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Maximum common substructures

Two approaches:

Graph Alignments

Graph Products

Definition (Alignment)
An alignment of spaces (Xα,Sα), α ∈ S, |S| ≥ 1 is a space (X,S ) such that

(i) there is a monomorphism µα : Xα → X for every α ∈ S;

(ii) for every x ∈ X, µ−1
α (x) ̸= ∅ for at least one α ∈ S;

(iii) the restriction of (X,S )[µα(Xα)] is isomorphic to (Xα,Sα).
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Modular product of two graphs

• Cliques in the modular product graph correspond to isomorphisms of induced
subgraphs of G and G′.
• The maximum common induced subgraph of two graphs corresponds to the
maximum clique in their modular product.
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What precisely do we require from a common substructure?

Questions
Which properties need to be preserved for the common
substructure?

Induced subgraph
Connectivity
· · ·

How can we generalize each of the approaches for multiple
graphs?
Do we require an exact answer, or would an approximate one
suffice?
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Subgraphs and vertex induced subgraphs
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Subgraphs and vertex induced subgraphs

5 vertices and 4 edges
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Subgraphs and vertex induced subgraphs

7 vertices and 7 edges
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In graph alignments:

Solution: Edge-wise graph alignment:
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In graph products:
Definition (Line graph)

Let G = (V,E) be a simple graph. The line graph L(G) is another simple
graph. Each vertex of L(G) represents an edge of G and two vertices in
L(G) are adjacent iff the corresponding edges are adjacent in G.

Whitney’s Theorem (1932)

Every graph, except triangle or claw, is uniquely determined by its line
graph.
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From MCS to MCES

G and G′ L
=⇒ L(G) and L(G′)

vertex induced
=⇒

algorithm
MCS(L(G), L(G′))

L−1

=⇒ MCES(G,G′)

Example:
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How to find common subgraph of {H1, H2, . . . , Ht} ?

In graph product:
c3︷ ︸︸ ︷

H1 ×H2︸ ︷︷ ︸
c2

×H3 × · · · ×Ht

In graph alignment:
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Summary

Both approaches can handle any structural property we wish to
preserve for the common substructure.

In the alignment approach, you cannot guarantee the optimality of
the answer, but it is faster.

In the product approach, you ensure that the answer is optimal, but
it is slower in terms of time.

Depending on the application, one may decide which of them to
select.

In the alignment approach, one has to deal with technical issues like
ambiguous sets, whereas this is not the case in the product
approach.

A. Davoodi & D. Merkle 12 / 12



Maximum Common Subgraph Finding and Dynamic 
Programming for Mechanistic Explanation in Mass Spectrometry

Akbar Davoodi1, Daniel Merkle2,1

1University of Southern Denmark 
2University of Bielefeld

(Joint work with Christoph Flamm, Marc Hellmuth, 
Johannes Borg Sandberg Petersen, Peter F. Stadler)



Chemical reactions as mathematical 
rigorous graph transformations

Generative chemistry

Methodology: Graph Transformations using the 
Double Pushout Approach

2

Atoms have identity, allowing for: 

• direct wetlab validation
• atom tracing and isotope labelling experiment design
• automated coarse graining
• interfacing to (semi-empirical) quantum chemistry methods

• reaction network as hypergraph
• inference of motifs as integer hyperflows (e.g., autocatalysis) 
• causality analysis
• network completion



Methodology: SIHUMIx and Isotope Tracing
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MS using Graph Transformation

• Ionization
• Fragmentation
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Andersen et al. 2018



Black Boxes

• An overapproximation of a fragmentation 
graph for mechanistic explanations

(e.g. CFM-ID, MØD, …) 

• creates huge fragmentation DAGs (ML)
• can be used for rules inference 
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• A (hopefully) trustworthy fragmentation tree 
          (and more)

(e.g. SIRIUS, QCxMS, … )

• no mechanistic explanation
Dührkop et al., 2019Wang et al., 2021



Dynamic Programming

      MØD                                                         SIRIUS

                      

      Map a tree into a DAG, under a certain cost measure
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Some numbers

Size of SIRIUS fragmentation trees :   approx. 1 – 20 vertices

Size of graph transformation DAG (MØD derivation graph): approx. 5000 – 100.000 vertices (!)
Number of graph transformation rules:   approx. 10.000   (!)
Succesfull application of graph transformation rules  approx. 1% - 2%

[ work in progress ]
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MCS
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- here: one of 10000 rules (bin size 4)
- graph product based
- bin size: upto > 100



DP Results

Approx. 700 SIRIUS trees, how many can be mapped, what is the quality of the mapping?
Sorted distribution qualities 

          Manually designed rule set                                      CFM-ID – based rule set (inferred)
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Results (Examples)
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MØD                                                                                                                          SIRIUS

- robust despite randomization of fragmentaion DAG generation (!)
- two ionised compounds for best explanation    (!) 
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MØD                                                                                                                          SIRIUS

- two ioinisations in parallel for explanation
 



Results (Examples)
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Results (Examples)
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Results (Examples)
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Results (Examples)
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Potential SIRIUS correction



Blackbox Replacement for SIRIUS

• Use (sampling of) increasing Cayley Trees (instead of SIRIUS fragmentation trees)
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Conclusion

• Mechanisitc explanation for MS and MS/MS results
• (Overapproximated) rule set inferrence 
• Rule set quality / black box quality

• Next steps:
• Robustness
• Isotopes
• Application to lipids (Johannes in TACsy)
• Rules inferrence (shadow size vs #rules, using progressive “anchored” MCS and ILP)
• Application to metabolic networks (network completion)
• Different black boxes 
• Increasing Cayley Trees 
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