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However. . . Some species are not too keen on
evolving in a tree-like fashion.

Hybridization: species-monogamy is not
always so important

Horizontal gene transfer: why not share
some DNA?

Etc. . . .
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The evolutionary history is network-like!

How to obtain such networks?

Start with observable data
= genomic sequences of extant taxa
= set L(N) of leaves in network N

Based on observable data, infer† the network N
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Networks inferred from genomic data can . . .
. . . be highly complex and tangled
. . . contain information that is not
supported by “observable data”

Aim: methods to simplify networks while
keeping main structural features

The method we propose aims to simplify by
eliminating vertices that are not supported by
“observable data”
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Directed Acyclic Graph, known as a
DAG. The vertices are V (G).
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A network N is a DAG with a unique
root (= source).

L(N) denotes all leaves.



Absolutely necessary definitions

2/10

Ancestor and descendant: joined by
directed path. Denoted w ⪯ u.
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Least Common Ancestors: for
A ⊆ L(G), the set LCA(A) comprise
all ⪯-minimal vertices that are
ancestors of all leaves in A

LCA({1, 2})
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Least Common Ancestors: for
A ⊆ L(G), the set LCA(A) comprise
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Least Common Ancestors: for
A ⊆ L(G), the set LCA(A) comprise
all ⪯-minimal vertices that are
ancestors of all leaves in A

LCA({5, 6, 7})
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We aim to simplify by removing vertices not
supported by data.

A vertex v is an LCA-vertex (= supported), if
v is an LCA of some subset of leaves.

A DAG G is LCA-Relevant if every vertex is
an LCA-vertex.

How to determine unsupported vertices?

How to get rid of them?
Can we characterize LCA-Relevant
DAGs?
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How to determine unsupported vertices?

✓

How to get rid of them?
Can we characterize LCA-Relevant DAGs?

✓

Lemma
A vertex v is not an LCA-vertex ⇐⇒
v has a child u s.t. C(v) = C(u)

All non-LCA-vertices can be determined
in polynomial time.

Theorem
A DAG G is LCA−Relevant ⇐⇒
no two adjacent vertices of G have the same
cluster

not LCA-Relevant LCA-Relevant
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If v is a vertex of G, then G ⊖ v is obtained by
adding an edge from each parent of v to each
child of v, and then removing v.

Theorem
If W is the set of all non-LCA vertices of G,
then G ⊖ W is LCA-Relevant and satisfy

Well... a long list of appealing
properties of what structure of G
is kept

-
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Strengthen LCA-Relevant DAGs a bit
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A DAG G is LCA-Relevant if for
every vertex v ∈ V (G) there is some
A ⊆ L(G) s.t. v ∈ LCA(A).

Characterization
Let G be a DAG. The following are
equivalent:

G is LCAu-Relevant
G is LCA-Relevant and
satisfy (PCC)
If you remove all shortcuts from
G, what you obtain is isomorphic
to the Hasse diagram of CG

Network NLCA-Relevant LCAu-Relevant
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(PCC): there is a vw-path ⇐⇒ C(v) and C(w) are
⊆–comparable.
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Shortcut: edge (u, v) for which there is some other uv-path
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Computing an LCAu−Relevant version of any DAG G can be
done in polynomial-time
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Other results and open problems
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Generally worked with a generalization: a DAG is I-LCA-Relevant if for every vertex
v ∈ V (G) there is some A ⊆ L(G) s.t. |A| ∈ I and v ∈ LCA(A).

Our results also fit rather nicely together with an axiomatic framework recently introduced
in the context of another type of simplification (resulting in so-called LSA-trees).

Still lots of interesting open questions:
For G ⊖ W being LCA−Relevant the set W is uniquely determined and CG⊖W = CG.
For G ⊖ W being LCAu–Relevant the set W is not uniquely determined and
CG⊖W ⊊ CG is possible. How to minimize |W |? Or minimize |CG \ CG⊖W |?
Is it too much to require vertices to be LCA’s of leaves?

Recursive definition:
Every leaf in G is pertinent.
A vertex is pertinent if it is the LCA of pertinent vertices.
What is the structure of DAGs in which all vertices are pertinent and how to determine
such vertices?
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