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» un2qBMG is the undirected underlying graph G of a 2qBMG C.
Question 1: Is a un2qBMG Py-, Cy4-, or Ps-free??

1David Schaller, Peter F Stadler, and Marc Hellmuth (2021). “Complexity of modification

»Annachiara Korchmaros (2024). “Forbidden Paths and Cycles in the Undirected Underlying
Graph of a 2-quasi Best Match Graph”. In: 24th Conference Information Technologies — Applications and
Theory (ITAT 2024).



UN2QBMG: CHORDAL BIPARTITE

Proposition

Pg is the minimum forbidden induced subgraph for un2gBMGs.

Pg path-graph



UN2QBMG: CHORDAL BIPARTITE

Proposition

Pg is the minimum forbidden induced subgraph for un2gBMGs.

Theorem 1

j Pg path-graph Cg cycle-graph
Every un2qgBMG is Pg- and Ce-free. 6



UN2QBMG: CHORDAL BIPARTITE

Proposition

Pg is the minimum forbidden induced subgraph for un2gBMGs.

Theorem 1

j Pg path-graph Cg cycle-graph
Every un2qgBMG is Pg- and Ce-free. 6

Corollary
Every un2qBMG is P¢-free and chordal bipartite (ie Cj-free for | > 6).

» Every C; contains Pg as induced subgraph for [ > 6.



UN2QBMG: CHORDAL BIPARTITE

Proposition

Pg is the minimum forbidden induced subgraph for un2gBMGs.

Theorem 1

j Pg path-graph Cg cycle-graph
Every un2qgBMG is Pg- and Ce-free. 6

Corollary
Every un2qBMG is P¢-free and chordal bipartite (ie Cj-free for | > 6).

» Every C; contains Pg as induced subgraph for [ > 6.

sunset-graph
Proposition 2

Every un2gBMG is sunset-free.
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» A collection of (induced) bicliques covering E(G) is a biclique cover.

G s-dim(G) =3

» The minimum cardinality of biclique cover of G is the bipartite dimension and referred as
s-dim(G) for bipartite graphs! .

1 Jérome Amilhastre, Marie-Catherine Vilarem, and Philippe Janssen (1998). “Complexity of
minimum biclique cover and minimum biclique decomposition for bipartite domino-free
graphs”. In: Discrete applied mathematics 86.2-3, pp. 125-144.
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MOTIVATION

Known results:

1. Computing s-dim (biclique cover problem) is NP-complete for bipartite and chordal
biparite graphs!.

2. The biclique cover problem is polynomial for bipartite domino-free, convex, distance
hereditary graphs?.

Question 1: What's the complexity of determining s-dim(un2qBMG)?

Question 2: Is un2qBMG domino-free? convex? distance hereditary?

1Haiko Miiller (1996). “On edge perfectness and classes of bipartite graphs”. In: Discrete
Mathematics 149.1-3, pp. 159-187.

2Jérome Amilhastre, Marie-Catherine Vilarem, and Philippe Janssen (1998). “Complexity of
minimum biclique cover and minimum biclique decomposition for bipartite domino-free
graphs”. In: Discrete applied mathematics 86.2-3, pp. 125-144.
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» Chordal graphs are distance-hereditary iff they are domino-free!.

Corollary
un2qBMGs are not distance-hereditary graphs.

» A graph is bipartite convex if its adjacent matrix satisfies the consecutive 1’s property (C1P)

» C1P: there exists a permutation of rows st the 1’s in each column are consecutive.

Lemma? Lo 1o
1ol 0101

Mc=(11 0fandM, = 101 0 do not satisfy C1P.
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Conjecture

un2qBMGs are not convex graphs.

1Haiko Miiller (1996). “On edge perfectness and classes of bipartite graphs”. In: Discrete
Mathematics 149.1-3, pp. 159-187.

:Witold Lipski Jr (1978). “Generalizations of the consecutive ones property and related
NP-complete problems”. In: Coordinated Science Laboratory Report no. T-67.
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LINEAR BICLIQUE COVER

> T:=(T,o,p) with u(L(T)) = L(T) U {p}.
» T explains G if T explains 8 and G=un2qBMG(6). wu(x) = x iff x is a sink of 8

Theorem 3

If G is explained by T, s-dim(un2qBG)< 1+ numb. of starts of T. The bound is tight when the root of T has
two children of different colors, one of which is a sink.
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» A,BC V(G); A2-dominates Bif Vb € B,3ay,a; € Astaib,ab € E(G).
> {V1,Va,..., Vi} is 2-transitivity partition of V(G) if V; 2-dominates V; for 1 <i <j <k.

» Try(G) (2-transitivity of G) is the maximum order of 2-transitivity partitions of G.

Known results :

1. Computing Tr>(G) (maximum 2-transitivity problem) is NP-complete for bipartite graphs.
2. Computing Tr»(G) is polynomial for bipartite chain graphs.

Subhabrata Paul and Kamal Santra (2024). “Algorithmic study on 2-transitivity of graphs”. In:
Discrete Applied Mathematics 358, pp. 57-75.
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» A bipartite graph is bipartite chain if there exists an ordering of vertices st
N(xw) € N(s) C -+~ C N(x1) and N(y) € N(#) € - € N(y1).
Fact

AN
un2qgBMGs are not bipartite chain graphs.

T1 @ G is not a bipartite chain graph!

75

® T4

Ty @ N(xy) € N(xq) and N(xy) € N(xy)

(|
8
w
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WORKING IN PROGRESS..

1. Can we recognize if a graph is un2qBMG in a polynomial time? ((P6, C6)-free in linear time)
2. Can we build a tree that explains an un2qBMG is polynomial time?

3. How difficult is to edit a graph to a un2qBMG?

SCAN ME




