
LCAornoLCA:
A short story about simplifying networks

Anna Lindeberg
& Marc Hellmuth

Department of Mathematics
Stockholm University

40th TBI Winterseminar in Bled, 2025

Evolution: trees and networks

1/10

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Evolution: trees and networks

1/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Network of groups of Viola flowers∗

However. . . Some species are not too keen on
evolving in a tree-like fashion.

Hybridization: species-monogamy is not
always so important

Horizontal gene transfer: why not share
some DNA?

Etc. . . .

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Evolution: trees and networks

1/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Network of groups of Viola flowers∗

However. . . Some species are not too keen on
evolving in a tree-like fashion.

Hybridization: species-monogamy is not
always so important

Horizontal gene transfer: why not share
some DNA?

Etc. . . .

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Evolution: trees and networks

1/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Network of groups of Viola flowers∗

However. . . Some species are not too keen on
evolving in a tree-like fashion.

Hybridization: species-monogamy is not
always so important

Horizontal gene transfer: why not share
some DNA?

Etc. . . .

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Evolution: trees and networks

1/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Network of groups of Viola flowers∗

However. . . Some species are not too keen on
evolving in a tree-like fashion.

Hybridization: species-monogamy is not
always so important

Horizontal gene transfer: why not share
some DNA?

Etc. . . .

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Evolution: trees and networks

1/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Network of groups of Viola flowers∗

The evolutionary history is network-like!

How to obtain such networks?

Start with observable data
= genomic sequences of extant taxa
= set L(N) of leaves in network N

Based on observable data, infer† the network N

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Evolution: trees and networks

1/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Network of groups of Viola flowers∗

The evolutionary history is network-like!

How to obtain such networks?

Start with observable data
= genomic sequences of extant taxa
= set L(N) of leaves in network N

Based on observable data, infer† the network N

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Evolution: trees and networks

1/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Network of groups of Viola flowers∗

Networks inferred from genomic data can . . .
. . . be highly complex and tangled
. . . contain information that is not
supported by “observable data”

Aim: methods to simplify networks while
keeping main structural features

The method we propose aims to simplify by
eliminating vertices that are not supported by
“observable data”

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Evolution: trees and networks

1/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Networks inferred from genomic data can . . .
. . . be highly complex and tangled
. . . contain information that is not
supported by “observable data”

Aim: methods to simplify networks while
keeping main structural features

The method we propose aims to simplify by
eliminating vertices that are not supported by
“observable data”

Lowest Stable Ancestor (LSA) tree to show “trend of evolution”‡

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Evolution: trees and networks

1/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Networks inferred from genomic data can . . .
. . . be highly complex and tangled
. . . contain information that is not
supported by “observable data”

Aim: methods to simplify networks while
keeping main structural features

The method we propose aims to simplify by
eliminating vertices that are not supported by
“observable data”

Lowest Stable Ancestor (LSA) tree to show “trend of evolution”‡

*From: Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae), Marcussen et al., Syst. Biol., 2015
†A Survey of Combinatorial Methods for Phylogenetic Networks, Huson and Scornavacca, GBE, 2010
‡Transformations to Simplify Phylogenetic Networks, Heiss, Huson and Steel, Bulletin of Math. Bio., 2025

Absolutely necessary definitions

2/10

Directed Acyclic Graph, known as a
DAG. The vertices are V (G).

Absolutely necessary definitions

2/10

A network N is a DAG with a unique
root (= source).

L(N) denotes all leaves.

Absolutely necessary definitions

2/10

Ancestor and descendant: joined by
directed path. Denoted w ⪯ u.

Absolutely necessary definitions

2/10

Least Common Ancestors: for
A ⊆ L(G), the set LCA(A) comprise
all ⪯-minimal vertices that are
ancestors of all leaves in A

LCA({1, 2})

Absolutely necessary definitions

2/10

Least Common Ancestors: for
A ⊆ L(G), the set LCA(A) comprise
all ⪯-minimal vertices that are
ancestors of all leaves in A

LCA({5, 7})

Absolutely necessary definitions

2/10

Least Common Ancestors: for
A ⊆ L(G), the set LCA(A) comprise
all ⪯-minimal vertices that are
ancestors of all leaves in A

LCA({5, 6, 7})

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?

How to get rid of them?
Can we characterize LCA-Relevant
DAGs?

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?

How to get rid of them?
Can we characterize LCA-Relevant
DAGs?

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?

How to get rid of them?
Can we characterize LCA-Relevant
DAGs?

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?

How to get rid of them?
Can we characterize LCA-Relevant
DAGs?

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?

How to get rid of them?
Can we characterize LCA-Relevant
DAGs?

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?

How to get rid of them?
Can we characterize LCA-Relevant
DAGs?

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?

How to get rid of them?
Can we characterize LCA-Relevant
DAGs?

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?

How to get rid of them?
Can we characterize LCA-Relevant
DAGs?

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?
How to get rid of them?

Can we characterize LCA-Relevant
DAGs?

LCA-Relevant DAGs

3/10

We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?
How to get rid of them?
Can we characterize LCA-Relevant
DAGs?

Characterization

4/10

How to determine unsupported vertices?

✓

How to get rid of them?
Can we characterize LCA-Relevant DAGs?

✓

Lemma
A vertex v is not an LCA-vertex ⇐⇒
v has a child u s.t. C(v) = C(u)

All non-LCA-vertices can be determined
in polynomial time.

Theorem
A DAG G is LCA−Relevant ⇐⇒
no two adjacent vertices of G have the same
cluster

not LCA-Relevant LCA-Relevant

Characterization

4/10

How to determine unsupported vertices?

✓

How to get rid of them?
Can we characterize LCA-Relevant DAGs?

✓

Lemma
A vertex v is not an LCA-vertex ⇐⇒
v has a child u s.t. C(v) = C(u)

All non-LCA-vertices can be determined
in polynomial time.

Theorem
A DAG G is LCA−Relevant ⇐⇒
no two adjacent vertices of G have the same
cluster

not LCA-Relevant LCA-Relevant

Characterization

4/10

How to determine unsupported vertices?

✓

How to get rid of them?
Can we characterize LCA-Relevant DAGs?

✓

Lemma
A vertex v is not an LCA-vertex ⇐⇒
v has a child u s.t. C(v) = C(u)

All non-LCA-vertices can be determined
in polynomial time.

Theorem
A DAG G is LCA−Relevant ⇐⇒
no two adjacent vertices of G have the same
cluster

not LCA-Relevant LCA-Relevant

Characterization

4/10

How to determine unsupported vertices?

✓

How to get rid of them?
Can we characterize LCA-Relevant DAGs?

✓

Lemma
A vertex v is not an LCA-vertex ⇐⇒
v has a child u s.t. C(v) = C(u)

All non-LCA-vertices can be determined
in polynomial time.

Theorem
A DAG G is LCA−Relevant ⇐⇒
no two adjacent vertices of G have the same
cluster

not LCA-Relevant LCA-Relevant

Characterization

4/10

How to determine unsupported vertices? ✓

How to get rid of them?
Can we characterize LCA-Relevant DAGs? ✓

Lemma
A vertex v is not an LCA-vertex ⇐⇒
v has a child u s.t. C(v) = C(u)

All non-LCA-vertices can be determined
in polynomial time.

Theorem
A DAG G is LCA−Relevant ⇐⇒
no two adjacent vertices of G have the same
cluster

not LCA-Relevant LCA-Relevant

Characterization

4/10

How to determine unsupported vertices? ✓

How to get rid of them?
Can we characterize LCA-Relevant DAGs? ✓

Lemma
A vertex v is not an LCA-vertex ⇐⇒
v has a child u s.t. C(v) = C(u)

All non-LCA-vertices can be determined
in polynomial time.

Theorem
A DAG G is LCA−Relevant ⇐⇒
no two adjacent vertices of G have the same
cluster

not LCA-Relevant LCA-Relevant

Simplification to LCA-Relevant

5/10

If v is a vertex of G, then G ⊖ v is obtained by
adding an edge from each parent of v to each
child of v, and then removing v.

Theorem
If W is the set of all non-LCA vertices of G,
then G ⊖ W is LCA-Relevant and satisfy

Well... a long list of appealing
properties of what structure of G
is kept

-

Simplification to LCA-Relevant

5/10

If v is a vertex of G, then G ⊖ v is obtained by
adding an edge from each parent of v to each
child of v, and then removing v.

G ⊖ v generalizes ”vertex supression”

Theorem
If W is the set of all non-LCA vertices of G,
then G ⊖ W is LCA-Relevant and satisfy

Well... a long list of appealing
properties of what structure of G
is kept

-

Simplification to LCA-Relevant

5/10

If v is a vertex of G, then G ⊖ v is obtained by
adding an edge from each parent of v to each
child of v, and then removing v.

G ⊖ v generalizes ”vertex supression”

Theorem
If W is the set of all non-LCA vertices of G,
then G ⊖ W is LCA-Relevant and satisfy

Well... a long list of appealing
properties of what structure of G
is kept

-

Simplification to LCA-Relevant

5/10

If v is a vertex of G, then G ⊖ v is obtained by
adding an edge from each parent of v to each
child of v, and then removing v.

G ⊖ v generalizes ”vertex supression”

Theorem
If W is the set of all non-LCA vertices of G,
then G ⊖ W is LCA-Relevant and satisfy

Well... a long list of appealing
properties of what structure of G
is kept

-

Simplification to LCA-Relevant

5/10

If v is a vertex of G, then G ⊖ v is obtained by
adding an edge from each parent of v to each
child of v, and then removing v.

N N ⊖ {u, u′}

Theorem
If W is the set of all non-LCA vertices of G,
then G ⊖ W is LCA-Relevant and satisfy

Well... a long list of appealing
properties of what structure of G
is kept

-

Simplification to LCA-Relevant

5/10

If v is a vertex of G, then G ⊖ v is obtained by
adding an edge from each parent of v to each
child of v, and then removing v.

N N ⊖ {u, u′}

Theorem
If W is the set of all non-LCA vertices of G,
then G ⊖ W is LCA-Relevant and satisfy

Well... a long list of appealing
properties of what structure of G
is kept

-

Simplification to LCA-Relevant

5/10

If v is a vertex of G, then G ⊖ v is obtained by
adding an edge from each parent of v to each
child of v, and then removing v.

N N ⊖ {u, u′}

Theorem
If W is the set of all non-LCA vertices of G,
then G ⊖ W is LCA-Relevant and satisfy

Well... a long list of appealing
properties of what structure of G
is kept

-

Bigger example

6/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Network N

with non-LCA-vertices highlighted

Bigger example

6/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Network N with non-LCA-vertices highlighted

Bigger example

6/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

LCA-Relevant version N ⊖ W of N

Bigger example

6/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

”Trend of evolution” as captured by LSA-tree of N

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCA-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. v ∈ LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network NLCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network NLCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant

G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)

If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)

If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

(PCC): there is a vw-path ⇐⇒ C(v) and C(w) are
⊆–comparable.

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Shortcut: edge (u, v) for which there is some other uv-path

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Strengthen LCA-Relevant DAGs a bit

7/10

A DAG G is LCAu-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. {v} = LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network N LCA-Relevant LCAu-Relevant

Computing an LCAu−Relevant version of any DAG G can be
done in polynomial-time

Bigger example (again)

8/10

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Sect. nov. B

Sect. nov. A

N
osphinium

 s.lat.

Cham
aem

elanim
um

Viola s.str.

Plagiostigm
a

X
ylinosium

Sclerosium

D
elphiniopsis

M
elanium

Rubellium

Tridens

Leptidium

A
ndinium

Erpetion

Chilenium

Viola-flower network N LCA-Relevant version LCAu-Relevant version

Other results and open problems

9/10

Generally worked with a generalization: a DAG is I-LCA-Relevant if for every vertex
v ∈ V (G) there is some A ⊆ L(G) s.t. |A| ∈ I and v ∈ LCA(A).

Our results also fit rather nicely together with an axiomatic framework recently introduced
in the context of another type of simplification (resulting in so-called LSA-trees).

Still lots of interesting open questions:
For G ⊖ W being LCA−Relevant the set W is uniquely determined and CG⊖W = CG.
For G ⊖ W being LCAu–Relevant the set W is not uniquely determined and
CG⊖W ⊊ CG is possible. How to minimize |W |? Or minimize |CG \ CG⊖W |?
Is it too much to require vertices to be LCA’s of leaves?

Recursive definition:
Every leaf in G is pertinent.
A vertex is pertinent if it is the LCA of pertinent vertices.
What is the structure of DAGs in which all vertices are pertinent and how to determine
such vertices?

Other results and open problems

9/10

Generally worked with a generalization: a DAG is I-LCA-Relevant if for every vertex
v ∈ V (G) there is some A ⊆ L(G) s.t. |A| ∈ I and v ∈ LCA(A).
Our results also fit rather nicely together with an axiomatic framework recently introduced
in the context of another type of simplification (resulting in so-called LSA-trees).

Still lots of interesting open questions:
For G ⊖ W being LCA−Relevant the set W is uniquely determined and CG⊖W = CG.
For G ⊖ W being LCAu–Relevant the set W is not uniquely determined and
CG⊖W ⊊ CG is possible. How to minimize |W |? Or minimize |CG \ CG⊖W |?
Is it too much to require vertices to be LCA’s of leaves?

Recursive definition:
Every leaf in G is pertinent.
A vertex is pertinent if it is the LCA of pertinent vertices.
What is the structure of DAGs in which all vertices are pertinent and how to determine
such vertices?

Other results and open problems

9/10

Generally worked with a generalization: a DAG is I-LCA-Relevant if for every vertex
v ∈ V (G) there is some A ⊆ L(G) s.t. |A| ∈ I and v ∈ LCA(A).
Our results also fit rather nicely together with an axiomatic framework recently introduced
in the context of another type of simplification (resulting in so-called LSA-trees).

Still lots of interesting open questions:
For G ⊖ W being LCA−Relevant the set W is uniquely determined and CG⊖W = CG.
For G ⊖ W being LCAu–Relevant the set W is not uniquely determined and
CG⊖W ⊊ CG is possible. How to minimize |W |? Or minimize |CG \ CG⊖W |?

Is it too much to require vertices to be LCA’s of leaves?

Recursive definition:
Every leaf in G is pertinent.
A vertex is pertinent if it is the LCA of pertinent vertices.
What is the structure of DAGs in which all vertices are pertinent and how to determine
such vertices?

Other results and open problems

9/10

Generally worked with a generalization: a DAG is I-LCA-Relevant if for every vertex
v ∈ V (G) there is some A ⊆ L(G) s.t. |A| ∈ I and v ∈ LCA(A).
Our results also fit rather nicely together with an axiomatic framework recently introduced
in the context of another type of simplification (resulting in so-called LSA-trees).

Still lots of interesting open questions:
For G ⊖ W being LCA−Relevant the set W is uniquely determined and CG⊖W = CG.
For G ⊖ W being LCAu–Relevant the set W is not uniquely determined and
CG⊖W ⊊ CG is possible. How to minimize |W |? Or minimize |CG \ CG⊖W |?
Is it too much to require vertices to be LCA’s of leaves?

Recursive definition:
Every leaf in G is pertinent.
A vertex is pertinent if it is the LCA of pertinent vertices.
What is the structure of DAGs in which all vertices are pertinent and how to determine
such vertices?

Other results and open problems

9/10

Generally worked with a generalization: a DAG is I-LCA-Relevant if for every vertex
v ∈ V (G) there is some A ⊆ L(G) s.t. |A| ∈ I and v ∈ LCA(A).
Our results also fit rather nicely together with an axiomatic framework recently introduced
in the context of another type of simplification (resulting in so-called LSA-trees).

Still lots of interesting open questions:
For G ⊖ W being LCA−Relevant the set W is uniquely determined and CG⊖W = CG.
For G ⊖ W being LCAu–Relevant the set W is not uniquely determined and
CG⊖W ⊊ CG is possible. How to minimize |W |? Or minimize |CG \ CG⊖W |?
Is it too much to require vertices to be LCA’s of leaves?

Recursive definition:
Every leaf in G is pertinent.
A vertex is pertinent if it is the LCA of pertinent vertices.
What is the structure of DAGs in which all vertices are pertinent and how to determine
such vertices?

Other results and open problems

9/10

Generally worked with a generalization: a DAG is I-LCA-Relevant if for every vertex
v ∈ V (G) there is some A ⊆ L(G) s.t. |A| ∈ I and v ∈ LCA(A).
Our results also fit rather nicely together with an axiomatic framework recently introduced
in the context of another type of simplification (resulting in so-called LSA-trees).

Still lots of interesting open questions:
For G ⊖ W being LCA−Relevant the set W is uniquely determined and CG⊖W = CG.
For G ⊖ W being LCAu–Relevant the set W is not uniquely determined and
CG⊖W ⊊ CG is possible. How to minimize |W |? Or minimize |CG \ CG⊖W |?
Is it too much to require vertices to be LCA’s of leaves? Recursive definition:
Every leaf in G is pertinent.
A vertex is pertinent if it is the LCA of pertinent vertices.
What is the structure of DAGs in which all vertices are pertinent and how to determine
such vertices?

Joint work with

Marc Hellmuth

Thank you!
Want to know more? See: Lindeberg & Hellmuth, Simplifying and Characterizing DAGs and

Phylogenetic Networks via Least Common Ancestor Constraints, Bulletin of Math. Bio. (2025)

Joint work with

Marc Hellmuth

Thank you!

Want to know more? See: Lindeberg & Hellmuth, Simplifying and Characterizing DAGs and
Phylogenetic Networks via Least Common Ancestor Constraints, Bulletin of Math. Bio. (2025)

Joint work with

Marc Hellmuth

Thank you!
Want to know more? See: Lindeberg & Hellmuth, Simplifying and Characterizing DAGs and

Phylogenetic Networks via Least Common Ancestor Constraints, Bulletin of Math. Bio. (2025)

