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Maximum common substructures

Two approaches:
@ Graph Alignments

@ Graph Products

Definition (Alignment)
An alignment of spaces (X, %), @ € S, |S| > 1 is a space (X,.”) such that
(i) there is a monomorphism pq : Xo — X for every a € S;
(i) for every z € X, pg!(x) # 0 for at least one a € S;
(i) the restriction of (X, .%)[ua(Xa)] is isomorphic to (Xa, %a)
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Modular product of two graphs
® © @
® ®

e Cliques in the modular product graph correspond to isomorphisms of induced
subgraphs of G and G'.

e The maximum common induced subgraph of two graphs corresponds to the
maximum clique in their modular product.
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What precisely do we require from a common substructure?

Questions
@ Which properties need to be preserved for the common
substructure?

o Induced subgraph
o Connectivity
O coo

@ How can we generalize each of the approaches for multiple
graphs?

@ Do we require an exact answer, or would an approximate one
suffice?
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Subgraphs and vertex induced subgraphs
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Subgraphs and vertex induced subgraphs

5 vertices and 4 edges
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Subgraphs and vertex induced subgraphs

7 vertices and 7 edges
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In graph alignments:

Solution: Edge-wise graph alignment:
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In graph products:

Definition (Line graph)

Let G = (V, E) be a simple graph. The line graph L(G) is another simple
graph. Each vertex of L(G) represents an edge of G and two vertices in
L(G) are adjacent iff the corresponding edges are adjacent in G.

G L(G)
Whitney's Theorem (1932)

Every graph, except triangle or claw, is uniquely determined by its line
graph.

LGy L(Gy)

IS SAvAY,
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From MCS to MCES

G and G’ = L(G) and L(G) t.g:fimd MCS(L(G), L(G"))
L. MCES(G,G") J
Example:
3 7
LGy 1
5 0
oo
5
|:> L(G>) 1
5.
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How to find common subgraph of { Hy, Ho,

In graph product:

In graph alignment:
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Summary

@ Both approaches can handle any structural property we wish to
preserve for the common substructure.

@ In the alignment approach, you cannot guarantee the optimality of
the answer, but it is faster.

@ In the product approach, you ensure that the answer is optimal, but
it is slower in terms of time.

@ Depending on the application, one may decide which of them to
select.

@ In the alignment approach, one has to deal with technical issues like
ambiguous sets, whereas this is not the case in the product
approach.
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Methodology: Graph Transformations using the (TACsy NATOMIC

Taining Alliance for Computational
systems chemistry

Double Pushout Approach

Chemical reactions as mathematical Generative chemistry
rigorous graph transformations
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Atoms have identity, allowing for:

direct wetlab validation

atom tracing and isotope labelling experiment design
automated coarse graining

interfacing to (semi-empirical) quantum chemistry methods

reaction network as hypergraph

inference of motifs as integer hyperflows (e.g., autocatalysis)
causality analysis

network completion



Methodology: SIHUMIx and Isotope Tracing <TACSV‘ NATOWIC

M/S-detection of isotopologues of
metobolites (here: malate)
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MS using Graph Transformation

* |onization

* Fragmentation

{ TACsy

Training Alliance for Computational
systems chemistry

NATOMIC

targetCompounds = [smiles ("N#CCO")]

def hasCharge(g, gs, first):
return sum(v.charge for v in g.vertices) != 0

strat = (

ionizationRules

>> filterSubset (hasCharge)

>> repeat [4](

fragmentationRules >> filterSubset (hasCharge)

)
)
dg = dgRuleComp (inputGraphs, addSubset(targetCompounds) >> strat)
dg.calc ()
dg.print ()

cH
id: 39, m: 14.0157

N=—cu

id: 40, m: 39.0109

N=c-
id: 3, m: 26.0031

id: 43, m: 2 19949

id: 11, m: 1.0078

Andersen et al. 2018
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Black Boxes

* An overapproximation of a fragmentation
graph for mechanistic explanations

(e.g. CFM-ID, M@D, ...)

CFM:ID
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 creates huge fragmentation DAGs (ML)

* can be used for rules inference

¢TAGsy "  ATOMIC

systems chemistry

* A (hopefully) trustworthy fragmentation tree

(and more)

(e.g. SIRIUS, QCxMS, ... )
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no mechanistic explanation
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. = \
Dynamic Programming (TAGSy " ... NATOWIC

M@D SIRIUS

y 5 -/\’-:\)EL
I

Map a tree into a DAG, under a certain cost measure
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Some numbers

Size of SIRIUS fragmentation trees :
Size of graph transformation DAG (MJD derivation graph):

Number of graph transformation rules:
Succesfull application of graph transformation rules

[ work in progress |

Training Alliance for Compu

systems chemistry

approx. 1 — 20 vertices

approx. 5000 — 100.000 vertices
approx. 10.000
approx. 1% - 2%

tational

()
()
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MCS (TACsy?  IATOMIC

T
systems chemistry
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DP Results (TACSy”  pATOMIC

Training Alliance for Computationa: 1
systems c hemistry

Approx. 700 SIRIUS trees, how many can be mapped, what is the quality of the mapping?
Sorted distribution qualities

Manually designed rule set CFM-ID — based rule set (inferred)
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Results (Examples) (TACsy NATOMC

M@D SIRIUS

C10H15N5
0.000000
206.1400

C8HS8
0.862811
105.0699

C2H4N4
0.037185
85.0509

1.000000
60.0556

C8H6
0.173051
103.0543

C6H6
0.215086
79.0542

C2HN3
0.025513
68.0243

0.021254
53.0386

C6H4
0.012304
77.0385

- robust despite randomization of fragmentaion DAG generation (!)
- two ionised compounds for best explanation )]
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Results (Examples)

M@D

/7 N\

L

N
N

¢

\ 2051327, g0/

,/ \ \

/ H A\
/ HN NH, |
“ )\

“ HN H

|

{

\

\

\\ / 4

N Y

/rn
\\
NH

\ 206.1406, pog

/ 5

Training Alliance for Computational
systems chemistry

H
10078, g,/

- two ioinisations in parallel for explanation

NATOMIC
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Results (Examples

{TACsy NATOMWIC

Training Alliance for Computational
systems chemistry

SIRIUS

C7HINO
1.000000
124.0757

C5H5NO
0.001720
96.0444

C6HB80
0.003835
97.0649

C6H7NO
0.011614
110.0600

C6H6NO
0.089928
109.0523

0.226496
93.0573

0.001384
96.0807

C5H5N
0.002535
80.0495

C6H7N
0.006825
94.0651

C6H60
0.006418
95.0492

C6H6
0.003900
79.0543

C6H5N
0.167069
92.0495

C5H6N
0.015033
81.0573

C4H4
0.002052
53.0387

C5H4
0.005122
65.0385

Bled 2024 12



Training All: e for Computational
systems chemistr:

Results (Examples) (TACs NATOMIC

M@D SIRIUS

C12H18N20
0.059000
207.1492

C9H12N20
0.097613
165.1023

C10H11NO
0.014153
162.0913

CI9H11N
0.036898
134.0964

C7H5NO
0.005677
120.0444

C3H5NO
1.000000
72.0443
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Training Alliance for Computational
systems chemistr

Results (Examples) TACsy®  IATOMIC

M@D SIRIUS

C12H18N20
0.059000
207.1492

#  C10H11NQ
( 0.014153
\_ 162.0913

C9H12N20
0.097613
165.1023

C9H11N
0.036898
134.0964

C7H5NO
0.005677
120.0444

C3H5NO
1.000000
72.0443
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Training Alliance for Computational
systems chemistr

Results (Examples) (TACsy® VATOMIC

M@D SIRIUS

C12H18N20
0.059000
207.1492

“C10H11NOQ
0.014153
162.0913

C9H12N20
0.097613
165.1023

‘C3H5NO
1.000000
72.0443

C9H11N
0.036898
134.0964

C7H5NO
0.005677
120.0444

Potential SIRIUS correction
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Blackbox Replacement for SIRIUS (TACsy"  NATOMIC

ssssssssssssssss

» Use (sampling of) increasing Cayley Trees (instead of SIRIUS fragmentation trees)

Increasing trees

Class Q, the class of Cayley trees whose labels increase on every path Example/
Construction Q=2Z" % SET(Q) e 0 e e
EGF equation Q'(z) = eQ®@) g o 0

1
Solution z)=1
Q(z) =In;—
Counting sequence Qn = N[ZVQ(2) = (N = 1)! "Cayley" = "rooted, labelled, unordered"
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Conclusion ({TACsy

nnnnnnnnnnnnnnnnnnnnnnnnn

systems chemistry

Mechanisitc explanation for MS and MS/MS results
(Overapproximated) rule set inferrence
Rule set quality / black box quality

Next steps:
* Robustness
» |sotopes
» Application to lipids (Johannes in TACsy)
» Rules inferrence (shadow size vs #rules, using progressive “anchored” MCS and ILP)
» Application to metabolic networks (network completion)
 Different black boxes
* Increasing Cayley Trees

NATOMIC

ational
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