Graph Canonicalization
and Algorithmic Engineering

Jakob L. Andersen, Thomas G. Hansen, and Daniel Merkle

Department of Mathematics and Computer Science,
University of Southern Denmark

February 2019

1/30

Graph Canonicalization

Quick Introduction

» Same graph can be represented in multiple ways
» Canonical form is a ‘standard’ representation

» Obvious applications

» Graph isomorphism
» Unique identifier for databases

2/30

Graph Canonicalization

Quick Introduction

> V={1,2,3,4,5}
> £={7)

[(1,2) (1.3) (24) (34) (35) || (1,3) (1.5) (2.3) (24) (35) |

3/30

Graph Canonicalization

» Molecules as graphs (Atoms as vertices, bonds as edges)
» Example: Leucine as a graph

Leucine

(Leu) o @
2/0)

O

4/30

Graph Canonicalization

A Amino Acids with Electrical Charged Side Chains

eve
e sz
posiive Negative
Agnine Tstdine T ToparicAad | GhamicAdd
It) 4 =3 a
A0 v 40 e A 40 40 e
o o o o
NH, NH, l, NH, NH,
s A e peicy
— O
Jomn o
N ANH
- NH N AR B
~ e
NH, gt
B. Amino Acids with Polar Uncharged Side Chains. C. Special Cases
s Tueomne Amngne Gumne | Guene Sdenosene Gicne Prone
Y ® 0 & 0
P

i e g gy g ek
o s O -y & pan O P m,o NH, °=<—mxo “NH
N, oy H, NH, B i
HO: .S.t(SeH
o p

D Amino Acds with Hydrophobic Side Chain
Alanine

Valine Isoleucine Leucine
e @

@

o

N,
N, s
s

kg Ao
o

NH,

o ©s
m;
R\

e @

N,
Methionine: Phenylillnlne Tyrosine Tryptophan
: k4 iy
. g n

g P
©:

NH, N,

2

iy

5/30

Graph Canonicalization

A Amino Acids with Electrcol Charged Side Chains

@rose
i cr

Oegure

o accucn
Posiive Negatve
rqnine stdine T TopaicAad | GuamicAdd
I b 4 e &
A B0 Ao 40 e A0 e
o o o o
NH, NH, l, NH, NH,
=3 e N M4
— O
Jo o
N NH
— A B
~ s
NH, g
8. Amin Acds i Pl Unchrged S Grns €. Specl s
Serne Threonine Amwsm Glutamine Gpeine selenocystene Gcine Froline
B ° Ty Te =g Ve
e g cen 0 PR ’““"fo
o o= .. s
'NH, NH, , NH, e’
SH
O
NH,
0. AninoAcks wiX Hyirophobie e Chan
Alimne Valine \selauclne Leucine Methionine PMnylihnlm mes\ne Tryptophan
vig e

N,

o2
o o o
.

"o

st

Graph Canonicalization

» InChl

» Unique identifier for each molecule
» Performs graph canonicalization as a sub-process

» InChl, problems as a computer scientist

» ‘Implementation is the specification’
P - experimental support of large molecules containing up to 32767 atoms was added; 1

YInChl 1.05, latest release as of now

https://iupac.org/new-inchi-software-release/
6/30

https://iupac.org/new-inchi-software-release/

Graph Canonicalization

» InChl

» Unique identifier for each molecule

» Performs graph canonicalization as a sub-process
» InChl, problems as a computer scientist

» ‘Implementation is the specification’
P - experimental support of large molecules containing up to 32767 atoms was added; 1

» InChl for large molecules

YInChl 1.05, latest release as of now

https://iupac.org/new-inchi-software-release/
6/30

https://iupac.org/new-inchi-software-release/

RECORD BREAKING INCHI-KEY

Sequence ldentifier: UTP10_KLULA
Sequence Length: 1774 amino acids
Molecule size: 28509 atoms

InChl Length: 119699 characters
InChl key: PHBRSEQMAKHFGD-ZBXWIJINSA-N
InChl Canonicalization Time: 73.2s
Canonical SMILES Length: 35408 chars
SMILES Canonicalization Time: 0.4s

7/30

Graph Canonicalization

» Amino acids are very tree-like in structure
» Canonicalizing trees is fast

» 73 seconds sounds slow, given above

8/30

Graph Canonicalization

» Amino acids are very tree-like in structure
» Canonicalizing trees is fast
» 73 seconds sounds slow, given above

» So what's going on in InChl?

8/30

Graph Canonicalization

Amino acids are very tree-like in structure

Canonicalizing trees is fast

>
>
» 73 seconds sounds slow, given above
» So what's going on in InChl?

>

Can we canonicalize faster?

8/30

Algorithmic Engineering

| created Euthyphro
A general-purpose graph canonicalization tool

Optimization focused on canonicalization of molecule graphs
Faster than InChl — 0.8 seconds for UTP10_KLULA

» Not entirely fair comparison, InChl does more
» However: We don’t believe the other parts should be slow

>
>
» Use and extend pre-existing graph canonicalization library
>
>

9/30

Algorithmic Engineering

Individualization-refinement

» Graph Canon library by Jakob L. Andersen, Daniel Merkle
» ‘Simple’ process

» Initial refinement: Divide vertices into cells

» Individualization: Split a cell, making a new cell of size 1

» All cells size 1: Candidate for canonical form

v

Explore all permutations of individualization

» Choose lexicographically smallest candidate

10/30

Algorithmic Engineering

Individualization-refinement

B

e =[11217110181916151413]

s

T =[11218191711015 1613 4] Colour order Ty =[1121918110176]5]3]4]

11/30

Algorithmic Engineering

Individualization-refinement

v

Initial refinements by invariants
» Degree, vertex label, edge label, degree of edge labels, etc.
» Use symmetries to prune branches from search tree

» Find symmetries by comparing candidates
» Find symmetries by inspecting graph

v

‘Manually’ split to skip deeper into search tree

v

Cell selector (First, First Largest, Smallest Non-Trivial, etc.)
Search strategy (DFS, BFS?)

v

2BFS uses a lot of memory. There exists variants that use less.
12/30

Algorithmic Engineering

» FASTA — Graph tooling made
» Initial Euthyphro implementation finished

» Acquired UTP10_KLULA as test dataset
» Also known as Q6CJI57

» Begin testing!

13/30

Algorithmic Engineering

150 of Q6CJI57, with 4 amino acid appended
AlOf
oL NNRRDUNNANARAARARAAD®

OACDEFGHIKLMNPQRSTVWY

Amino acid

14/30

Algorithmic Engineering

» Phenylalanine has significant impact
» Is it the cycle?

Phenylalanine
(Phe)
4.9

O
NH,

15/30

Algorithmic Engineering

» Phenylalanine has significant impact
» Is it the cycle?

» Tyrosine has a cycle and no problem.

Phenylalanine ;I'Tyr)osine
(Phe) %
@ 0 O
o
@]
o NH,
NH,
OH

15/30

Algorithmic Engineering
» Phenylalanine has significant impact
» Is it the cycle?

» Tyrosine has a cycle and no problem.
» SMILES | found online for Phenylalanine is Kekulé form!

Phenylalanine ;I'Tyr;nsine
(Phe) %

@ 4o @

o
@]
o NH,
NH,
OH

15/30

Algorithmic Engineering

Problem: Implementation assumed all edges were equal

Makes Kekulé appear symmetric without being so

>

>

» Makes canonicalization unsound

» Solution: Don't assume all edges are equal (oops)
>

Note: Different edge types only makes canonicalization faster

16/30

Algorithmic Engineering
Test 2

200 of Q6CJI57, with 15 amino acid appended

—_
T
|

0 r—r—rr—1rr—1r 717171177777 ""T""7T""T""T""T T "T"1
OACDEFGHIKLMNPQRSTVWY

Amino acid

17/30

Algorithmic Engineering

» Leucine and Valine have biggest impact
» Visual inspection shows symmetric tree-like structure

» The methyl groups are the symmetric part

Leucine Valine

(Leu) o (Val)

18/30

Algorithmic Engineering

» Consider the cells after initial refinement

» Naively: We must branch on both 12,13 to find they are
symmetric

» We can be smart — Degree 1 refiner

19/30

Algorithmic Engineering

Degree 1 refiner

» Consider: A cell has vertices of degree 1, and all have the
same neighbor

» They must be symmetric
» We can immediately split them

4
OO O O 00

20/30

Algorithmic Engineering

» Has to branch on 4,5
» Degree-1 splits 15, ...,20 after branch

21/30

Algorithmic Engineering

» Example: Search tree for degree-1 on FASTA LLLLL
» Branching, branching, branching

22/30

Algorithmic Engineering

» Majority of our branching comes from subtrees

» Subtrees are shallow — Can we make them depth 17

23/30

Algorithmic Engineering

» Majority of our branching comes from subtrees
» Subtrees are shallow — Can we make them depth 17

» We can strip hydrogens and reinsert them after
canonicalization

23/30

Algorithmic Engineering
Test 3
» Reminder: InChl took 73 seconds

ALL of Q6CJ57, with 200 amino acid appended
|

~— 1 B |

Gl E | - -

A -]

£ I l

g 05) -
0 I I I I I I

OACDEFGHIKLMNPQRSTVWY
Amino acid

24/30

Algorithmic Engineering
Test 4

» Generated length 15000 FASTA has 241882 atoms
» Reminder: InChl supports 32767

Random FASTA string, runtime test

0 1 | | | | |
0 2 4 6 8 10 12 14 16

Length of random FASTA 103

25/30

Algorithmic Engineering

Subtree Refiner

» Degree 1 finds subtrees of depth 1

» Stripping hydrogens shows we have depth 2 subtrees
» What if we could find arbitrary depth subtrees?

» Would it be sound?

26/30

Algorithmic Engineering

Subtree Refiner

27/30

Algorithmic Engineering

Subtree Refiner

Algorithmic Engineering

Subtree Refiner

O
@

Graph Canonicalization
Subtree Refiner

28/30

Graph Canonicalization
Subtree Refiner

| 2
>
>
>

vy

| implemented a subtree refiner in Graph Canon

Performs manual split

Inefficient ‘proof of concept’ implementation

Example: Search tree using subtree refiner on FASTA LLLLL

Search tree is just one node
30 second runtime for 1200 symbols of Q6CJI57
Number of nodes in search tree dramatically reduced for large
proteins

» Test with 250 symbols of Q6CJ57

» Degree 1: 3571 nodes in search tree, 4.38s runtime.

» Subtree: 10 nodes in search tree, 0.23s runtime.

29 /30

Further work

» Other large molecules/structures

» Linear proteins are boring, want something not tree-like
» Circular RNA?

Testing different cell selectors and search strategies
Extend tooling to allow user to switch benzene form

Faster, more efficient implementation of subtree refiner

vvyyy

Stereochemistry — Hard problem, maybe ph.d.

30/30

