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Figure: Metabolic interlacing of pyruvate production and degradation.



Isotope labeling experiments
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Figure: Schematic depiction of positional enrichment, isotopomers, and mass isotopomers



Isotope labeling experiments
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Figure: Metabolic development of 1-3C-Glucose via different metabolic pathways.




Overview

Chemical Reaction Network (CRN) Atom-to-Atom Mapping (AAM) raw Atom Transition Graph (rATG)

simplified Atom Transition Network (SATN) simplified Atom Transition Graph (sATG) Atom Transition Graph (ATG)

Figure: Overview of the construction process from a chemical reaction network (CRN) to a simplified atom
transition network (sATN).



Complexes

» Molecules as molecule graphs [1]
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Figure: Example depiction for a molecular graph
of pyruvate [1].



Complexes

» Molecules as molecule graphs [1]
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Complexes

» Molecules as molecule graphs [1]

» ForreR:
Q := Zsc_,-c,s;,>0
ceC
r._ + +
Q=) st -c,st>0
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are designated as complexes.

» A reaction r € R can be considered as

a transformation of complexes:

r=Q- Q'
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Figure: Example depiction for a molecular graph

of pyruvate [1].



Atom-to-Atom mapping

Definition (Atom-to-atom mapping (AAM))

An atom-atom map (AAM) for a reaction r = (Q - Q') is a bijection of the vertex sets
of the complexes ¢ : V(Q) — V(Q') that preserves atom labels and hence satisfies

Ly@y(x) =Ly (g (p(x)) (3)

for all x e V(Q).
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Figure: Depiction of an example reaction
2A-> B+ C+D.




Isomorphism

Definition (Isomorphism)
Let G=(V,E) and H=(W,F) be two undirected (directed) graphs with vertex labels
lg:V - Ly and {y: W — Ly. An isomorphism is a bijection ;1 : V — W such that

{xyreEe{u(x),ny)teF  ((xy) e Ee (u(x),uly) € F)) (4)

and £¢(x) = Lr(p(x)).
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Automorphism
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The set of automorphisms Aut(G) on a graph G forms a group under composition.



Orbit

Definition (Orbit)
Let G be a graph and p: V(G) - V(G) an automorphism and (Aut(G),o) the group
of automorphisms on G under composition. Then the orbit of a vertex x € V(G) is

defined as:
orb(x) = {y € V(G) | Jo € Aut(G): o(x) = v} (5)
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Orbit

Definition (Orbit)
Let G be a graph and p: V(G) - V(G) an automorphism and (Aut(G),o) the group
of automorphisms on G under composition. Then the orbit of a vertex x € V(G) is

defined as:
orb(x) = {y € V(G) | Jo € Aut(G): o(x) = v} (5)
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For p e Aut(Q) and p’ € Aut(Q’) and AAM ¢: V(Q) — V(Q') the maps ¢ and
p' oo pt describe the same chemical reaction
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Equivalent AAMs

Definition (Equivalent AAMs)

Let : V(Q) —» V(Q") and ¢ : V(Q) - V(Q') be two vertex label preserving
bijections. Then ¢ and v are equivalent if there are automorphisms ¢ € Aut(Q) and

o' € Aut(Q") such that ¢ = ¢’ 0 po oL,
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Figure: Example for two equivalent AAMs for example reaction 2A - B+ C + D.
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Figure: Example for two equivalent AAMs for example reaction 2A - B+ C + D.
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Figure: Example for two equivalent AAMs for example reaction 2A - B+ C + D.



Equivalent AAMs

Definition (Equivalent AAMs)
Let : V(Q) —» V(Q") and ¢ : V(Q) - V(Q') be two vertex label preserving
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Figure: Example for two equivalent AAMs for example reaction 2A - B+ C + D.




Raw atom transition graph

Definition (raw atom transition graph (rATG))

The raw (reaction-wise) atom transition graph (rATG) Tgg: of a single reaction
r=(Q — Q') with AAM ¢ is the bipartite graph with vertex set

V(Tqq) = V(Q)uw V(Q") and a set of directed edges E(Tqq') = Uxev(@) Eout(X)

where
Eout(x) = {(x, (¢ 0 po 07 ) (X)|o € Aut(Q), o' € Aut(Q")} (6)



Raw atom transition graph

Definition (raw atom transition graph (rATG))

The raw (reaction-wise) atom transition graph (rATG) Tgg: of a single reaction
r=(Q — Q') with AAM ¢ is the bipartite graph with vertex set

V(Tqq) = V(Q)uw V(Q") and a set of directed edges E(Tqq') = Uxev(@) Eout(X)
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Figure: AAM Figure: Edge-weights w(x,y)=777.



Edge-weights in rATGs

Definition
Let r = (Q — Q') be a reaction, x € V(Q) and y € V(Q'). Then n(x,y) is the number
of pairs (x,y") such that x" € orbg(x),y’ € orbg/(y) and y’' = p(x’).

n(x,y) =[{(x"y") | y' = o(x"),x" eorbo(x),y" € orbo(y)}| (7)



Edge-weights in rATGs

Definition
Let r = (Q — Q') be a reaction, x € V(Q) and y € V(Q'). Then n(x,y) is the number
of pairs (x,y") such that x" € orbg(x),y’ € orbg/(y) and y’' = p(x’).
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Edge-weights in rATGs

Definition
Let r = (Q — Q') be a reaction, x € V(Q) and y € V(Q'). Then n(x,y) is the number
of pairs (x,y") such that x" € orbg(x),y’ € orbg/(y) and y’' = p(x’).

n06,y) =[{(x,y") | y' = o(x),x" € orbg(x), y" € orbg/(y)} (7)

» Set of edges from orbg(x) to orbg/(y) in the rATG:
Eq ={(x'.y") € E(Tqq') | X' € orbo(x),y" € orbo/(y)} (8)

> Edge-weights in atom transition graphs:

n(x,y) _ n(x,y) (9)
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Atom equivalence classes

Definition (Atom equivalence relationships)
Let r=(Q — Q') be a reaction and Q. and Q. the disjoint union of the pairwisely
non-isomorphic connected components @ and @', respectively. Then
C: QU - Q,u Q! is a map such that
> ((Q)=Q. and ((Q) = Q;
» ((c) is a connected component of @, or Q. if and only if ¢ is a connected
component of Q or Q'

> ( is an isomorphisms between connected components




Atom transition graph

Definition (Atom transition graph (ATG))

The atom transition graph (ATG) T, = Tgq of a reaction r = (Q — Q') is obtained as
the quotient of the raw atom transition graph Tggr w.r.t. the equivalence classes
¢ Y(-) defined by the isomorphic connected components of @ and Q’, respectively.
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Edge-weights for ATGs

» The number of edges between orb.(u),orb./(v):

|E)| = [orbe(u)] - [orber (V)] (10)
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Edge-weights for ATGs

» The number of edges between orb.(u),orb./(v):
|E.,| = orbe(u)| - [orber (V)] (10)
» Edge-weights in ATGs:

n(u,v) _ n(u,v)
|EL]  lorbe(u)]-|orber (V)] (11)

hTQQ,(u, v) =

Figure: raw ATG Figure: ATG



Simplified Atom Transition Graphs
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Overview of atom transition graphs
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Simplified Atom Transition Networks (sATN)
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Figure: Overview over the construction from chemical reaction networks (CRN) to simplified
atom transition networks (ATN)



Summary

v~ Non-trivial stoichiometries and symmetries

v~ Conserve valuations on the orbits of atoms.

v Linear inhomogenous system of differential equations
v~ Stationary and non-stationary ILEs

v~ Multi-labeling experiments.



Conclusion & Outlook

v~ Positional enrichment
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Conclusion & Outlook

v~ Positional enrichment

x MIDs

x Isotopomers

v~ Preprint on Research Square: https://doi.org/10.21203/rs.3.rs-5888287 /v1

> Generalisation to elementary metabolite units and cumomers.
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