345 6]

16/24

Individualization-Refinement Paradigm
Let this be the root of a search tree, and select a colour.
For each vertex of that colour;
create a child with this vertex given a unique new colour.

[112]78910|345 6] [2]11]78910|3456]

17/24

Individualization-Refinement Paradigm

mag =[11218]9]7]10]5]6]3]4] Colour order mae =[11219]8[10(7]6]5]3]4]

18/24

Algorithm Variation

Categories

> Tree traversal
Target cell selection
Refinement
Pruning with automorphisms
Detection of implicit automorphisms
Node invariants

vV VvV VvYyVvyy

GraphCanon: A common extension infrastructure.
Each variation implemented as a visitor:

» A set of callback methods for events of interest.

» Additional data structures instantiated
> per search tree
> per tree node

19/24

Benchmarks

44 graph collections, with 4,715 graphs in total.
Time limit: 1000s

Memory limit: 8 GB

Repetitions: 5

Algorithm configurations: {BFSExp, DFS} x {F,FL, FLM}

Compute nodes with two Intel E5-2680v3 CPUs (24 cores)
Compute node hours: approx. 12,000

BFSExp with FLM is often best.

CFI-Rigid: [Neuen and Schweitzer, ESA, 2017]
nauty, Traces: [http://pallini.di.uniromal.it/Graphs.html]
Bliss: [http://www.tcs.hut.fi/Software/bliss/benchmarks/index.shtml]
Conauto: [https://sites.google.com /site/giconauto/home/benchmarks]
Saucy: [http://visicad.eecs.umich.edu/BK/SAUCY/]
20/24

Tree Traversal and Target Cell Selector

4
OOM 10 = ‘ ‘ ‘ ‘><><‘><><‘><><‘><><‘><><‘><><‘><><>‘<><>‘< =
ooT Lo XXXXXXBEEEOEOOOOOO0 |
E _ o <
% x) x < é
x x O x = B
_ X _
x SO xx §
Z « x
X ~ x = E
O X E|
Z " £ E
x x© X REE- S A
o XEk =7 | kkkkH 3
10*25 (XN o o S S i S S T B O~
| | | | | | | | | | | |
O 5 2 3 G S Gy o S G L L L
n 00 00 00 00 00 00 00 00 00 o 200 900 0900

mz-aug2, Augmented Miyazaki Graphs

xnauty (d)
I Traces
» BFSExp-F

DFS-FL

—nauty (s)
= Bliss
~ BFSExp-FL

I BFSExp-FLM o DFS-F

~ DFS-FLM

Similar characteristics observed for other Miyazaki graphs.

21/24

Tree Traversal and Target Cell Selector

104 E!
OOM —
ooT 3 =
10 =
102 <
-z]
g 10t ¢ * X E
= X X m|
= 100 ® E
F % E
101 Q* E
= L B
1072 R R AR R SR
O ¢ 2 S U S Gy o & G L
%% % % % % % % % g,
usr, Union of Strongly Regular Graphs
xnauty (d) —nauty (s)
I Traces = Bliss

«BFSExp-F - BFSExp-FL
| BFSExp-FLM 0 DFS-F
DFS-FL « DFS-FLM

22/24

CFI-Rigid

» 6 collections

> Designed to be the hard benchmarks.
» Expected to have very little symmetry.

Algorithm configurations:
{BFSExp, DFS} x {F,FL,FLM} x 2{PL.QT}

Col. Group Reduction

Best Algorithm

Invariants Matter FLM Sep. Max. Solved n

d3
z3
z2
r2
s2
t2

R*
B*
R* o B*

BFSExp-FLM
BFSExp-FLM

Bliss, nauty (s)

Bliss, nauty (s)

FLM, Bliss, nauty (s)
FLM, Bliss, nauty (s)

yes (any)
yes (any)
yes (any)
no
yes (PL or Q)
yes (PL or Q)

yes
yes
no
no
no
yes

3,600
3,780
2,992
1,584
2,496
1,056

23/24

CFI-Rigid

:: ?::: E::: ?::: ?::: E::: E:
|
*®

*®

*@ | X -

[*® 1x x

*@® ! x —

*3” % =

i) T
I

FX@ | Ixx—x —

@ || xe

*¥@ X0 =< Xy

[X@ 1O %« * — N

*@ 'O K —K

X= o OX 1= Ax—

- oWl e

| Ot | Xl

| G| X | x—

| @xx —¥

” xwaT

,

,

,

X Otk |
x @

*3” |

cfi-rigid-d3

—nauty (s)

x Bliss

xnauty (d)
I Traces

~ BFSExp-FL

« BFSExp-F

I BFSExp-FLM o DFS-F

+DFS-FL

~ DFS-FLM

23/24

Summary

» Canonicalization is a general principle.
> The concepts can be applied to any data structure.
» Brute-force: make it a graph.

GraphCanon:

» Generic algorithm framework.
(Relatively) easy to develop new variations.
Allows direct comparison of algorithmic ideas.
Competitive with established tools.
https://github.com/jakobandersen/graph_canon
Very easy to extract data for visualization:
https://jakobandersen.github.io/graph_canon_vis/
M@D v0.7 (to be released soon™™):

> Integrates GraphCanon .

» Finally, true canonical SMILES strings!

vV VvV VvYyVvYyy

» The automorphism group of molecules is now available.

(important for atom tracing)

24/24

https://github.com/jakobandersen/graph_canon
https://jakobandersen.github.io/graph_canon_vis/

Algorithm Variation

Tree Traversal:
» nauty, Bliss: depth-first (DFS)
» Traces: breadth-first with experimental paths (BFSExp)
» GraphCanon:
> Arbitrary traversals are possible.
Garbage collected search tree via reference counting.

Extensions must keep owning references to tree nodes.
Implemented: DFS, BFSExp, and a new hybrid (BFSExpM).

vV vVvYyy

Target Cell Selector:
» Many have been developed.
» Currently implemented:
» first (F)
» first largest (FL)
» first largest with maximum number of non-uniformly joined
neighbour cells (FLM)

25/24

Algorithm Variation
Node Invariants:
Totally ordered isomorphism-invariant information.
Invariants can be implemented independently.
A special visitor coordinates invariants.
Implemented:
» cell splitting positions (T), from Traces
» quotient graph values (Q), from nauty, Traces, Bliss
(but not hashed)
» partial leaf (PL), from Bliss (but not hashed)
Construct parts of the permuted graph earlier in the tree.

vvyyvyy

Refinement functions implemented:
» 1D Weisfeiler-Leman, generalized to exploit edge attributes.

» A function to handle degree-1 vertices.
H

T
\ _H
c—cC
H/|
0O—H

26/24

Algorithm Variation
Detection of implicit automorphisms:

» Sometimes we can detect/guess automorphisms at internal
tree nodes.
nauty: several special cases of ordered partitions.
Saucy: heuristics for guessing sparse automorphisms.
Traces: reportedly a generalization of the Saucy heuristics.
Implemented:

» Partitions where all cells have size 1 or 2.
» The degree-1 vertex refinement function.

vV vy VyYy

Pruning with automorphisms:
Calculation of orbits in stabilizers of the found automorphisms.
Stabilizer calculation:
» nauty (early versions) and Bliss: conservative (implemented)
» Traces and nauty (recent versions): randomized Schreier-Sims
The implemented visitor for automorphism pruning is generic with

respect to stabilizer implementation.
27/24

