DESIGN OF COTRANSCRIPTIONAL FOLDING PATHS

Laurenz Miksch

Ivo Hofacker

BLED 2025

Stefan Badelt

Theoretical Biochemistry Group (tbi), University of Vienna

40th TBI Winterseminar

COTRANSCRIPTIONAL DYNAMICS

- Interesting examples from literature exist
- Simulation software exists
- Intuition on what is possible is really fuzzy

COTRANSCRIPTIONAL DYNAMICS

- Interesting examples from literature exist
- Simulation software exists
- Intuition on what is possible is really fuzzy
 - How many rearrangements are possible?
 - When does transcription rate/pausing matter?
 - When do point mutations alter folding paths?

COTRANSCRIPTIONAL DYNAMICS

- Interesting examples from literature exist
- Simulation software exists
- Intuition on what is possible is really fuzzy
 - How many rearrangements are possible?
 - When does transcription rate/pausing matter?
 - When do point mutations alter folding paths?

A formal framework to formulate these questions is necessary.

Given "abstract cotranscriptional folding paths":

Can the following four paths be designed?

```
A
()
()
()
()
()
()
```

```
· ()
(())
(())
```


MULTI-STABLE SEQUENCE DESIGN

Given multiple structures of interest:

1. Sample candidates among compatible sequences

2. Pick best candidate based on an objective function

DOMAIN-LEVEL STRAND DISPLACEMENT

DOMAIN-LEVEL STRAND DISPLACEMENT

THE DOMAIN-LEVEL MOVE SET

THE DOMAIN-LEVEL MOVE SET


```
()
(()
(())
.(())
```


assignability consistency traversability

assignability consistency traversability

assignability consistency traversability

→ path C is **sls-translatable**

SLS-TRANSLATION

... this works for all types of domain-level rearrangements!

COCOPATHS

DESIGN OF "SLS-TRANSLATABLE" PATHS

HOW MANY PATHS ARE THERE?

COCOPATHS FRAMEWORK

SEQUENCE DESIGN

$$O = \min \left(\max_{i=1}^C \left(G(\chi_i) - G_c(\chi_i, C_i) + 0.1 \cdot b(\chi_i, C_{i-1}, C_i)
ight)
ight)$$

Success means that the target structure occupies more than 50% of the population at each transcription step.

AN EXAMPLE SEQUENCE

AN EXAMPLE SEQUENCE

Thank you for your attention.

COCOSIM

Domain-level cotranscriptional folding