Representing distance-hereditary graphs with trees

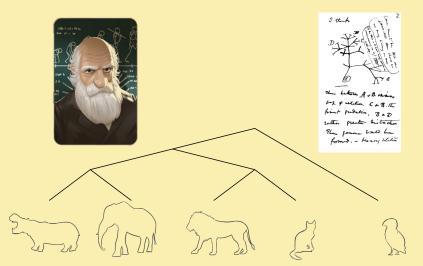
Guillaume Scholz

UNIVERSITÄT LEIPZIG

《曰》 《聞》 《聞》 《聞》 三世

TBI Winterseminar - Bled 2025

Phylogenetic tree (${\sim}1850$)



・ロト ・日・ ・日・ ・日・ うへや

Multi-rooted fusion graph (2015)

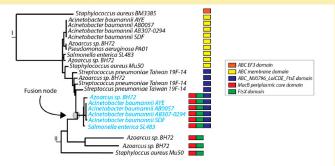


Figure 5. Two-rooted fusion graph. This two-rooted graph was constructed using the two phylogenetic trees from Figure 4. The trees were mid-point rooted and merged using Adobe Illustrator. The two roots are marked I and II. The grey dot, labelled "Fusion node" indicates the approximate location of the fusion event. The coloured squares display the domain architecture of the genes.

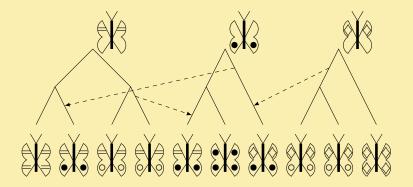
Computation ISSN 2079-3197 ww.mdpi.com/journal/computation

Article

Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes

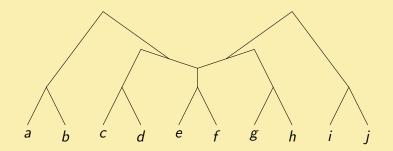
Orla Coleman⁺, Ruth Hogan⁺, Nicole McGoldrick⁺, Niamh Rudden⁺ and James O. McInerney^{*}

Representing introgression [1]

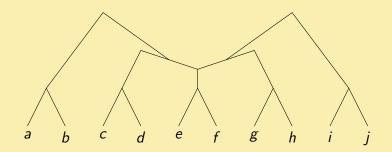


[1] G. E. Scholz, A.-A. Popescu, M. I. Taylor, V. Moulton and K. T. Huber. OSF-BUILDER: A new tool for reconstructing and representing phylogenetic histories involving introgression, *Systematic Biology* (2019) 68(5):717-729.

Arboreal network



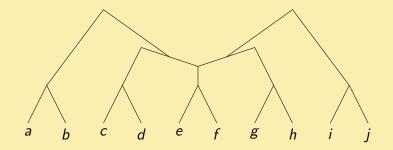
Arboreal network



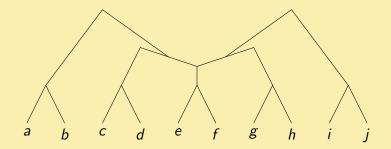
Arboreal network: a directed acyclic graph whose underlying undirected structure is a tree.

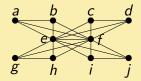
ふしゃ ふゆき ふぼう ふぼう キロ・

Shared ancestry graph



Shared ancestry graph





Shared-ancestry graph: records pairs of leaves sharing an ancestor in a given multirooted network.

Shared-ancestry graph: records pairs of leaves sharing an ancestor in a given multirooted network.

Question: Can we characterize undirected graphs that are the shared ancestry graph of some arboreal network?

Shared-ancestry graph: records pairs of leaves sharing an ancestor in a given multirooted network.

Question: Can we characterize undirected graphs that are the shared ancestry graph of some arboreal network?

Answer: Yes. And this class of graphs is already well known!

イロト イロト イヨト イヨト ノロト

Ptolemaic graphs (early 80s)

G is Ptolemaic if the inequality: $d(u, v)d(x, y) + d(u, x)d(v, y) \ge d(u, y)d(v, x)$ holds for all pairwise-connected vertices x, y, u, v.

Ptolemaic graphs (early 80s)

G is Ptolemaic if the inequality: $d(u,v)d(x,y) + d(u,x)d(v,y) \ge d(u,y)d(v,x)$ holds for all pairwise-connected vertices x, y, u, v.

Theorem [2]: A graph *G* is the shared ancestry graph of some arboreal network *N* if and only if *G* is connected and Ptolemaic.

[2] K. T. Huber, V. Moulton and G. E. Scholz. Shared ancestry graphs and symbolic arboreal maps. SIAM Journal on Discrete Mathematics (2024) 38(4): 2553-2577.

Ptolemaic graphs (early 80s)

G is Ptolemaic if the inequality: $d(u, v)d(x, y) + d(u, x)d(v, y) \ge d(u, y)d(v, x)$ holds for all pairwise-connected vertices x, y, u, v.

Theorem [2]: A graph G is the shared ancestry graph of some arboreal network N if and only if G is connected and Ptolemaic.

In that case, N can be built in polynomial time.

[2] K. T. Huber, V. Moulton and G. E. Scholz. Shared ancestry graphs and symbolic arboreal maps. SIAM Journal on Discrete Mathematics (2024) 38(4): 2553-2577.

イロト イロト イヨト イヨト ノロト

G is distance hereditary if for all connected vertices u, v and all connected induced subgraph *H*, $d_G(u, v) = d_H(u, v)$.

G is distance hereditary if for all connected vertices u, v and all connected induced subgraph *H*, $d_G(u, v) = d_H(u, v)$.

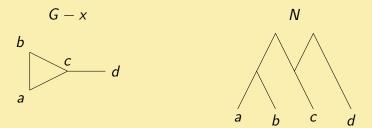
Ptolemaic graphs are distance-hereditary.

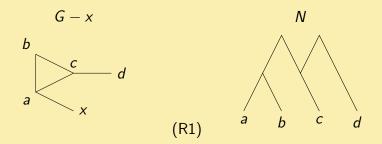
イロト イロト イヨト イヨト ノロト

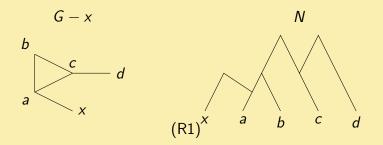
Recursive characterization

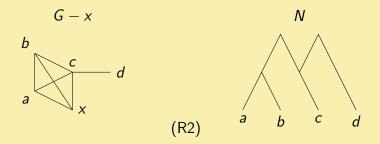
G is distance hereditary if it can be recursively constructed from a single vertex by one of: (R1) Add a pendant vertex. (R2) Add a true-twin. (R3) Add a false-twin. G is distance hereditary if it can be recursively constructed from a single vertex by one of: (R1) Add a pendant vertex. (R2) Add a true-twin. (R3) Add a false-twin.

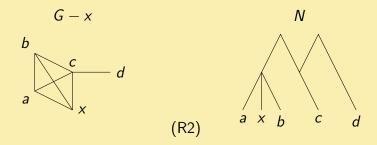
G is Ptolemaic if it can be recursively constructed from a single vertex by one of: (R1) Add a pendant vertex. (R2) Add a true-twin. (R3*) Add a false-twin to a vertex whose neighbors form a clique.

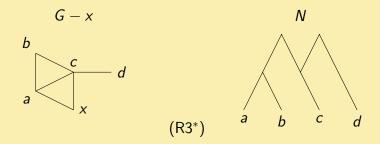


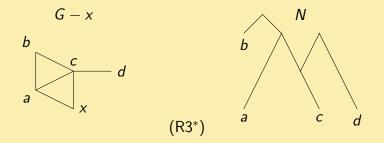




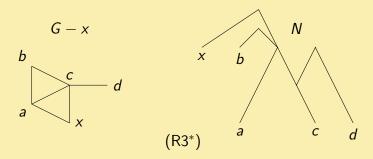




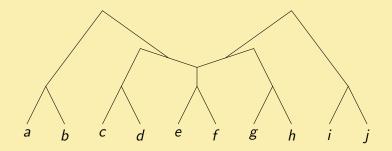




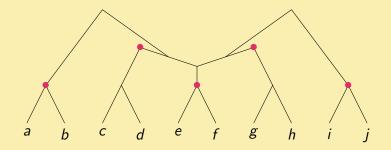
Recursive construction

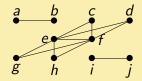


But that's not it!



But that's not it!



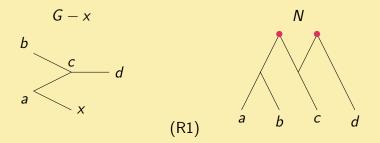


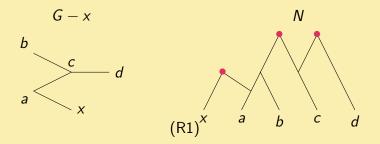
Theorem: A graph G can be represented by a labelled tree if and only if G is a cograph. **Theorem:** A graph G can be represented by a labelled tree if and only if G is a cograph.

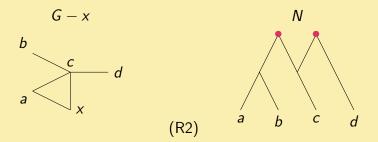
Theorem [3]: A graph *G* can be represented by a labelled arboreal network if and only if *G* is distance-hereditary.

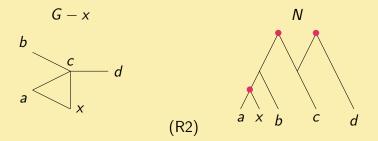
[3] G. E. Scholz. Representing distance-hereditary graphs with multi-rooted trees. (submitted)

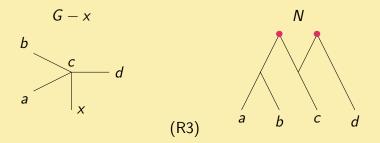
イロト イロト イヨト イヨト ノロト



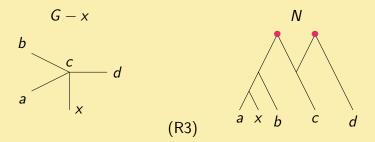








Given: A distance-hereditary graph G A vertex x such that G is obtained from G - xvia one of (R1), (R2), (R3) A labelled arboreal network representing G - xBuild a labelled arboreal network representing G



Summary

Applications

Multirooted networks provide an alternative to phylogenetic networks to represent complex evolutionary events (recombination, introgression, ...)

Summary

Applications

Multirooted networks provide an alternative to phylogenetic networks to represent complex evolutionary events (recombination, introgression, ...)

Theory

Multirooted networks offer a new and exciting playground for mathematicians, with connections to graph theory, combinatorics, algorithmics, ...

・ロト ・日・ ・日・ ・日・ うへや