Creating Atom-Level Chemical Reaction Networks from Biochemical Models

Casper Asbjørn Eriksen casbjorn@imada.sdu.dk

40th TBI Winterseminar in Bled • February 2025

▶ Recall Richard's talk

Recall Richard's talk

Existing atom-atom mapped networks:

Paper	$\# \ {f reactions}$	$\mathbf{Curated}$	$\mathbf{Organism}$
Suthers et al., 2007	238	Yes	E. coli

Recall Richard's talk

Existing atom-atom mapped networks:

Paper	$\# \ {f reactions}$	Curated	Organism
Suthers et al., 2007	238	Yes	E. coli
Antoniewicz et al., 2007	75	Yes	E. coli

Recall Richard's talk

Existing atom-atom mapped networks:

Paper	$\# \ {f reactions}$	$\mathbf{Curated}$	$\mathbf{Organism}$
Suthers et al., 2007	238	Yes	E. coli
Antoniewicz et al., 2007	75	Yes	E. coli
Ravikirthi et al., 2011	2.077	Nope	E. coli

Recall Richard's talk

Existing atom-atom mapped networks:

Paper	$\# \ {f reactions}$	Curated	$\mathbf{Organism}$
Suthers et al., 2007	238	Yes	E. coli
Antoniewicz et al., 2007	75	Yes	E. coli
Ravikirthi et al., 2011	2.077	Nope	E. coli

Goal: Create a method for constructing atom-atom mapped networks, which:

- \blacktriangleright Is generic takes any genome-scale model as input
- ▶ Uses manually curated atom-atom maps whenever possible

Definition 1 (Chemical Reaction Network). A chemical reaction network (CRN), is a directed multi-hypergraph **CRN** = (\mathbb{C}, \mathbb{R}) , in which \mathbb{C} is a set of vertices (compounds), and \mathbb{R} is a set of hyperedges (reactions). Each hyperedge is a pair $(\mathcal{E}, \mathcal{P}), \mathcal{E}, \mathcal{P} \in \mathbb{C}$ of multisubsets of compounds, with \mathcal{E} representing the educts and \mathcal{P} representing the products of a reaction.

Definition 2 (Atom-level chemical reaction network). An atom-level Chemical Reaction Network (ACRN) is a directed multi-hypergraph $\mathbf{ACRN} = (\mathbb{C}, \mathbb{R}, \Sigma, \mathbf{A})$, where \mathbb{C} and \mathbb{R} are the sets of compounds and reactions, as in the CRN, which define the network structure; Σ and \mathbf{A} are sets of molecular structures and atom-atom maps. Define by $\Sigma_C : \mathbb{C} \to \mathcal{P}(\Sigma)$ the set of molecular structures associated with compound C, and by $\mathbf{A}_R : \mathbb{R} \to \mathbf{A}$ the atom-atom map associated with reaction R.

Definition 2 (Atom-level chemical reaction network). An atom-level Chemical Reaction Network (ACRN) is a directed multi-hypergraph $\mathbf{ACRN} = (\mathbb{C}, \mathbb{R}, \Sigma, \mathbf{A})$, where \mathbb{C} and \mathbb{R} are the sets of compounds and reactions, as in the CRN, which define the network structure; Σ and \mathbf{A} are sets of molecular structures and atom-atom maps. Define by $\Sigma_C : \mathbb{C} \to \mathcal{P}(\Sigma)$ the set of molecular structures associated with compound C, and by $\mathbf{A}_R : \mathbb{R} \to \mathbf{A}$ the atom-atom map associated with reaction R.

How to determine the structure of a compound based on a database id?

Traverse cross-database references to construct the 'identifier graph'.

Return to input form Download output as zip Download response as JSON

Input mapping

Click on a row in the list to display the associated identifier graph and statistics.

M_1120_0	mom=15/1120/11112	1.0
	InChI=1S/O2/c1-2	0.48
	InChI=1S/O	0.38
	InChI=1S/H2O/h1H2/p-1	0.36
	InChI=1S/H2O/h1H2/p+1	0.18
M_h_c	InChI=1S/p+1	1.0
	InChI=1S/p+1//hH	0.52
M_h_e	InChI=1S/p+1	1.0
	InChI=1S/p+1/i/hH	0.52
M_icit_c	InChI=1S/C6H8O7 /c7-3(8)1-2(5(10)11)4(9)6(12)13/h2,4,9H,1H2, (H,7,8)(H,10,11)(H,12,13)	1.0
	InChI=1S/C6H8O7 /c7-3(8)1-2(5(10)11)4(9)6(12)13/h2,4,9H,1H2, (H,7,8)(H,10,11)(H,12,13)/p-3	0.67
M_lac_D_c	InChl=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3, (H,5,6)	1.0
	InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3, (H,5,6)/t2-/m1/s1	0.89
	InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3, (H,5,6)/p-1/t2-/m1/s1	0.39
M_lac_D_e	InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3, (H,5,6)	1.0
	InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,	0.80

M_icit_c: compound details

Multiple structures, resolved (Confidence margin: 0.67)

 $\label{eq:Inchi=IS/C6H8O7/c7-3(8)1-2(5(10)11)4(9)6(12)13/h2,4,9H,1H2,(H,7,8)(H,10,11)(H,12,13)$

Figure: Eriksen et al., 2024

MapRecon: Database Graphs

Identifiers in the model are used as a starting point to traverse the database graph.

The StructRecon database contains reactions from:

- ▶ BiGG
- ► (KEGG)
- ► M-CSA
- ► (MetaCyc)
- ► MetAMDB
- ► MetaNetX
- ► RHEA
- ► SABIO-RK
- ► SEED

• Can be used to get EC numbers and associated reactions with AAMs.

Data Sources

$\mathbf{MetAMDB}$ - Metabolic Atom Mapping Database

▶ Approx. 70.000 reactions, 1.003 manually curated.

Data Sources

$\mathbf{MetAMDB}$ - Metabolic Atom Mapping Database

▶ Approx. 70.000 reactions, 1.003 manually curated.

$\mathbf{M}\text{-}\mathbf{CSA}$ - Mechanism and Catalytic Site Atlas

- Reaction mechanisms given as Marvin files representing arrow-pushing diagrams
- ▶ Tools developed by Juri Kolčák, Christophe Laurent, Nicolai Nøjgaard for cleaning up and extracting atom maps. (Andersen et al., 2022)
- ▶ 1.005 reactions, 430 survive the clean-up and extraction procedures.

In case an atom-atom map is not available:

- ▶ The third number (X.Y.Z.-) describes the type of reaction.
- ▶ Given X.Y.Z.A with a known atom-atom map is similar, we may be able to extract the 'reaction centre' and apply it to X.Y.Z.B.

Figure: Andersen et al., 2019

Strategy

- \blacktriangleright For each reaction R, attempt to find atom-atom mapped reactions through the *identifier graph*.
- ▶ If this is not possible, find an atom-atom mapped reaction up to the third EC digit.
- For some subset $\mathbb{R}' \subseteq \mathbb{R}$, we now have atom maps α_R .
- Each compound $C \in \mathbb{C}$ will have (possibly several) structures inferred from the atom map.
- ▶ We create 'pseudo-reactions' with simple atom-atom maps between structures of the same compound.
- ▶ For compounds not yet associated with a reaction, generate the consensus structure using the previous StructRecon workflow.
- ▶ All remaining unmapped reactions are mapped via RDT.

Priority of atom-atom map sources:

- 1. \blacksquare MetAMDB map
- 2. M-CSA map

Strategy

- \blacktriangleright For each reaction R, attempt to find atom-atom mapped reactions through the *identifier graph*.
- ▶ If this is not possible, find an atom-atom mapped reaction up to the third EC digit.
- For some subset $\mathbb{R}' \subseteq \mathbb{R}$, we now have atom maps α_R .
- Each compound $C \in \mathbb{C}$ will have (possibly several) structures inferred from the atom map.
- ▶ We create 'pseudo-reactions' with simple atom-atom maps between structures of the same compound.
- ▶ For compounds not yet associated with a reaction, generate the consensus structure using the previous StructRecon workflow.
- ▶ All remaining unmapped reactions are mapped via RDT.

Priority of atom-atom map sources:

- 1. MetAMDB map
- 2. M-CSA map
- 3. Apply level 3 match from MetAMDB as graph transformation
- 4. Apply level 3 match from M-CSA as graph transformation

Strategy

- \blacktriangleright For each reaction R, attempt to find atom-atom mapped reactions through the *identifier graph*.
- ▶ If this is not possible, find an atom-atom mapped reaction up to the third EC digit.
- For some subset $\mathbb{R}' \subseteq \mathbb{R}$, we now have atom maps α_R .
- Each compound $C \in \mathbb{C}$ will have (possibly several) structures inferred from the atom map.
- ▶ We create 'pseudo-reactions' with simple atom-atom maps between structures of the same compound.
- ▶ For compounds not yet associated with a reaction, generate the consensus structure using the previous StructRecon workflow.
- ▶ All remaining unmapped reactions are mapped via RDT.

Priority of atom-atom map sources:

- 1. \blacksquare MetAMDB map
- 2. M-CSA map
- 3. Apply level 3 match from MetAMDB as graph transformation
- 4. Apply level 3 match from M-CSA as graph transformation
- 5. Produce map via RDT (~ 90% accuracy, depends on enzyme class)

MetAMDB
M-CSA
MetAMDB (L3)
M-CSA (L3)
M-CSA (map failed)
No EC number
Transport

MetAMDB
M-CSA
MetAMDB (L3)
M-CSA (L3)
M-CSA (map failed)
No EC number
Transport

- Most reactions seems to be associated with manually curated AAMs.
- ► Especially the 'core' pathways.

But,

- ▶ Work in progress!
- Success rate and accuracy of level-3 matching not known yet.

- Most reactions seems to be associated with manually curated AAMs.
- ► Especially the 'core' pathways.

But,

- ▶ Work in progress!
- Success rate and accuracy of level-3 matching not known yet.

Planned availability:

- ▶ Web application
- ▶ Python library
- ► Consolidated database (SQL query)

Thank you!

