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Multi-rooted fusion graph (2015)



Representing introgression [1]
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[1] G. E. Scholz, A.-A. Popescu, M. I. Taylor, V. Moulton and K. T. Huber.
OSF-Builder: A new tool for reconstructing and representing

phylogenetic histories involving introgression,
Systematic Biology (2019) 68(5):717-729.



Arboreal network

a b c d e f g h i j

Arboreal network: a directed acyclic graph
whose underlying undirected structure is a tree.
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Shared-ancestry graph: records pairs
of leaves sharing an ancestor in a given

multirooted network.

Question: Can we characterize undirected
graphs that are the shared ancestry graph

of some arboreal network?

Answer: Yes. And this class of
graphs is already well known!
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Ptolemaic graphs (early 80s)

G is Ptolemaic if the inequality:
d(u, v)d(x , y) + d(u, x)d(v , y) ≥ d(u, y)d(v , x)
holds for all pairwise-connected vertices x , y , u, v .

Theorem [2]: A graph G is the shared ancestry
graph of some arboreal network N if and only if

G is connected and Ptolemaic.

[2] K. T. Huber, V. Moulton and G. E. Scholz. Shared ancestry
graphs and symbolic arboreal maps. SIAM Journal on Discrete

Mathematics (2024) 38(4): 2553-2577.

In that case, N can be built in polynomial time.
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Distance-hereditary graphs (late 70s)

G is distance hereditary if for all connected
vertices u, v and all connected induced

subgraph H , dG(u, v) = dH(u, v).

Ptolemaic graphs are distance-hereditary.
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Recursive characterization

G is distance hereditary if it can be recursively
constructed from a single vertex by one of:

(R1) Add a pendant vertex.
(R2) Add a true-twin.
(R3) Add a false-twin.
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(R3∗) Add a false-twin to a vertex
whose neighbors form a clique.
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Recursive construction

Given: A connected Ptolemaic graph G
A vertex x such that G is obtained from G − x

via one of (R1), (R2), (R3∗)
An arboreal network whose shared ancestry graph is G − x
Build an arboreal network whose shared ancestry graph is G
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by a labelled tree if and only if G is
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Theorem [3]: A graph G can be represented
by a labelled arboreal network if and only if

G is distance-hereditary.

[3] G. E. Scholz. Representing distance-hereditary graphs with
multi-rooted trees. (submitted)
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Summary

Applications
Multirooted networks provide an alternative

to phylogenetic networks to represent
complex evolutionary events

(recombination, introgression, ...)

Theory
Multirooted networks offer a new and

exciting playground for mathematicians,
with connections to graph theory,

combinatorics, algorithmics, ...
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