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1 PART A: RNA FOLDING LANDSCAPES AND
BASIN HOPPING GRAPH REVISITED

Given an RNA sequence σ, in this contribution, we consider the
ensemble X = Xσ of secondary structures in which pseudoknots
can be included. It has been proven that the cardinality |Xσ| grows
exponentially with the length of σ (Akutsu (2000); Lyngso &
Pedersen (2000) and the references therein) provided the stickiness
of σ, i.e., the probability that two arbitrarily chosen nucleotides in
σ can form a base pair, is relatively large. This is true for most
biological RNA sequences, since the values of stickiness for RNAs
are around 0.375 (Hofacker et al., 1994).

This ensemble of RNA structures can be arranged as a graph,
referred as RNA folding landscape, by defining a “move set”, i.e. by
specifying which pairs of secondary structures can be interconverted
in a single step (Reidys & Stadler (2002) and the references
therein). Each vertex of the RNA folding landscape, i.e., each
RNA secondary structure x, is associated with an energy f(x). For
the cases of pseudoknot-free structures, a well-established energy
model allows us to explicitly compute f(x) for every structure s
in terms of additive contributions for base pair stacking as well as
hairpin loops, interior loops, bulges, and multiloops (Mathews et al.,
1999). When pseudoknots appear, the evaluation of free energy
gets more involved. The current energy models for pseudoknots
are simple, heuristic extensions of the standard energy model that
use “developer-defined” energy penalties to score pseudoknots.
An alternative, rather general energy function for pseudoknotted
structures has been derived from the “cross-linked gel model”
(Isambert & Siggia, 2000), however it suffers from the same lack
of experimental data. Furthermore, no open source implementation
of this energy function is available.

A structure x ∈ X is a local minimum (LM) of the landscape
if it does not have neighbors with lower energy. In particular, x
is a global minimum or a minimum free energy structure (MFE)
if its energy is minimal within X . For each LM x we define its
gradient basin G(x) ⊂ X as the set of structures z ∈ X so that
the unique gradient walk with starting point in z ends in x. We
note for later reference that the gradient basins of all the LMs in the
RNA folding landscape forms a partition of its configuration space
X . This partitioning forms an intuitive coarse-grained model of the
landscape.
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Fig. 1. A landscape with four local minima (A, B, C, and D)
is illustrated in the left hand side. Its corresponding barrier tree
(bottom) and basin hopping graph (top) are shown on the right
hand side with saddle heights annotated inside. For any pair of
local minima, their corresponding saddle heights are all equal to
0 kcal/mol. Regarding direct saddle heights, expect DS(A,D) =
DS(B,C) = 0.5kcal/mol, the remaining are all of value 0 kcal/mol.
One key difference is the energetically favorable neighborhood
relation between the basins, can be displayed in the basin hopping
graph, but not in the barrier tree.

The cycle Bh(x) of x at energy level h can be defined as a
maximal connected subset of {z ∈ X|f(z) ≤ h} that contains x.
In other worlds, Bh(x) is the set of structures found by a flooding
algorithm starting at x (Sibani et al., 1999; Flamm et al., 2000,
2002). In particular, the basin B(s) = Bf(s)(s) of s (Flamm et al.,
2002) is the set of all points in X that can be reached from s by a
path whose elevation never exceeds f(s).

A direct saddle between two LMs x and y is a structure s ∈ X
with minimal energy so that both x and y are reachable from s by
means of an adaptive walk. We call DS(x, y) = f(s) the direct
saddle height between x and y. Not every pair of LMs is connected
by direct saddles.

The saddle height S(x, y) between any two vertices x and y is the
minimal value h for which y ∈ Bh(x). In other words, S(x, y) is the
level at which two cycles Bh(x) and Bh(y) “merge”. If x and y are
LMs connected by a direct saddle point then S(x, y) ≤ DS(x, y).
A structure s ∈ X is called a saddle between x, y ∈ X if (i)
f(s) = S(x, y) and (ii) there is a path P connecting x and y so
that f(s) ≥ f(z) for all z ∈ P . A path P ∗ connecting x and
y in the landscape is energetically optimal if maxz∈P∗ f(z) =
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Fig. 2. Saddles, direct saddles and energetically optimal paths. (Top)
The y-axis denotes the (free) energies of the structures in the
landscape. There are in total three gradient basins with local minima
LM1, LM2 and LM3. Structures in the same gradient basin are
labeled with the same color, except two saddles s1 and s2. In which,
the structure s1 is a direct saddle and saddle between LM1 and LM2.
An energetically optimal path between LM1 and LM2 pass through
structures a, b, s1, c, d consecutively. Analogously, s2 is a direct
saddle and saddle between LM2 and LM3 with an energetically
optimal path passing through structures e, s2, f, and g. Note here,
s1 is a saddle but not a direct saddle between LM1 and LM3. In
fact, there does not exist any direct saddle between LM1 and LM3
since there does not exist any structure from which both LM1 and
LM3 are reachable by adaptive walks. (Bottom) The resulting BHG
of this landscape.

S(x, y). Energetically optimal paths are not necessarily unique. See
Fig. 2 for an illustration of the concepts mentioned above. For
RNA folding landscapes, the problems of computing saddle heights,
saddle points and energetically optimal path are NP-hard (Maňuch
et al., 2011).

The basic idea of basin hopping graph (BHG) is to incorporate
additional neighborhood information by considering LMs as
adjacent if the transition between their corresponding basins are
“energetically optimal”. A schematic diagram of BHG for a toy
landscape is illustrated in Fig. 1. In which, the transition from A to B
on Fig. 1 is energetically optimal, since S(A,B) = DS(A,B) = 0,
but the transition from A to D is not, since 1 = DS(A,D) >
S(A,D) = 0.

2 PART B: IMPLEMENTATION DETAILS OF
PSEUDOKNOTS

2.1 Pseudoknot energy model of 1-structures in gfold
In this section, we give a brief review of the energy model for
evaluating 1-structures introduced in gfold (Reidys et al., 2011).
A full-fledged version is available in the supplementary material of
their original paper.

In the pseudoknot energy model of gfold, except pseudoknotted
loops, all other types of loops are evaluated according to the
standard Turner 1999 energy model (Mathews et al., 1999). The
energy contributions of pseudoknotted loops are evaluated as an
extended version of multiloops.

More precisely, the energy of an external pseudoknot (a
pseudoknot not covered by any base pair) is evaluated as

Epseudo = βType +B · β2 + U · β3. (1)

In which, the parameter βType is is the penalty of forming a
pseudoknot of Type H, K, L, or M, B is the number of base pairs
forming the pseudoknot, and U is number of unpaired nucleotides
inside the loop.

Since the number of crossing base pairs is always at least two,
a multiloop is formed whenever a pseudoknot is nested in a base
pair. In these cases, the penalty parameter βType is replaced by
βmulType. Otherwise, if a pseudoknot is nested in another pseudoknot,
then βType is replaced by βpseudoType . The energy parameters for
pseudoknots used in the gfold are listed in Table 1.

There is a heavy penalty for forming a pseudoknot inside
another pseudoknot or multiloop, which may be due to a lack of
experimental evidence of such complicate pseudoknotted structures.
As a result of the relatively heavy penalties to form a pseudoknot, a
gradient walk starting from a pseudoknot-free structure can not end
in a pseudoknotted LM.

Table 1. The energy parameters for pseudoknot used in gfold. All energy
values are evaluated in units of kcal/mol.

Type= H K L M
βType 9.6 12.6 14.6 17.6
βmulType 15.0 18.0 20.0 23.0
βpseudoType 15.0 18.0 20.0 23.0
β2 0.1
β3 0.1

2.2 Adaptations in gfold program
We have made some necessary adaptions in gfold (Bon et al.,
2008; Reidys et al., 2011) to implement the adaptive sampling
schedule used in RNAlocmin. First, an additional option for
the ξ-scaling procedure required in RNAlocmin is implemented.
Secondly, the output format of gfold is tailored for its usages in
the ξ-scaling procedure including an option to vary the sample sizes.
The original output file of gfold is still kept as an output option in
the modified version, which is available on the webpage
https://github.com/marcelTBI/gfold.
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2.3 Energy parameters in BHGψ and BHG◦

For comparison purpose, in this publication we often consider, for
an RNA whose ground state is pseudoknot-free the full BHGψ

including pseudoknotted LMs and a pruned BHG◦ from which first
all pseudoknotted LMs are removed and then the BHG-adjacency is
recomputed using only pseudoknot-free structures along the paths.

To make sure that the energy parameters are coherent, in both
BHGψ and BHG◦, we are obliged to use the standard Turner energy
model (Mathews et al., 1999) without considering dangle energies
as implemented in the ViennaRNA Package with options
-d0 -P rna turner99.par .

This is because in the energy model used in gfold, the penalty-
parameters for pseudoknots are only trained under the standard
Turner energy model (Mathews et al., 1999) at 37◦C without taking
the dangle energies into consideration.

2.4 Determine valid base pairs to add into a secondary
structure

Given a 1-structure S, we first need to construct the conflict graph
of S. The vertices of conflict graph are constructed based on the
relations between any two helices a = (la, ra; da) which is a set of
base pairs {(la, ra), (la + 1, ra − 1), . . . , (la + da, ra − da)} and
b = (lb, rb; db) of S:

1. crossing, denoted by a⊥b if la < lb < ra < rb or its
symmetric case is true;

2. nesting, denoted by a‖b if la < lb < rb < ra or its symmetric
case is true;

These two relations give rise to a partition of the helices of S
into gap-sets via requiring that two helices a and b belong to
the same gap-set if a‖b and they cross with the same set of
helices in S. For example, in Fig. 3 (A), there are in total 6
helices {a1, a2, . . . , a6} in a pseudoknotted structure and 5 gap-sets
{{a1, a6}, {a2}, {a3}, {a4}, {a5}}. Each gap-set is represented as
a vertex in its conflict graph shown in Fig. 3 (B). Furthermore, we
draw an edge in the conflict graph between two vertices, if their
corresponding helices cross with each other. In Fig. 3 (B), two gap-
sets {a4} and {a1, a6} are adjacent in the conflict graph given that
a1⊥a4 and a6⊥a4.

Adding a base pair a in S therefore, in the “worst” case, is
equivalent to add a vertex (and potential incident edges) into the
conflict-graph of S accordingly, see Fig. 3 (D) for an example. Thus
all we need is to test whether the components of the resulting conflict
graph has some component other than the 5 valid types shown in
Fig. 3 (C). In particular, we only need to consider the components
which contain base pairs crossing with a.
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Fig. 3. Given a pseudoknotted structure (A) and its conflict-
graph (B). This structure has in total 6 helices notated with
{a1, a2, . . . , a6} and 11 single-stranded nucleotides notated with
{b1, b2, . . . , b11}. Six helices are divided into 5 gap-sets gap-sets
{{a1, a6}, {a2}, {a3}, {a4}, {a5}} which accordingly become the
vertices in its conflict graph. Adding a new base pair a7 = (b8, b9)
gives rise to an invalid structure since the component including a7 in
the resulting conflict graph is not one of the five valid types shown
in (C). Adding a base pair (b7, b9) gives rise to a valid structure
since the according conflict graph stays the same except the helix
a4 thickens by the base pair (b7, b9).
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3 PART C: DETAILS OF THE RNA FOLDING
KINETICS

3.1 Methods
From a microscopic point of view, the dynamics on an RNA folding
landscape can be described by a continuous-time Markov process
with infinitesimal generator R = (ryx) (Flamm et al., 2000). The
transition rate ryx from a secondary structure x to y is non-zero
only if x and y are adjacent, i.e., if they differ by adding/removing
a single base pair. Typically the Metropolis rule, the following
formula is used to assign microscopic rates

ryx = r0 min{exp {−(f(y)− f(x))/RT}, 1}. (1)

Here, f evaluates the (free) energy of x, R is the universal
gas constant, T is the absolute ambient temperature and r0 is a
parameter used to gauge the time axis from experimental data. Here
we simply use r0 = 1, implicitly defining our time unit.

Denote the probability that an RNA molecule has the secondary
structure x at time t by Px,t, the dynamics is governed by the
master equation dPx,t/dt =

∑
y rxyPy,t with rxx = −

∑
y 6=x ryx.

This linear system of differential equations can be exactly solved
by explicitly computing P(t) = exp(tR) · P(0) for short RNA
molecules ∼ 30nt, where P(t) is the vector of Px,t for all possible
structures x. The program treekin (Wolfinger et al., 2004)
provides an implementation of this method.

Even for RNA molecules of moderate size, direct computation of
the matrix exponential becomes impossible due to the exponential
growth of the underlying state space. An alternative is to perform
stochastic simulations as is done in the kinfold program Flamm
et al. (2000), however this turns out to be rather time consuming
for large RNA molecules. Wolfinger et al. (2004) used barrier
trees (Flamm et al., 2002) to assign a macro state to each local
minimum and recalculate rates between these. This approximation
has shown excellent agreement to the full-process computed from
Eqn. 1 with all possible structures, but its exhaustive nature limits
its applicability to molecules up to ∼ 80nt.

We observed that the computation of matrix exponentials in
treekin becomes numerically unstable when some transition
rates are very small. We therefore use a Padé approximation and
the scaling and squaring method described in (Al-Mohy & Higham,
2009) and implemented in the function f01ecc of the NAG library
Mark 9 with time complexity of O(N3) (N is the dimension of the
matrix and thus the number of the LMs in our case).

3.2 Comparison to Wolfinger et al. (2004)’s folding
dynamic approximation

To demonstrate the quality of the BHG approximation, we present
the comparison to the barrier tree based coarse graining of folding
kinetics for several examples. We show that our approximation
reflects a qualitatively correct description of the process, as well
as important quantitative details, such as, the ordering of the
top frequent structures and the time needed to converge to the
thermodynamic equilibrium distribution. The time for an RNA to
reach the equilibrium is evaluated as the first time t, when the
Euclidean distance between computed distribution P(t) and the
Boltzmann equilibrium distributions is less than a threshold 10−5.

The examples include the following: the Pyaiella Littoralis Group
II Intron (PDB 01042, 34nt, Fig. 4), the pseudoknot domain

of tmRNA from E. coli (PKB49, 30nt, Fig. 5) and Legionella
pneumophila (PKB67, 30nt, Fig. 6), a synthetic tetraloop-receptor
(PDB 00924, 86nt, Fig. 7), and a Hammerhead ribozyme (type III)
(RFA 00398, 54nt, Fig. 8). The LMs that appear in both kinetics
plots are marked with same color, otherwise with black.

For longer RNAs, the exponential growth of LMs in the
BHG poses computational difficulties in our continuous time
Markov chain based folding simulations, since the number of LMs
considered is exactly the dimension of the infinitesimal generator
R. The number of LMs on BHG can be easily beyond 105 for an
RNA of length ∼ 100nt, even with additional restriction on their
energy range. Furthermore, our observations show that only a small
portion of the whole set of LMs on BHG play important roles in
the kinetic simulations, most of the LMs only contribute in fast
fluctuations and the resulting computational cost. For example, the
folding kinetics of the Pyaiella Littoralis Group II Intron shown in
Fig. 4 is constructed from 185 LMs with Wolfinger et al. (2004)’s
approximation and 173 LMs on BHG, respectively. But in both
simulations, there are only 6 LMs whose population probabilities
rises beyond 7% at any time during the kinetic simulations.
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Fig. 4. Folding kinetics of the Pyaiella Littoralis Group II Intron
(PDB 01042, 34nt). (Top) Wolfinger et al. (2004)’s folding dynamic
approximation and (Bottom) Arrhenius approximation on BHG.
The process was started in the open chain state and run until
convergence to the thermodynamic equilibrium distribution. The
x-axes and y-axes indicate the time and population probabilities,
respectively.
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Fig. 5. Folding kinetics of the pseudoknot domain of tmRNA from
E. coli (PKB49, 30nt). (Top) Wolfinger et al. (2004)’s folding
dynamic approximation and (Bottom) Arrhenius approximation on
BHG. The process was started in the open chain state and run until
convergence to the thermodynamic equilibrium distribution. The
x-axes and y-axes indicate the time and population probabilities,
respectively.
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Fig. 6. Folding kinetics of the pseudoknot domain of tmRNA from
Legionella pneumophila (PKB67, 30nt). (Top) Wolfinger et al.
(2004)’s folding dynamic approximation and (Bottom) Arrhenius
approximation on BHG. The process was started in the open chain
state and run until convergence to the thermodynamic equilibrium
distribution. The x-axes and y-axes indicate the time and population
probabilities, respectively.
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Fig. 7. Folding kinetics of a synthetic tetraloop-receptor
(PDB 00924, 86nt). (Top) Wolfinger et al. (2004)’s folding
dynamic approximation and (Bottom) Arrhenius approximation on
BHG. The process was started in the structure
.......((((((((((((....))))))))))))((.(((....))).))((((((((..(....)..)))))))).........
which is an LM of energy -37.80 kcal/mol. This kinetic process
was not started in the open chain structure given that there are more
than 10000 LMs in between the open structure and the ground state
structure which is beyond the feasible range of the Wolfinger et al.
(2004)’s folding dynamic approximation. The process was run until
convergence to the thermodynamic equilibrium distribution. The
x-axes and y-axes indicate the time and population probabilities,
respectively.
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Fig. 8. Folding kinetics of the Hammerhead ribozyme (type III)
(RFA 00398, 54nt). (Top) Wolfinger et al. (2004)’s folding dynamic
approximation and (Bottom) Arrhenius approximation on BHG.
The process was started in the open chain state and run until
convergence to the thermodynamic equilibrium distribution. The
x-axes and y-axes indicate the time and population probabilities,
respectively.
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4 PART D: QUASI-STEADY-STATE REDUCTION
We first partitioned all the LMs found into two categories: (G)
important LMs (with high degree in our case) which are the “good”
ones to keep and (B) intermediate LMs which are the “bad” ones to
be neglected. Next, we re-arrange the ordering of the LMs based on
their categories so that the rate matrix R and population vector P(t)
can be rewritten into the following format

R =

(
GG GB
BG BB

)
P(t) = (PG(t),PB(t))

In which, PG(t) and PB(t) denotes the population subvectors of
the good and bad states respectively. Submatrix GB contains the
transition rates from good states to bad states. The remaining three
sub-matrices GG, BG and BB are defined analogously.

Accordingly, dP(t)
dt

= P(t)R can be written as(
dPG(t)

dt
,
dPB(t)

dt

)
= (PG(t),PB(t)) ·

(
GG GB
BG BB

)
Equivalently, we have

dPG(t)

dt
= PG(t) ·GG + PB(t) ·BG

dPB(t)

dt
= PG(t) ·GB + PB(t) ·BB

Using dPB(t)
dt

= 0, we derive

PB(t) = −PG(t) ·GB ·BB−1

and furthermore

PG(t) = PG(0) · eGG−GB·BB−1·BG.

In which, the Schur complement GG − GB · BB−1 · BG can
be computed efficiently given that the rate matrix R is sparse. Due
to properties of Schur complement, it can be computed iteratively
– reducing a single LM at each step (the matrix BB is a scalar).
Then the time complexity of such a single step is O(c2), where c
is the number of neighbors of this LM. Assign b = dim(BB) and
assume that degree of all reduced LM is small and bounded by some
cmax (cmax � b), then the whole time complexity is O(bc2max).
However, if the matrix is dense (cmax ∼ b) this reduction is equally
time consuming as naive computation of BB−1 and thus unfeasible
for our purposes.

In practice, this heuristic works reasonably well and has been
implemented as part of the BHGbuilder program.

5 PART E: ANALYSIS OF THE LOWER PART OF
RNA MOLECULES’ LANDSCAPES

5.1 Summary of LMs and gfold-sampling structures
in the lower parts of RNA molecules’ landscapes

We analyze the composition of the LMs in the “lower” part of the
energy landscapes of various RNA molecules listed in Table 2. In
which, “lower” part means that we only consider LMs with negative

Table 2. Basic information of the RNAs including length (LEN) and type
(TYPE)

ID LEN TYPE
PKB259 57 Viral 3 UTR
PKB139 67 Viral tRNA-like
PKB173 73 Ribozymes
PKB238 84 Viral 3 UTR
PKB138 116 Viral tRNA-like
PKB2 50 Viral ribosomal frameshifting
PKB49 30 tmRNA
PKB52 52 tmRNA
PKB67 30 tmRNA
PKB70 55 tmRNA
PKB71 108 mRNA
PDB 00213 101 Synthetic RNA
PDB 00542 126 Synthetic RNA
PDB 00702 94 Other Ribosomal RNA
PDB 00924 86 Synthetic RNA
PDB 01042 34 Group II Intron
RFA 00398 54 Hammerhead Ribozyme
SRP 00005 90 Signal Recognition Particle RNA
SRP 00094 91 Signal Recognition Particle RNA
SRP 00194 81 Signal Recognition Particle RNA
SRP 00284 87 Signal Recognition Particle RNA
TMR 00272 102 tmRNA
Bsu 42 Synthetic RNA

free energies and within 10 kcal/mol above the minimum free energy
of the whole folding landscape.

We contrast RNAs with pseudoknots in their ground state
structures selected from Pseudobase++ (PKB ID), (Han et al.,
2002; Taufer et al., 2009) and pseudoknot-free structures from the
RNA STRAND database (Andronescu et al., 2008) (RNA STRAND
ID). As well the transcriptional Bacillus subtilis riboswitch (Bsu)
with an H-type pseudoknotted structure or a pseudoknot-free
structure as its ground state depending on the presence of preQ1

(Suddala et al., 2013). Note here, we select the molecules such
that their ground state structures predicted by gfold have both
sensitivity and PPV beyond 80%, so that the effects caused by the
prediction software can be limited.

The mean and standard deviation (STDEV) for the number
and proportion of LMs of each type (pseudoknotted (H, K,
L) or pseudoknot-free (N)) are given in Table 3 based on 10
independent samples. Furthermore, in Table 4 we report the
analogous information of the gfold-sampling structures starting
from which these LMs are derived by simulating gradient walks. In
both tables, the numbers regarding to the M-type LMs or structures
are omitted, since structures of such type were not observed in
any of the experiments. Comparison of 10 independent samples
shows that, despite that sometimes the sample sets of structures
have relatively large deviations, the derived LM sets vary only
slightly, confirming that the sampling is sufficient for the purpose
of detecting LMs.
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Table 3. Summary of LMs in the lower parts of RNA molecules’ landscapes. The composition of LMs (mean values) are given based on their types:
pseudoknotted (H, K, L) or pseudoknot-free (N).

ID LEN PK N:H:K:L (% LMs) # LMs N:H:K:L with STDEV (# LMs)
PKB259 57 H 31.1 28.9 14.4 25.6 347.5 108.2±3.0 100.4±5.1 50.0±2.8 88.9±4.9
PKB139 67 H 33.6 50.6 13.6 2.2 4847.1 1628.5±24.9 2452.8±38.3 657.5±14.2 108.3±2.6
PKB173 73 K 13.8 44.6 29.5 12.0 4143.9 573.6±169.0 1848.5±506.4 1224.3±338.1 497.5±153.7
PKB238 84 H 53.3 43.1 2.8 0.8 326.3 174.0±0.0 140.6±7.6 9.0±0.0 2.7±1.4
PKB138 116 H 2.6 70.3 26.9 0.2 1646.9 42.4±2.5 1157.7±12.7 443.5±11.5 3.3±0.8
PKB2 50 H 25.2 47.5 18.6 8.6 4257.6 1072.7±2.5 2024.3±20.5 793.2±9.7 367.4±7.7
PKB49 30 H 27.2 62.2 4.4 6.2 113.8 31.0±0.0 70.8±1.7 5.0±1.0 7.0±0.0
PKB52 52 H 18.7 59.5 10.6 11.2 439.0 82.0±0.0 261.1±3.0 46.6±0.5 49.3±1.2
PKB67 30 H 40.9 59.1 0.0 0.0 22.0 9.0±0.0 13.0±0.0 0.0±0.0 0.0±0.0
PKB70 55 H 21.3 65.1 6.3 7.3 482.5 103.0±0.0 314.2±1.8 30.3±0.6 35.0±0.0
PKB71 108 L 1.2 0.3 98.4 0.0 3860.0 47.5±2.1 11.8±1.9 3799.5±47.0 1.2±0.7
PDB 00213 101 N 34.5 36.3 29.1 0.1 1350.2 466.0±34.9 489.8±44.2 392.9±53.7 1.5±0.7
PDB 00542 126 N 99.4 0.5 0.0 0.0 4605.6 4579.8±72.2 24.3±1.3 1.5±0.7 0.0±0.0
PDB 00702 94 N 22.8 1.0 76.1 0.0 3708.9 846.8±3.2 38.0±1.6 2824.1±6.4 0.0±0.0
PDB 00924 86 N 96.7 0.0 3.3 0.0 276.0 267.0±0.0 0.0±0.0 9.0±0.0 0.0±0.0
PDB 01042 34 N 66.7 33.3 0.0 0.0 12.0 8.0±0.0 4.0±0.0 0.0±0.0 0.0±0.0
RFA 00398 54 N 81.1 12.9 6.0 0.0 443.4 359.8±36.3 57.2±14.6 26.4±6.5 0.0±0.0
SRP 00005 90 N 41.7 54.0 1.3 3.1 4560.3 1902.9±29.8 2460.3±33.5 57.5±2.0 139.6±6.2
SRP 00094 91 N 40.7 57.5 0.2 1.5 9004.0 3668.9±41.2 5178.5±85.7 18.3±1.3 138.3±8.4
SRP 00194 81 N 72.2 27.8 0.0 0.0 1230.1 887.8±1.4 342.3±1.6 0.0±0.0 0.0±0.0
SRP 00284 87 N 89.4 10.6 0.0 0.0 4362.4 3899.6±99.6 461.0±15.6 1.8±0.9 0.0±0.0
TMR 00272 102 N 76.0 23.4 0.4 0.2 2959.7 2248.7±42.0 694.0±23.0 10.5±2.1 6.5±2.2
Bsu 42 N/H 34.5 56.0 6.7 2.9 139.3 48.0±0.0 78.0±2.7 9.3±6.0 4.0±0.0

Table 4. Summary of distinct gfold-sampling structures in the lower parts of RNA molecules’ landscapes. The composition of structures (mean values) are
given based on their types: pseudoknotted (H, K, L) or pseudoknot-free (N).

ID LEN PK N:H:K:L (% Structures) # Structures N:H:K:L with STDEV (# Structures)
PKB259 57 H 69.8 23.3 1.5 5.5 18572.0 12956.3±132.8 4318.7±68.1 276.0±14.3 1021.0±21.4
PKB139 67 H 48.6 46.7 3.1 1.6 112326.3 54563.0±1955.0 52418.1±1630.0 3499.0±113.3 1846.2±65.7
PKB173 73 K 26.0 32.0 29.7 12.3 59852.8 15565.5±3822.0 19125.5±6158.1 17788.2±5380.2 7373.6±2105.4
PKB238 84 H 90.5 6.3 2.9 0.4 46804.2 42336.7±122.2 2932.7±42.6 1368.8±37.1 166.0±8.7
PKB138 116 H 1.3 92.2 6.5 0.0 134964.9 1780.1±33.6 124373.0±188.9 8807.0±85.4 4.8±2.1
PKB2 50 H 34.2 56.6 7.7 1.5 146286.6 50075.1±1966.5 82734.5±2863.5 11310.3±475.1 2166.7±106.8
PKB49 30 H 15.9 82.6 0.4 1.1 5747.5 913.7±195.2 4748.8±849.5 23.7±5.0 61.3±15.6
PKB52 52 H 21.6 65.6 7.2 5.6 26921.1 5810.2±525.0 17655.8±1579.1 1936.5±187.9 1518.6±162.7
PKB67 30 H 52.5 47.5 0.0 0.0 590.0 310.0±0.0 280.0±0.0 0.0±0.0 0.0±0.0
PKB70 55 H 18.2 79.8 1.2 0.8 44393.6 8066.4±163.8 35441.9±635.3 517.5±10.4 367.8±15.7
PKB71 108 L 0.2 0.0 99.8 0.0 193679.6 335.0±12.9 4.1±1.4 193340.2±3873.7 0.3±0.5
PDB 00213 101 N 67.7 29.2 3.1 0.0 63012.5 42633.9±5076.2 18402.7±2380.1 1975.5±318.8 0.4±0.5
PDB 00542 126 N 100.0 0.0 0.0 0.0 148861.8 148813.8±3062.5 46.6±7.1 1.4±1.1 0.0±0.0
PDB 00702 94 N 23.1 0.0 76.9 0.0 241373.1 55672.1±481.9 45.1±4.4 185655.9±1640.0 0.0±0.0
PDB 00924 86 N 99.9 0.0 0.1 0.0 67393.1 67339.0±1480.4 0.0±0.0 54.1±5.1 0.0±0.0
PDB 01042 34 N 100.0 0.0 0.0 0.0 2920.8 2920.8±199.2 0.0±0.0 0.0±0.0 0.0±0.0
RFA 00398 54 N 99.3 0.6 0.1 0.0 25871.1 25680.5±8056.6 165.9±83.2 24.7±14.2 0.0±0.0
SRP 00005 90 N 79.7 20.0 0.0 0.3 134680.9 107326.9±2278.2 26950.3±682.0 59.6±7.7 344.1±20.1
SRP 00094 91 N 78.0 21.9 0.0 0.1 179417.9 139882.2±2179.1 39361.2±858.0 6.1±2.6 168.4±11.2
SRP 00194 81 N 98.9 1.1 0.0 0.0 133245.2 131767.6±3544.4 1477.6±73.8 0.0±0.0 0.0±0.0
SRP 00284 87 N 98.3 1.7 0.0 0.0 122341.4 120219.1±4052.3 2120.8±96.4 1.5±1.2 0.0±0.0
TMR 00272 102 N 93.0 7.0 0.0 0.0 83103.6 77262.7±2144.9 5832.6±204.1 5.4±2.1 2.9±0.8
Bsu 42 N/H 61.7 37.4 0.4 0.4 4841.0 2989.2±180.4 1812.6±110.9 19.6±1.2 19.6±1.2
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5.2 Robustness of BHG-approach in estimating saddle
heights

As shown in Table 3, the LM sets are fairly stable when sufficiently
large sets are sampled. Of course, the LM sets obtained from
independent samplings are usually not identical since the high
energy LMs grow exponentially in number and thus cannot be
exhaustively collected in practise. The BHGs constructed based on
these LM sets therefore will differ in vertex sets, edge sets and the
weights (saddle heights) on edges. We therefore show that these
BHGs nevertheless agree to high accuracy on the low-energy LMs,
and the edges between them. As a consequence, the estimations of
saddle heights between them are also robust.

To this end, we first compute BHGs based on 10 independent
samples for a given RNA sequence, collect the set of the common
LMs in these BHGs and then evaluate the standard deviations of
saddle heights between all these pairs of common LMs. The average
standard deviations are reported in Table 5. Note that the number of
common LMs is different from the number of LMs generated with
RNAlocmin in Table 3. This is because the heuristic algorithm
constructing the BHGs first selects the non-shallow LMs from the
initial LM set generated from RNAlocmin and then iteratively
expands this set of non-shallow LMs by adding intermediate LMs
detected in the path searching procedure. For three examples
PDB 00542, PDB 00702, and SRP 00005, the evaluation described
above is computationally infeasible due to the large numbers (more
than 13 thousands) of the common LMs in their BHGs. Given a
set of K LMs, evaluating saddle heights between all pairs of these
LMs requires O(K3) time using a variant of Dijkstra’s algorithm
to detect the corresponding shortest min-max paths. Instead of the
entire set, we therefore evaluate only the lowest 1000 common LMs.

Given that the averaged deviations are less than 0.26 kcal/mol, we
conclude that our method in estimating saddle heights is robust.

6 PART F: SADDLE HEIGHT CHANGES
BETWEEN BHGψ AND BHG◦

6.1 Histograms of saddle height changes between
BHGψ and BHG◦

In the following, we only consider for RNAs whose ground states
are pseudoknot-free. For each of such RNAs, the full BHGψ

including pseudoknotted LMs and a pruned BHG◦ from which first
all pseudoknotted LMs are removed and then the BHG-adjacency is
recomputed using only pseudoknot-free structures along the paths.
The re-evaluation may result in the removal of adjacencies from
BHGψ .

Five examples (PDB 00542, PDB 01042, RFA 00398, SRP 00194
and SRP 00284) were not shown given that the differences between
BHGψ and BHG◦ are relatively small.

Histograms of saddle height changes between BHGψ and BHG◦

for 8 RNAs are shown in Fig. 9-15. In each example, the x-axes
of the top and bottom histograms denote the exact changes (in
kcal/mol) and relative changes (in %), respectively. The y-axes
denote the corresponding numbers of pseudoknot-free LMs pairs
with such saddle changes. The colors of the histograms indicate
the types of pseudoknotted structures appear in the energetically
optimal paths between LM pairs. For example, the pink color (Type
HK) indicates that the energetically optimal paths contain structures

Table 5. Summary of the saddle heights estimated based on 10 independent
samples. It shows the average standard deviations (STDEV) of the saddle
heights between all (except 3 large examples) and for the subset of the lowest
1000 common LMs. The saddle heights are evaluated in units of kcal/mol.

ID
# LMs STDEV (on average)

in common All Lowest 1000
PKB259 442 0.047 0.047
PKB139 6256 0.12 0.017
PKB173 13786 0.116 0.045
PKB238 7246 0.169 0.129
PKB138 5682 0.134 0.064
PKB2 3953 0.04 0.014
PKB49 1154 0.054 0.048
PKB52 5158 0.153 0.046
PKB67 624 0.007 0.007
PKB70 3199 0.149 0.064
PKB71 2681 0.124 0.123
PDB 00213 4136 0.169 0.049
PDB 00542 20430 NA 0.07
PDB 00702 29270 NA 0.031
PDB 00924 5670 0.252 0.122
PDB 01042 969 0.112 0.112
RFA 00398 1187 0.108 0.1
SRP 00005 13670 NA 0.041
SRP 00094 11769 0.174 0.018
SRP 00194 1190 0.141 0.119
SRP 00284 8135 0.102 0.031
TMR 00272 4931 0.133 0.057
Bsu 816 0.114 0.114

with both H-type and K-type pseudoknots. Green (Type N) indicates
the simulated paths do not contain any pseudoknotted structures.

6.2 Using --depth parameter in findpath to
improve negative saddle height differences between
BHGψ and BHG◦

In general, saddle heights between the LMs in BHG◦ will increase
compared to BHGψ . In practice, however, the inclusion of
additional LMs during the recomputation of the adjacencies can
in rare cases lead to an apparent decrease in saddle heights and
furthermore negative saddle heights differences between BHGψ and
BHG◦. For example, see Fig. 16.

In such cases, the saddle heights in BHGψ are overestimated
due to the heuristic nature of the findpath program (?) used to
estimate saddle heights. Findpath performes a bounded breadth-
first search algorithm that at each depth only keeps the m most
promising candidates. The option “–depth” with default value 10
is used to specify m and therefore balances speed versus accuracy.
As we show in Fig. 17, once we increase the candidate number
to 100, all negative saddle height differences are eliminated, see
Fig. 16.
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Fig. 9. Histograms of saddle height changes between BHGψ and
BHG◦ of the transcriptional preQ1 riboswitch of Bacillus subtilis
(Bsu, Suddala et al. (2013)). The relevant saddle heights are
generated with findpath using default parameter --depth=10.

Fig. 10. Histograms of saddle height changes between BHGψ

and BHG◦ of the core encapsidation signal of the Moloney
murine leukemia virus (PDB 00213, D’Souza et al. (2004)). The
relevant saddle heights are generated with findpath using default
parameter --depth=10.
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Fig. 11. Histograms of saddle height changes between BHGψ

and BHG◦ of a signal recognition particle of M. Jannaschiii
(PDB 00879, Hainzl et al. (2005)). The relevant saddle heights are
generated with findpath using default parameter --depth=10.

Fig. 12. Histograms of saddle height changes between BHGψ and
BHG◦ of a synthetic tetraloop-receptor (PDB 00924, Davis et al.
(2005)). The relevant saddle heights are generated with findpath
using default parameter --depth=10.
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Fig. 13. Histograms of saddle height changes between BHGψ and
BHG◦ of a signal recognition particle RNA provided in the SRPDB
database (SRP 00005, Rosenblad et al. (2003)). The relevant saddle
heights are generated with findpath using default parameter
--depth=10.

Fig. 14. Histograms of saddle height changes between BHGψ and
BHG◦ of a signal recognition particle RNA provided in the SRPDB
database (SRP 00094, Rosenblad et al. (2003)). The relevant saddle
heights are generated with findpath using default parameter
--depth=10.
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Fig. 15. Histograms of saddle height changes between BHGψ and
BHG◦ of a tmRNA provided in the tmRDB database (TMR 00272,
Knudsen et al. (2001)). The relevant saddle heights are generated
with findpath using default parameter --depth=10.

Fig. 16. Histograms of saddle height changes between BHGψ and
BHG◦ of a Ribosomal RNA of E. coli (PDB 00702, Merianos et al.
(2004)). The relevant saddle heights are generated with findpath
using default parameter --depth=10.
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Fig. 17. Histograms of saddle height changes between BHGψ and
BHG◦ of a Ribosomal RNA of E. coli (PDB 00702, Merianos et al.
(2004)). The relevant saddle heights are generated with findpath
using parameter --depth=100.
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7 PART G: FOLDING KINETICS OF RNAS
In the following we only consider for RNAs whose ground states
are pseudoknot-free. For each of such RNAs, the full BHGψ

including pseudoknotted LMs and a pruned BHG◦ from which first
all pseudoknotted LMs are removed and then the BHG-adjacency is
recomputed using only pseudoknot-free structures along the paths.
The reevaluation may result in the removal of adjacencies from
BHGψ .

Seven examples (PDB 00542, PDB 00924, PDB 01042, RFA 00398,
SRP 00194, SRP 00284 and TMR 00272) were not shown given
that the differences in kinetics between BHGψ and BHG◦ are
relatively small. The kinetics on BHG◦ and BHGψ of three RNAs
are shown in the top and bottom of Fig. 12, 13, and 14, respectively.
The process was started in the open chain structure and run until
convergence to the thermodynamic equilibrium distribution. Dotted
vertical line indicates when the simulation reaches its equilibrium.
The LMs that appear in both kinetics plots are marked with the
same color, otherwise pseudoknot-free and pseudoknotted LMs are
marked with black and red, respectively. The sums of the population
probabilities of pseudoknot-free and pseudoknotted LMs on BHGψ

are shown with blue and red broken lines, respectively.

8 PART H: MAXIMUM LIKELIHOOD CRITERION
WITHIN UPPER TIME LIMIT T

Given a trajectory U = (s0, t0, s1, t1, . . . , sk−1, tk−1, sk) that the
molecule started in s0, where it stayed for time t0, then transitioned
to s1, where it stayed for time t1, and so on until eventually it
reached sk, where it remained until time T . The likelihood of such
a trajectory U is

Πk−1
i=0

(
λsi · e

−λsi
ti · Psi,si+1

)
· e−λsk

(T−
∑
ti) (1)

when
∑
ti ≤ T and 0 otherwise. In our cases, we have λsi =∑

sj
rsisj and Psi,si+1 =

rsisi+1

λsi
. Therefore, equation reduces to

Πk−1
i=0 rsisi+1 · e

−(
∑k−1

i=0
λsi

ti+λsk
(T−

∑
ti)). (2)

We compute the optimal paths for two cases T = 0 and T =
1011 for the SV11 sequence shown in Fig. 21. Notice here when
T = 0, all ti has to be 0 as well. Eqn. 2 furthermore reduces to
Πk−1
i=0 rsisi+1 Therefore the Criterion C can be seen as a special case

of the Criterion B when T = 0.
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Fig. 18. Folding kinetics of the core encapsidation signal of the
Moloney murine leukemia virus (PDB 00213, D’Souza et al.
(2004)).

16



Pseudoknots in RNA folding landscapes

E
q
u
i
l
i
b
r
i
u
m

E
q
u
i
l
i
b
r
i
u
m

Fig. 19. Folding kinetics of a signal recognition particle RNA of M.
Jannaschiii (PDB 00879, Hainzl et al. (2005)).
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Fig. 20. Folding kinetics of a signal recognition particle RNA
provided in the SRPDB database (SRP 00005, Rosenblad et al.
(2003)).
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Fig. 21. Maximum likelihood criterion with time limit T = 0 (Left) and T = 1011 (Right) for the SV11 sequence.
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