
ViennaRNA
Release 2.6.4

Ronny Lorenz, Ivo L. Hofacker, et al.

Sep 25, 2023

INSTALLATION

1 Installation 3

2 Configuration 9

3 Getting Started 15

4 Manpages 53

5 Using RNAlib 187

6 I/O Formats 209

7 Concepts and Algorithms 227

8 SWIG Wrappers 645

9 Python API 665

10 News 819

11 Changelog 825

12 Bibliography 863

13 How to cite the ViennaRNA Package 865

14 Frequently Asked Questions 867

15 Contributing to the ViennaRNA Package 869

16 License 871

17 Indices and tables 873

18 Contributors 875

Bibliography 877

Python Module Index 881

Index 883

i

ii

ViennaRNA, Release 2.6.4

The core of the ViennaRNA Package (Lorenz et al. [2011], Hofacker et al. [1994]) is formed by a collection of
routines for the prediction and comparison of RNA secondary structures. These routines can be accessed through
stand-alone programs, such as RNAfold, RNAdistance etc., which should be sufficient for most users. For those
who wish to develop their own programs we provide RNAlib, a C-library that can be linked to your own code or
even used in your scripts and pipelines through our SWIG Wrappers for Python and Perl 5.

The latest version of the package including source code and html versions of the documentation can be found at
https://www.tbi.univie.ac.at/RNA and https://github.com/ViennaRNA/ViennaRNA.

INSTALLATION 1

https://www.tbi.univie.ac.at/RNA
https://github.com/ViennaRNA/ViennaRNA

ViennaRNA, Release 2.6.4

2 INSTALLATION

CHAPTER

ONE

INSTALLATION

The ViennaRNA Package comes with a variety of executable programs and scripts as well as a C-library that
provides access to our implemented algorithms. Moreover, the C-library is wrapped to scripting languages such as
Perl 5 and Python.

Note: For best portability the ViennaRNA package uses the GNU autoconf and automake tools to prepare
the compilation from source code. Read the Configuration section before you install our software if you intend to
deviate from the default setup.

1.1 Installing from Source

The instructions below are for installing the ViennaRNA package from source. However, pre-compiled binaries
for various Linux distributions, as well as for Windows users are available at the download section of the official
ViennaRNA homepage.

See also. . .
Binary packages, Using conda, and Python interface only

1.1.1 Quick-start

Usually you’ll just download the latest source tarball, unpack, configure and make. To do this type:

tar -zxvf ViennaRNA-2.6.4.tar.gz
cd ViennaRNA-2.6.4
./configure
make
sudo make install

1.1.2 Installing from git repository

You can also get the latest source code from our git repository hosted at https://github.com:

git clone https://github.com/ViennaRNA/ViennaRNA.git

However, to proceed with the configuration and installation you need to perform some additional steps before
actually running the ./configure script:

1. Unpack the libsvm archive to allow for SVM Z-score regression with the program RNALfold:

3

https://www.tbi.univie.ac.at/RNA/#download
https://www.tbi.univie.ac.at/RNA/#source_code_packages
https://github.com/ViennaRNA/ViennaRNA
https://github.com

ViennaRNA, Release 2.6.4

tar -xzf src/libsvm-3.31.tar.gz -C src

2. Unpack the dlib archive to allow for concentration dependency computations with the program
RNAmultifold:

tar -xjf src/dlib-19.24.tar.bz2 -C src

3. Install the additional maintainer tools gengetopt, help2man, flex, xxd, and swig if necessary. For in-
stance, in RedHat based distributions, the following packages need to be installed:

• gengetopt (to generate command line parameter parsers)

• help2man (to generate the man pages)

• yacc, flex and flex-devel (to generate sources for RNAforester)

• vim-common (for the xxd program)

• swig (to generate the scripting language interfaces)

• liblapacke (for RNAxplorer)

• liblapack (for RNAxplorer)

• A fortran compiler, e.g. gcc-gfortran (for RNAxplorer)

4. Finally, run the autoconf/automake toolchain:

autoreconf -i

After that, you can compile and install the ViennaRNA Package as if obtained from the distribution tarball.

1.1.3 Building the reference manual

Our implementations are documented with extra comments that are automatically parsed by doxygen. The extracted
API documentation is then processed further by breathe and finally integrated into a comprehensive reference
manual written in ReStructuredText. This manual is then usually compiled into HTML and PDF format by Sphinx.

We provide pre-compiled versions of the reference manual in our distribution tarballs and HTML versions at
https://www.tbi.univie.ac.at/RNA/ViennaRNA/refman and https://viennarna.readthedocs.io. However, under cer-
tain circumstances users might want to compile the reference manual themselves, e.g. when installing from git
repository.

To succeed with the compilation the following tools are required:

• doxygen (to extract the API documentation)

• sphinx-build (to compile the manual)

• pdflatex (to compile a PDF version of the manual)

In addition, we use the following sphinx extensions:

• sphinx-multiproject

• myst-parser

• sphinx-copybutton

• sphinxcontrib-bibtex

• sphinx-rtd-theme

If all the above programs and python packages are available, compilation of the reference manual should succeed
without any further problems.

4 Chapter 1. Installation

https://www.doxygen.nl/
https://breathe.readthedocs.io/
https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://www.tbi.univie.ac.at/RNA/ViennaRNA/refman
https://viennarna.readthedocs.io

ViennaRNA, Release 2.6.4

1.1.4 Installation without root privileges

If you do not have root privileges on your computer, you might want to install the ViennaRNA Package to a location
where you actually have write access to. To do so, you can set the installation prefix of the ./configure script
like so:

./configure --prefix=/home/username/.local
make install

This will install the entire ViennaRNA Package into your home’s ~/.local/ directory that is commonly used
for user-installed software. Just make sure that your PATH environment variable contains the $HOME/.local/bin
directory such that our executables are looked-up for at the proper location.

Tip: The --prefix can be any other directory if you want to keep your installed software separate from each
other. The make install command will then create the corresponding bin/, lib/, share/ directories within
the directory you specified.

1.1.5 MacOS X users

Although users will find /usr/bin/gcc and /usr/bin/g++ executables in their directory tree, these programs are
not at all what they pretend to be. Instead of including the GNU programs, Apple decided to install clang/llvm in
disguise. Unfortunately, the default version of clang/llvm does not support OpenMP (yet), but only complains at
a late stage of the build process when this support is required. Therefore, it seems necessary to deactivate OpenMP
support, e.g.:

./configure --disable-openmp

See also. . .
OpenMP, Universal binaries, and Missing EXTERN.h

1.2 Using conda

The ViennaRNA Package is also available for the conda or mamba package manager. The only requirement is to
set up the bioconda channels

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge
conda config --set channel_priority strict

and then you can easily install the viennarna bioconda package through

conda install viennarna

1.2. Using conda 5

https://bioconda.github.io/
http://bioconda.github.io/recipes/viennarna/README.html

ViennaRNA, Release 2.6.4

1.3 Binary packages

For convenience, we provide pre-compiled binary packages and installers for several Linux-based platforms, Mi-
crosoft Windows, and Mac OS X. They can be obtained from our official website.

1.4 Python interface only

The Python 3 interface for the ViennaRNA Package library is available at PyPI and can be installed independently
using Python’s pip:

python -m pip install viennarna

1.4.1 Building the Python package

Our source tree allows for building/installing the Python 3 interface separately. For that, we provide the necessary
packaging files pyproject.toml, setup.cfg, setup.py and MANIFEST.in. They are created by our autoconf
toolchain after a successful run of ./configure. Particular default compile-time features may be (de-)activated
by setting the corresponding boolean flags in setup.cfg. Running

python -m build

will then create a source distribution (sdist) and a binary package (wheel) in the dist/ directory. These files
can be easily installed via Python’s pip.

Note: If you are about to create the Python interface from a fresh clone of our git repository, you require addi-
tional steps after running ./configure as described above. In particular, some autogenerated static files that are
compiled into RNAlib must be generated. To do so, run

cd src/ViennaRNA/static
make
cd ../../..

Additionally, if building the reference manual is not explicitly turned off, the Python interface requires docstrings
to be generated. They are taken from the doxygen xml output which can be created by

cd doc
make refman-html
cd ..

Finally, the swig wrapper must be build using

cd interfaces/Python
make RNA/RNA.py
cd ../..

After these steps, the Python sdist and wheel packages can be build as usual.

6 Chapter 1. Installation

https://www.tbi.univie.ac.at/RNA/#binary_packages
https://pypi.org/project/ViennaRNA/

ViennaRNA, Release 2.6.4

1.5 Unofficial Julia Interface

An unofficial interface of the ViennaRNA Package for the Julia Programming Language exists at JuliaHub.

1.5. Unofficial Julia Interface 7

https://julialang.org/
https://juliahub.com/ui/Packages/ViennaRNA/lOl0n/

ViennaRNA, Release 2.6.4

8 Chapter 1. Installation

CHAPTER

TWO

CONFIGURATION

The ViennaRNA Package includes additional executable programs such as

• RNAforester,

• Kinfold,

• Kinwalker,

• RNAlocmin, and

• RNAxplorer.

Furthermore, we include several features in our C-library that may be activated by default, or have to be explicitly
turned on at configure-time. Below we list a selection of the available configure options that affect the features
included in all executable programs, the RNAlib C-library, and the corresponding scripting language interface(s).

2.1 Streaming SIMD Extension

Since version 2.3.5 our sources contain code that implements a faster multibranch loop decomposition in global
MFE predictions, as used e.g. in RNAfold. This implementation makes use of modern processors streaming
SIMD extension (SSE) that provide the capability to execute particular instructions on multiple data simultaneously
(SIMD - single instruction multiple data, thanks to W. B. Langdon for providing the modified code). Consequently,
the time required to assess the minimum of all multibranch loop decompositions is reduced up to about one half
compared to the runtime of the original implementation. This feature is enabled by default since version 2.4.11
and a dispatcher ensures that the correct implementation will be selected at runtime. If for any reason you want to
disable this feature at compile-time use the following:

./configure --disable-simd

2.2 Scripting Language Interfaces

The ViennaRNA Package comes with scripting language interfaces for Perl 5, Python (provided by SWIG), that
allow one to use the implemented algorithms directly without the need of calling an executable program. The nec-
essary requirements are determined at configure-time and particular languages may be deactivated automatically
if the requirements are not met.

Note: Building the Python 2 interface is deactivated by default since it reached its end-of-life on January 1st,
2020. If for any reason you still want to build that interface, you may use the --with-python2 configure option
to turn it back on.

You may also switch-off particular languages by passing the --without-perl and/or --without-python con-
figure options, e.g.:

9

https://www.swig.org/

ViennaRNA, Release 2.6.4

./configure --without-perl --without-python

will turn-off the Perl 5 and Python 3 interfaces.

Tip: Disabling the scripting language support all-together can be accomplished using the following switch:

./configure --without-swig

2.3 Cluster Analysis

The programs AnalyseSeqs and AnalyseDists offer some cluster analysis tools (split decomposition, statistical
geometry, neighbor joining, Ward’s method) for sequences and distance data. To also build these programs add
--with-cluster to your configure options.

2.4 Kinfold

The kinfold program can be used to simulate the folding dynamics of an RNA molecule, and is compiled by
default. Use the --without-kinfold option to skip compilation and installation of Kinfold.

2.5 RNAforester

The RNAforester program is used for comparing secondary structures using tree alignment. Similar to
kinfold`, use the ``--without-forester option to skip compilation and installation of RNAforester.

2.6 Kinwalker

The kinwalker algorithm performs co-transcriptional folding of RNAs, starting at a user specified structure (de-
fault: open chain) and ending at the minimum free energy structure. Compilation and installation of this program
is deactivated by default. Use the --with-kinwalker option to enable building and installation of kinwalker.

2.7 RNAlocmin

The RNAlocmin program is part of the Basin Hopping Graph Framework and reads secondary structures and
searches for local minima by performing a gradient walk from each of those structures. It then outputs an energeti-
cally sorted list of local minima with their energies and number of hits to particular minimum, which corresponds to
a size of a gradient basin. Additional output consists of barrier trees and Arhenius rates to compute various kinetic
aspects. Compilation and installation of this program is activated by default. Use the --without-rnalocmin
option to disable building and installation of RNAlocmin.

10 Chapter 2. Configuration

ViennaRNA, Release 2.6.4

2.8 RNAxplorer

The RNAxplorer is a multitool, that offers different methods to explore RNA energy landscapes. In default mode
it takes an RNA sequence as input and produces a sample of RNA secondary structures. The repellant sampling
heuristic used in default mode iteratively penalizes base pairs of local minima of structures that have been seen too
often. This results in a diverse sample set with the most important low free energy structures. Compilation and
installation of this program is activated by default. Note, that this tool depends on the LAPACK library. Use the
--without-rnaxplorer option to disable building and installation of RNAxplorer.

2.9 Link Time Optimization

To increase the performance of our implementations, the ViennaRNA Package tries to make use of the Link Time
Optimization (LTO) feature of modern C-compilers. If you are experiencing any troubles at make-time or run-time,
or the configure script for some reason detects that your compiler supports this feature although it doesn’t, you can
deactivate it using the flag:

./configure --disable-lto

Note, that gcc before version 5 is known to produce unreliable LTO code, especially in combination with SIMD.
We therefore recommend using a more recent compiler (GCC 5 or above) or to turn off one of the two features,
LTO or SIMD optimized code.

2.10 OpenMP

To enable concurrent computation of our implementations and in some cases parallelization of the algorithms we
make use of the OpenMP API. This interface is well understood by most modern compilers. However, in some
cases it might be necessary to deactivate OpenMP support and therefore transform RNAlib into a C-library that is
not entirely thread-safe. To do so, add the following configure option:

./configure --disable-openmp

2.11 POSIX threads

To enable concurrent computation of multiple input data in RNAfold, and for our implementation of the concurrent
unordered insert, ordered output flush data structure vrna_ostream_t we make use of POSIX threads (pthread).
This should be supported on all modern platforms and usually does not pose any problems. Unfortunately, we use
a threadpool implementation that is not compatible with Microsoft Windows yet. Thus, POSIX thread support can
not be activated for Windows builds until we have fixed this problem. If you want to compile RNAfold and RNAlib
without POSIX threads support for any other reasons, add the following configure option:

./configure --disable-pthreads

2.8. RNAxplorer 11

https://www.openmp.org/

ViennaRNA, Release 2.6.4

2.12 SVM Z-score filter

By default, RNALfold that comes with the ViennaRNA Package allows for Z-score filtering of its predicted results
using a Support Vector Machine (SVM) provided by the LIBSVM library. However, this library is statically linked
to our own RNAlib. If this introduces any problems for your own third-party programs that link against RNAlib,
you can safely switch off the Z-scoring implementation using:

./configure --without-svm

2.13 GNU Scientific Library

The program RNApvmin computes a pseudo-energy perturbation vector that aims to minimize the discrepancy of
predicted, and observed pairing probabilities. For that purpose it implements several methods to solve the opti-
mization problem. Many of them are provided by the GNU Scientific Library (GSL), which is why the RNApvmin
program, and the RNAlib C-library are required to be linked against libgsl. If this introduces any problems in
your own third-party programs that link against RNAlib, you can turn off a larger portion of available minimizers
in RNApvmin and linking against libgsl all-together, using:

./configure --without-gsl

2.14 Multiple-precision Floating-Point Computations

Our Non-redundant Boltzmann Sampling implementation uses multi-precision floating-point computations pro-
vided by the GNU MPFR library by default. This requires linking against libmpfr and libgmp. You can switch
off this feature using:

./configure --disable-mpfr

2.15 Universal binaries

If you intend to build the ViennaRNA for Mac OS X such that it runs on both, x86_64 and the arm64 (Apple Silicon
Processors) architectures, you need to build a so-called universal binary. Note, however, that to accomplish this
task, you might need to deactivate any third-party library dependency as in most cases, only one architecture will
be available at link time. This includes the Perl 5 and Python interfaces but might also concern also MPFR
and GSL support, possibly even more. In order to compile and link the programs, library, and scripting language
interfaces of the ViennaRNA Package for multiple architectures, we’ve added a new configure switch that sets up
the required changes automatically:

./configure --enable-universal-binary

Note: With link time optimization turned on, MacOS X’s default compiler (llvm/clang) generates an in-
termediary binary format that can not easily be combined into a multi-architecture library. Therefore, the
--enable-universal-binary switch turns off Link Time Optimization!

12 Chapter 2. Configuration

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.gnu.org/software/gsl/
https://www.mpfr.org/

ViennaRNA, Release 2.6.4

2.16 Disable C11/C++11 features

By default, we use C11/C++11 features in our implementations. This mainly accounts for unnamed unions/structs
within RNAlib. The configure script automatically detects whether or not your compiler understands these features.
In case you are using an older compiler, these features will be deactivated by setting a specific pre-processor
directive. If for some reason you want to deactivate C11/C++11 features despite the capabilities of your compiler,
use the following configure option:

./configure --disable-c11

2.17 Deprecated symbols

Since version 2.2 we are in the process of transforming the API of our RNAlib. Hence, several symbols are marked
as deprecated whenever they have been replaced by the new API. By default, deprecation warnings at compile time
are deactivated. If you want to get your terminal spammed by tons of deprecation warnings, enable them using:

./configure --enable-warn-deprecated

2.18 Single precision

Calculation of partition functions (via RNAfold -p) uses double precision floats by default, to avoid overflow
errors on longer sequences. If your machine has little memory and you don’t plan to fold sequences over 1,000
bases in length you can compile the package to do the computations in single precision by running:

./configure --enable-floatpf

Warning: Using this option is discouraged and not necessary on most modern computers.

2.19 Help

For a complete list of all ./configure options and important environment variables, type:

./configure --help

For more general information on the build process see the INSTALL file.

2.16. Disable C11/C++11 features 13

ViennaRNA, Release 2.6.4

14 Chapter 2. Configuration

CHAPTER

THREE

GETTING STARTED

Here you find some more or less elaborate tutorials and manuals on how to use our software.

Note: The tutorials provided below are mostly taken from A short Tutorial on RNA Bioinformatics The Vien-
naRNA Package and related Programs. Since they have not been updated for quite some time, some of the described
features may not work as expected and novel features of our programs may not be mentioned.

We will be working on extending this part of the documentation in the future.

3.1 Global RNA Secondary Structure Prediction

Several tools for structure prediction of single RNA sequences are available within the ViennaRNA Package, each
with its own special subset of implemented algorithms.

3.1.1 The Program RNAfold

Introduction

Our first task will be to do a structure prediction using RNAfold. This should get you familiar with the input and
output format as well as the graphical output produced.

RNAfold reads single RNA sequences, computes their minimum free energy (MFE) structures, and prints the re-
sult together with the corresponding MFE structure in dot-bracket notation. This is the default mode if no further
command line parameters are provided. Please note, that the RNAfold program can either be used in interactive
mode, where the program expects the input from stdin, or in batch processing mode where you provide the input
sequences as text files.

Partition function

To activate computation of the partition function for each sequence, the -p option must be set. From the partition
function

𝑄 =
∑︁
𝑠∈Ω

𝑒𝑥𝑝(−𝐸(𝑠)/𝑅𝑇)

over the ensemble of all possible structures Ω, with temperature 𝑇 and gas constant 𝑅, RNAfold then computes
the ensemble free energy 𝐺 = −𝑅𝑇 · 𝑙𝑛(𝑄), and frequency of the MFE structure 𝑠𝑚𝑓𝑒 within the ensemble

𝑝 = 𝑒𝑥𝑝(−𝐸(𝑠𝑚𝑓𝑒)/𝑅𝑇)/𝑄

15

https://www.tbi.univie.ac.at/RNA/tutorial/
https://www.tbi.univie.ac.at/RNA/tutorial/

ViennaRNA, Release 2.6.4

Ensemble diversity

By default, the -p option also activates the computation of base pairing probabilities 𝑝𝑖𝑗 . From this data, RNAfold
then determines the ensemble diversity

⟨𝑑⟩ =
∑︁
𝑖𝑗

𝑝𝑖𝑗 · (1 − 𝑝𝑖𝑗),

i.e. the expected distance between any two secondary structure, as well as the centroid structure, i.e. the structure
𝑠𝑐 with the least Boltzmann weighted distance

𝑑Ω(𝑠𝑐) =
∑︁
𝑠∈Ω

𝑝(𝑠)𝑑(𝑠𝑐, 𝑠)

to all other structures 𝑠 ∈ Ω.

Maximum Expected Accuracy

Another useful structure representative one can determine from base pairing probabilities 𝑝𝑖𝑗 is the structure that
exhibits the maximum expected accuracy (MEA). By assuming the base pair probability is a good measure of
correctnes of a pair (𝑖, 𝑗), the expected accuracy of a structure 𝑠 is

EA(𝑠) =
∑︁

(𝑖,𝑗)∈𝑠

2𝛾𝑝𝑖𝑗 +
∑︁
𝑖

@(𝑖,𝑗)∈𝑠

𝑞𝑖

with 𝑞𝑖 = 1 −
∑︀

𝑗 𝑝𝑖𝑗 and weighting factor 𝛾 that allows us to weight paired against unpaired positions. RNAfold
uses a dynamic programming scheme similar to the Maximum Matching algorithm of Ruth Nussinov to find the
structure 𝑠 that minimizes the above equation.

The RNAfold program provides a large amount of additional computation modes that will be partly covered below.
To get a full list of all computation modes available, please consult the RNAfold man page or the outputs of
RNAfold -h and RNAfold --detailed-help.

MFE structure of a single sequence

• Use a text editor (emacs, vi, nano, gedit) to prepare an input file by pasting the text below and save it under
the name test.seq in your Data folder:

> test

CUACGGCGCGGCGCCCUUGGCGA

• Compute the best (MFE) structure for this sequence using batch processing mode

$ RNAfold test.seq
CUACGGCGCGGCGCCCUUGGCGA
...........((((...)))). (-5.00)

• or use the interactive mode and redirect the content of test.seq to stdin

$ RNAfold < text.seq
CUACGGCGCGGCGCCCUUGGCGA
...........((((...)))). (-5.00)

• alternatively, you could use the interactive mode and manually enter the sequence as soon as RNAfold
prompts for input

16 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

$ RNAfold
Input string (upper or lower case); @ to quit
....,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8
CUACGGCGCGGCGCCCUUGGCGA
length = 23

CUACGGCGCGGCGCCCUUGGCGA
...........((((...)))).
minimum free energy = -5.00 kcal/mol

All the above variants to compute the MFE and the corresponding structure result in identical output, except for
slight variations in the formatting when true interactive mode is used. The last line(s) of the text output contains
the predicted MFE structure in dot-bracket notation and its free energy in kcal/mol. A dot in the dot-bracket
notation represents an unpaired position, while a base pair (i, j) is represented by a pair of matching parentheses at
position i and j.

If the input was FASTA formatted, i.e. the sequence was preceded by a header line with sequence identifier, RNAfold
creates a structure layout file named test_ss.ps, where test is the sequence identifier as provided through the
FASTA header. In case the header was omitted the output file name simply is rna.ps.

Let’s take a look at the output file with your favorite PostScript viewer, e.g. gv.

Note: In contrast to bitmap based image files (such as GIF or JPEG) PostScript files contain resolution independent
vector graphics, suitable for publication. They can be viewed on-screen using a postscript viewer such as gv or
evince. Also note the & at the end of the following command line that simply detaches the program call and
immediately starts the program in the background.

$ gv test_ss.ps &

Compare the dot-bracket notation to the PostScript drawing shown in the file test_ss.eps.

You can use the -t option to change the layout algorithm RNAfold uses to produce the plot. The most simply
layout is the radial layout that can be chosen with -t 0. Here, each nucleotide in a loop is equally spaced on its
enclosing circle. The more sophisticated Naview layout algorithm is used by default but may be explicitly chosen
through -t 1. A hidden feature can be found with -t 2, where RNAfold creates a most simple circular plot.

The calculation above does not tell us whether we can actually trust the predicted structure. In fact, there may
be many more possible structures that might be equally probable. To find out about that, let’s have a look at the
equilibrium ensemble instead.

Equilibrium ensemble properties

• Run:

$ RNAfold -p --MEA

to compute the partition function, pair probabilities, centroid structure, and the maximum expected accuracy
(MEA) structure.

• Have a look at the generated PostScript files test_ss.ps and test_dp.ps

$ RNAfold -p --MEA test.seq
CUACGGCGCGGCGCCCUUGGCGA
...........((((...)))). (-5.00)
....{,{{...||||...)}}}. [-5.72]
....................... { 0.00 d=4.66}
......((...))((...))... { 2.90 MEA=14.79}
frequency of mfe structure in ensemble 0.311796; ensemble diversity 6.36

3.1. Global RNA Secondary Structure Prediction 17

ViennaRNA, Release 2.6.4

Here the last four lines are new compared to the text output without the -p --MEA options. The partition function
is already a rough measure for the well-definedness of the MFE structure. The third line shows a condensed repre-
sentation of the pair probabilities of each nucleotide, similar to the dot-bracket notation, followed by the ensemble
free energy (𝐺 = −𝑘𝑇 · 𝑙𝑛(𝑍)) in units of kcal/mol. Here, the dot-bracket like notation consists of additional
characters that denote the pairing propensity for each nucleotide. . denotes bases that are essentially unpaired,
, weakly paired, | strongly paired without preference, {}, () weakly (> 33%) upstream (downstream) paired or
strongly (> 66%) up-/downstream paired bases, respectively.

The next two lines represent (i) the centroid structure with its free energy and distance to the ensemble, and (ii)
the MEA structure, it’s free energy and the actual accuracy. The very last line shows the frequency of the MFE
structure in the ensemble of secondary structures and the diversity of the ensemble as discussed above.

Note that the MFE structure is adopted only with 31% probability, also the diversity is very high for such a short
sequence.

Rotate the structure plot

To rotate the secondary structure plot that is generated by RNAfold the ViennaRNA Package provides the perl
script utility rotate_ss.pl. Just read the perldoc for this tool to know how to handle the rotation and use the
information to get your secondary structure in a vertical position.

$ perldoc rotate_ss.pl

18 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

The base pair probability dot plot

The dot plot (test_dp.ps) shows the pair probabilities within the equilibrium ensemble as 𝑛 × 𝑛 matrix, and is
an excellent way to visualize structural alternatives. A square at row 𝑖 and column 𝑗 indicates a base pair. The area
of a square in the upper right half of the matrix is proportional to the probability of the base pair (𝑖, 𝑗) within the
equilibrium ensemble. The lower left half shows all pairs belonging to the MFE structure. While the MFE consists
of a single helix, several different helices are visualized in the pair probabilities.

While a base pair probability dot-plot is quite handy to interpret for short sequences, it quickly becomes confusing
the longer the RNA sequence is. Still, this is (currently) the only output of base pair probabilities for the RNAfold
program. Nevertheless, since the dot plot is a true PostScript file, one can retrieve the individual base pair
probabilities by parsing its textual content.

• Open the dot plot with your favorite text editor

• Locate the lines that that follow the scheme

i j v ubox

where 𝑖 and 𝑗 are integer values and 𝑣 is a floating point decimal with values between 0 and 1. These are
the data for the boxes drawn in the upper triangle. The integer values 𝑖 and 𝑗 denote the nucleotide positions
while the value 𝑣 is the square-root of the probability of base pair (𝑖, 𝑗). Thus, the actual base pair probability
𝑝(𝑖, 𝑗) = 𝑣 · 𝑣.

Mountain and Reliability plot

Next, let’s use the relplot.pl utility to annotate which parts of a predicted MFE structure are well-defined and
thus more reliable. Also let’s use a real example for a change and produce yet another representation of the predicted
structure, the mountain plot.

Fold the 5S rRNA sequence and visualize the structure. (The 5S.seq is shipped with the tutorial)

$ RNAfold -p 5S.seq
$ mountain.pl 5S_dp.ps | xmgrace -pipe
$ relplot.pl 5S_ss.ps 5S_dp.ps > 5S_rss.ps

3.1. Global RNA Secondary Structure Prediction 19

ViennaRNA, Release 2.6.4

A mountain plot is especially useful for long sequences where conventional structure drawings become terribly
cluttered. It is a xy-diagram plotting the number of base pairs enclosing a sequence position versus the position.
The Perl script mountain.pl transforms a dot plot into the mountain plot coordinates which can be visualized
with any xy-plotting program, e.g. xmgrace.

The resulting plot shows three curves, two mountain plots derived from the MFE structure (red) and the pairing
probabilities (black) and a positional entropy curve (green). Well-defined regions are identified by low entropy. By
superimposing several mountain plots structures can easily be compared.

The perl script relplot.pl adds reliability information to a RNA secondary structure plot in the form of color
annotation. The script computes a well-definedness measure we call ``positional entropy”

𝑆(𝑖) = −
∑︁

𝑝𝑖𝑗 log(𝑝𝑖𝑗)

and encodes it as color hue, ranging from red (low entropy, well-defined) via green to blue and violet (high entropy,
ill-defined). In the example above two helices of the 5S RNA are well-defined (red) and indeed predicted correctly,
the left arm is not quite correct and disordered.

For the figure above we had to rotate and mirror the structure plot, e.g.

$ rotate_ss.pl -a 180 -m 5S_rss.ps > 5S_rot.ps

Batch job processing

In most cases, one doesn’t only want to predict the structure and equilibrium probabilities for a single RNA sequence
but a set of sequences. RNAfold is perfectly suited for this task since it provides several different mechanisms to
support batch job processing. First, in interactive mode, it only stops processing input from stdin if it is requested
to do so. This means that after processing one sequence, it will prompt for the input of the next sequence. Entering
the @ character will forcefully abort processing. In situations where the input is provided through input stream
redirection, it will end processing as soon stream is closed.

In constrat to that, the batch processing mode where one simply specifies input files as so-called unnamed command
line parameters, the number of input sequences is more or less unlimited. You can specify as many input files as
your terminal emulator allows, and each input file may consist of arbitrarily many sequences. However, please note
that mixing FASTA and non-fasta input is not allowed and will most likely produce bogus output.

Assume you have four input files file_0.fa, file_1.fa, file_2.fa, and file_3.fa. Each file contains a set
of RNA sequences in FASTA format. Predicting secondary structures for all sequences in all files with a single call
to RNAfold and redirecting the output to a file all_sequences_output.fold can be achieved like this: .. code:

$ RNAfold file_0.fa file_1.fa file_2.fa file_3.fa > all_sequences_output.fold

The above call to RNAfold will open each of the files and process the sequences sequentially. This, however, might
take a long time and the sequential processing will most likely bore out your multi-core workstation or laptop
computer, since only a single core is used for the computations while the others are idle. If you happen to have

20 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

more than a single CPU core and want to take advantage of the available parallel processing power, you can use
the -j option of RNAfold to split the input into concurrent jobs.

$ RNAfold -j file_*.fa > all_sequences_output.fold

This command will uses as many CPU cores as available and, therefore, process you input much faster. If you want
to limit the number of concurrent jobs to a particular number, say 2, to leave the remaining cores available for other
tasks, you can append the number of jobs directly to the -j option: .. code:

$ RNAfold -j2 file_*.fa > all_sequences_output.fold

Note here, that there must not be any space between the j and the number of jobs.

Now imagine what happens if you have a larger set of sequences that are not stored in FASTA format. If you would
serve such an input to RNAfold, it would happily process each of the sequences but always over-write the structure
layout and dot-plot files, since the default names for these files are rna.ps and dot.ps for any sequence. This is
usually an undesired behavior, where RNAfold and the --auto-id option becomes handy. This option flag forces
RNAfold to automatically create a sequence identifier for each input, thus using different file names for each single
output. The identifier that is created follows the form .. code:

sequence_XXXX

where sequence is a prefix, followed by the delimiting character _, and an increasing 4-digit number XXXX starting
at 0000. This feature is even useful if the input is in FASTA format, but one wants to enforce a novel naming scheme
for the sequences. As soon as the --auto-id option is set, RNAfold will ignore any id taken from existing FASTA
headers in the input files.

See also the man page of RNAfold to find out how to modify the prefix, delimiting character, start number and
number of digits.

• Create an input file with many RNA sequences, each on a separate line, e.g.:

$ randseq -n 127 > many_files.seq

• Compute the MFE structure for each of the sequences and generate output ids with numbers between 100
and 226 and prefix test_seq:

$ RNAfold --auto-id --id-start=100 --id-prefix="test_seq" many_files.seq

Add constraints to the structure prediction

For some scientific questions one requires additional constraints that must be enforced when predicting secondary
structures. For instance, one might have resolved parts of the structure already and is simply interested in the
optimal conformation of the remaining part of the molecule. Another example would be that one already knows
that particular nucleotides can not participate in any base pair, since they are physically hindered to do so. These
types of constraints are termed hard constraints and they can enforce or prohibit particular conformations, thus
include or omit structures with these feature from the set candidate ensemble.

Another type of constraints are so-called soft constraints, that enable one to adjust the free energy contributions of
particular conformations. For instance, one could add a bonus energy if a particular (stretch of) nucleotides is left
unpaired to emulate the binding free energy of a single strand binding protein. The same can be applied to base
pairs, for instance one could add a penalizing energy term if a particular base pair is formed to make it less likely.

The RNAfold programs comes with a comprehensive hard and soft constraints support and provides several con-
venience command line parameters to ease constraint application.

The most simple hard constraint that can be applied is the maximum base pair span, i.e. the maximum number of
nucleotides a particular base pair may span. This constraint can be applied with the --maxBPspan option followed
by an integer number.

• Compute the secondary structure for the 5S.seq input file

3.1. Global RNA Secondary Structure Prediction 21

ViennaRNA, Release 2.6.4

• Now limit the maximum base pair span to 50 and compare both results:

$ RNAfold --maxBPspan 50 5S.seq

Now assume you already know parts of the structure and want to fill-in an optimal remaining part. You can do that
by using the -C option and adding an additional line in dot-bracket notation to the input (after the sequence) that
corresponds to the known structure:

• Prepare the input file hard_const_example.fa:

>my_constrained_sequence
GCCCUUGUCGAGAGGAACUCGAGACACCCACUACCCACUGAGGACUUUCG
..((((.....))))

Note here, that we left out the remainder of the input structure constraint that will eventually be used to
enforce a helix of 4 base pairs at the beginning of the sequence. You may also fill the remainder of the
constraint with dots to silence any warnings issued by RNAfold.

• Compute the MFE structure for the input:

$ RNAfold hard_const_example.fa
>my_constrained_sequence
GCCCUUGUCGAGAGGAACUCGAGACACCCACUACCCACUGAGGACUUUCG
........((((((...((((.................))))..)))))) (-8.00)

• Now compute the MFE structure under the provided constraint:

$ RNAfold -C hard_const_example.fa
>my_constrained_sequence
GCCCUUGUCGAGAGGAACUCGAGACACCCACUACCCACUGAGGACUUUCG
..((((.....))))....(((((..((((........)).))..))))) (-7.90)

• Due to historic reasons, the -C option alone only forbids any base pairs that are incompatible with the con-
straint, rather than enforcing the constraint. Thus, if you compute equilibrium probabilities, structures that
are missing the small helix in the beginning are still part of the ensemble. If you want to compute the pairing
probabilities upon forcing the small helix at the beginning, you can add the --enforceConstraint option:

$ RNAfold -p -C --enforceConstraint hard_const_example.fa
>my_constrained_sequence
GCCCUUGUCGAGAGGAACUCGAGACACCCACUACCCACUGAGGACUUUCG
..((((.....))))....(((((..((((........)).))..))))) (-7.90)

Have a look at the differences in ensemble free energy and base pair probabilities between the results obtained
with and without the --enforceConstraint option.

A more thorough alternative to provide constraints is to use the --commands option and a corresponding commands
file. This allows one to specify constraints on nucleotide or base pair level and even to restrict a constraint to
particular loop types. A commands file is a simple multi column text file with one constraint on each line. A
line starts with a one- or two-letter command, followed by multiple values that specify the addressed nucleotides,
the loop context restriction, and, for soft constraints, the strength of the constraint in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. The syntax is as
follows:

F i 0 k [TYPE] [ORIENTATION] # Force nucleotides i...i+k-1 to be paired
F i j k [TYPE] # Force helix of size k starting with (i,j) to be formed
P i 0 k [TYPE] # Prohibit nucleotides i...i+k-1 to be paired
P i j k [TYPE] # Prohibit pairs (i,j),...,(i+k-1,j-k+1)
P i-j k-l [TYPE] # Prohibit pairing between two ranges
C i 0 k [TYPE] # Nucleotides i,...,i+k-1 must appear in context TYPE
C i j k # Remove pairs conflicting with (i,j),...,(i+k-1,j-k+1)
E i 0 k e # Add pseudo-energy e to nucleotides i...i+k-1
E i j k e # Add pseudo-energy e to pairs (i,j),...,(i+k-1,j-k+1)

22 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

with

[TYPE] = { E, H, I, i, M, m, A }
[ORIENTATION] = { U, D }

• Prepare a commands file test.constraints that forces the first 5 nucleotides to pair and the following 3
nucleotides to stay unpaired as part of a multi-branch loop:

F 1 0 5
C 6 0 3 M

• Use the randseq program to generate multiple sequences and compute the MFE structure for each under
the constraints prepared earlier:

$ randseq -n 20 | RNAfold --commands test.constraints

Inspect the output to assure yourself that hte commands have been applied

A few much more sophisticated constraints will be discussed below.

SHAPE directed RNA folding

In order to further improve the quality of secondary structure predictions, mapping experiments like SHAPE (se-
lective 2’-hydroxyl acylation analyzed by primer extension) can be used to exerimentally determine the pairing
status for each nucleotide. In addition to thermodynamic based secondary structure predictions, RNAfold supports
the incorporation of this additional experimental data as soft constraints.

If you want to use SHAPE data to guide the folding process, please make sure that your experimental data is present
in a text file, where each line stores three white space separated columns containing the position, the abbreviation
and the normalized SHAPE reactivity for a certain nucleotide.

1 G 0.134
2 C 0.044
3 C 0.057
4 G 0.114
5 U 0.094

...

...

...
71 C 0.035
72 G 0.909
73 C 0.224
74 C 0.529
75 A 1.475

The second column, which holds the nucleotide abbreviation, is optional. If it is present, the data will be used to
perform a cross check against the provided input sequence. Missing SHAPE reactivities for certain positions can
be indicated by omitting the reactivity column or the whole line. Negative reactivities will be treated as missing.
Once the SHAPE file is ready, it can be used to constrain folding:

$ RNAfold --shape=rna.shape --shapeMethod=D < rna.seq

A small compilation of reference data taken from Hajdin et al. [2013] is available online https://weeks.chem.unc.
edu/data-files/ShapeKnots_DATA.zip. However, the included reference structures are only available in connect
(.ct) format and require conversion into dot-bracket notation to compare them against predicted structures with
RNAfold. Furthermore, the normalized SHAPE data is available as Excel spreadsheet and also requires some pre-
processing to make it available for RNAfold.

3.1. Global RNA Secondary Structure Prediction 23

https://weeks.chem.unc.edu/data-files/ShapeKnots_DATA.zip
https://weeks.chem.unc.edu/data-files/ShapeKnots_DATA.zip

ViennaRNA, Release 2.6.4

Adding ligand interactions

RNA molecules are known to interact with other molecules, such as additional RNAs, proteins, or other small ligand
molecules. Some interactions with small ligands that take place in loops of an RNA structure can be modeled in
terms of soft constraints. However, to stay compatible with the recursive decomposition scheme for secondary
structures they are limited to the unpaired nucleotides of hairpins and internal loops.

The RNAlib library of the ViennaRNA Package implements a most general form of constraints capability. How-
ever, the available programs do not allow for a full access to the implemented features. Nevertheless, RNAfold
provides a convenience option that allows to easily include ligand binding to hairpin- or interior-loop like aptamer
motifs. For that purpose, a user needs only to provide motif and a binding free energy.

Consider the following example file theo.fa for a theophylline triggered riboswitch with the sequence:

>theo-switch
GGUGAUACCAGAUUUCGCGAAAAAUCCCUUGGCAGCACCUCGCACAUCUUGUUGUC
UGAUUAUUGAUUUUUCGCGAAACCAUUUGAUCAUAUGACAAGAUUGAG

The theopylline aptamer structure has been actively researched during the last two decades.

Although the actual aptamer part (marked in blue) is not a simple interior loop, it can still be modeled as such. It
consists of two delimiting base pairs (G,C) at the 5’ site, and another (G,C) at its 3’ end. That is already enough
to satisfy the requirements for the --motif option of RNAfold. Together with the aptamer sequence motif, the
entire aptamer can be written down in dot-bracket form as:

GAUACCAG&CCCUUGGCAGC
(...((((&)...)))...)

Note here, that we separated the 5’ and 3’ part from each other using the & character. This enables us to omit the
variable hairpin end of the aptamer from the specification in our model.

The only ingredient that is still missing is the actual stabilizing energy contribution induced by the ligand binding
into the aptamer pocket. But several experimental and computational studies have already determined dissociation
constants for this system. Jenison et al. [1994], for instance, determined a dissociation constant of 𝐾𝑑 = 0.32𝜇𝑀
which, for standard reference concentration 𝑐 = 1𝑚𝑜𝑙/𝐿, can be translated into a binding free energy

∆𝐺 = 𝑅𝑇 · ln
𝐾𝑑

𝑐
≈ −9.22 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

24 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

Finally, we can compute the MFE structure for our example sequence

$ RNAfold -v --motif "GAUACCAG&CCCUUGGCAGC,(...((((&)...)))...),-9.22" theo.fa

Compare the predicted MFE structure with and without modeling the ligand interaction. You may also enable
partition function computation to compute base pair probabilities, the centroid structure and MEA structure to
investigate the effect of ligand binding on ensemble diversity.

G-quadruplexes

G-Quadruplexes are a common conformation found in G-rich sequences where four runs of consecutive G’s are
separated by three short sequence stretches.

They form local self-enclosed stacks of G-quartets bound together through 8 Hogsteen-Watson Crick bonds and
further stabilized by a metal ion (usually potassium).

To acknowledge the competition of regular secondary structure and G-quadruplex formation, the ViennaRNA
Package implements an extension to the default recursion scheme. For that purpose, G-quadruplexes are sim-
ply considered a different type of substructure that may be incorporated like any other substructure. The free
energy of a particular G-quadruplex at temperature 𝑇 is determined by a simple energy model

𝐸(𝐿, 𝑙𝑡𝑜𝑡, 𝑇) = 𝑎(𝑡) · (𝐿− 1) + 𝑏(𝑇) · 𝑙𝑛(𝑙𝑡𝑜𝑡 − 2)

that only considers the number of stacked layers 𝐿 and the total size of the three linker sequences 𝑙𝑡𝑜𝑡 = 𝑙1 + 𝑙2 + 𝑙3
connecting the G runs. Linker sequence and assymetry effects as well as relative strand orientations (parallel,
anti-parallel or mixed) are entirely neglected in this model. The free energy parameters

𝑎(𝑇) = 𝐻𝑎 + 𝑇𝑆𝑎

and

𝑏(𝑇) = 𝐻𝑏 + 𝑇𝑆𝑏

have been determined from experimental UV-melting data taken from Zhang et al. [2011].

RNAfold allows one to activate the G-quadruplex implementation by simply providing the -g switch. G-
quadruplexes are then taken into account for MFE and equilibrium probability computations.

$ echo "GGCUGGUGAUUGGAAGGGAGGGAGGUGGCCAGCC" | RNAfold -g -p
GGCUGGUGAUUGGAAGGGAGGGAGGUGGCCAGCC
((((((..........++.++..++.++)))))) (-21.39)
((((((..........(..........))))))) [-21.83]
((((((..........++.++..++.++)))))) {-21.39 d=0.04}
frequency of mfe structure in ensemble 0.491118; ensemble diversity 0.08

The resulting structure layout and dot plot PostScript files depict the prediced G-quadruplexes as hairpin-like
loops with additional bonds between the interacting G’s, and green triangles where the color intensity encodes the
G-quadruplex probability, respectively. Have a closer look at the actual G-quadruplex probabilities by opening the
dot plot PostScript file with a text browser again.

3.1. Global RNA Secondary Structure Prediction 25

ViennaRNA, Release 2.6.4

A better drawing of the predicted G-quadruplex might look as follows

Repeat the above analysis for other RNA sequences that might contain and form a G-quadruplex, e.g. the human
telomerase RNA component hTERC:

>hTERC
AGAGAGUGACUCUCACGAGAGCCGCGAGAGUCAGCUUGGCCAAUCCGUGCGGUCGG
CGGCCGCUCCCUUUAUAAGCCGACUCGCCCGGCAGCGCACCGGGUUGCGGAGGGUG
GGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAGAAGGGCGUAGG
CGCCGUGCUUUUGCUCCCCGCGCGCUGUUUUUCUCGCUGACUUUCAGCGGGCGGAA
AAGCCUCGGCCUGCCGCCUUCCACCGUUCAUUCUAGAGCAAACAAAAAAUGUCAGC
UGCUGGCCCGUUCGCCCCUCCCGGGGACCUGCGGCGGGUCGCCUGCCCAGCCCCCG
AACCCCGCCUGGAGGCCGCGGUCGGCCCGGGGCUUCUCCGGAGGCACCCACUGCCA
CCGCGAAGAGUUGGGCUCUGUCAGCCGCGGGUCUCUCGGGGGCGAGGGCGAGGUUC
AGGCCUUUCAGGCCGCAGGAAGAGGAACGGAGCGAGUCCCCGCGCGCGGCGCGAUU
CCCUGAGCUGUGGGACGUGCACCCAGGACUCGGCUCACACAUGC

SSB protein interaction

Similar to the ligand interactions discussed above, a single strand binding (SSB) protein might bind to consecutively
unpaired sequence motifs. To model such interactions the ViennaRNA Package implements yet another extension
to the folding grammar to cover all cases a protein may bind to, termed unstructured domains. This is in contrast
to the ligand binding example above that uses the soft constraints implementation, and is, therefore, restricted to
unpaired hairpin- and interior-loops.

To make use of this implementation in RNAfold one has to resort to command files again. Here, an unstructured
domain (UD) can be easily added using the following syntax:

UD m e [LOOP]

where m is the sequence motif the protein binds to in IUPAC format, e is the binding free energy in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, and
the optional LOOP specifier allows for restricting the binding to particular loop types, e.g. M for multibranch loops,
or E for the exterior loop. See the syntax for command files above for an overview of all loop types available.

26 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

As an example, consider the protein binding experiment taken from Forties and Bundschuh [2010]. Here, the
authors investigate a hypothetical unspecific RNA binding protein with a footprint of 6 𝑛𝑡 and a binding energy of
∆𝐺 = −10 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 at 1 𝑀 . With 𝑇 = 37∘𝐶 and

∆𝐺 = 𝑅𝑇 · ln
𝐾𝑑

𝑐

this translates into a dissociation constant of

𝐾𝑑 = 𝑒𝑥𝑝(∆𝐺/𝑅𝑇) = 8.983267433 · 10−8.

Hence, the binding energies at 50 𝑛𝑀 , 100 𝑛𝑀 , 400 𝑛𝑀 , and 1 𝜇𝑀 are 0.36 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, −0.07 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙,
−0.92 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, and −1.49 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, respectively.

The RNA sequence file forties_bundschuh.fa for this experiment is:

>forties_bundschuh
CGCUAUAAACCCCAAAAAAAAAAAAGGGGAAAAUAGCG

which yields the following MFE structure

To model the protein binding for this example with RNAfold we require a commands file for each of the concen-
trations in question. Thus, one simply creates text files with a single line content:

UD NNNNNN e

where e is the binding free energy at this specific protein concentration as computed above. Note here, that we use
NNNNNN as sequence motif that is bound by the protein to acknowledge the unspecific interaction between protein
and RNA. Finally, RNAfold is executed to compute equilibrium base pairing and per-nucleotide protein binding
probabilities .. code:

$ RNAfold -p --commands forties_50nM.txt forties_bundschuh.fa

and the produced probability dot plot can be inspected.

3.1. Global RNA Secondary Structure Prediction 27

ViennaRNA, Release 2.6.4

As you can see, the dot plot is augmented with an additional linear array of blue squares along each side that
depicts the probability that the respective nucleotide is bound by the protein. Now, repeat the computations for
different protein concentrations and compare the probabilities computed with the unstructured domain feature of
the ViennaRNA Package with those in Fig. 3(a) of the publication.

Note, that RNAfold allows for an unlimited number of different proteins specified in the commands file. This easily
allows one to model RNA-protein binding interaction within a relatively complex solution of different competing
proteins.

Change other model settings

RNAfold also allows for many other changes of the implemented Nearest Neighbor model. For instance, you can
explicitly prohibit (𝐺,𝑈) pairs, change the temperature that is used for evaluation of the free energy of particular
loops, select a different dangling-end energy model or load a different set of free energy parameters, e.g. for DNA
or parameters derived from computational optimizations.

See the man pages of RNAfold for a complete overview of all available options and command line switches.
Additional energy parameter collections are distributed together with the ViennaRNA Package as part of the
contents of the misc/ directory, and are typically installed in prefix/share/ViennaRNA, where prefix is the
path that was used as installation prefix, e.g. $HOME/Tutorial/Progs/VRP or /usrwhen installed globally using
a package manager.

3.1.2 The Program RNApvmin

Introduction

The program RNApvmin reads a RNA sequence from stdin and uses an iterative minimization process to calculate
a perturbation vector that minimizes the discripancies between predicted pairing probabilites and observed pairing
probabilities (deduced from given shape reactivities) [Washietl et al., 2012]. The experimental SHAPE data has
to be present in the file format described above. The application will write the calculated vector of perturbation
energies to stdout, while the progress of the minimization process is written to stderr. The resulting perturbation
vector can be interpreted directly and gives usefull insights into the discrepancies between thermodynamic predic-
tion and experimentally determined pairing status. In addition the perturbation energies can be used to constrain
folding with RNAfold:

$ RNApvmin rna.shape < rna.seq >vector.csv
$ RNAfold --shape=vector.csv --shapeMethod=W < rna.seq

The perturbation vector file uses the same file format as the SHAPE data file. Instead of SHAPE reactivities the raw
perturbation energies will be storred in the last column. Since the energy model is only adjusted when necessary,
the calculated perturbation energies may be used for the interpretation of the secondary structure prediction, since
they indicate which positions require major energy model adjustments in order to yield a prediction result close to
the experimental data. High perturbation energies for just a few nucleotides may indicate the occurrence of features,
which are not explicitly handled by the energy model, such as posttranscriptional modifications and intermolecular
interactions.

3.1.3 The Program RNAsubopt

Introduction

By default, RNAsubopt calculates all suboptimal secondary structures within a given energy range above the MFE
structure [Wuchty et al., 1999].

Note: Be careful, the number of structures returned grows exponentially with both sequence length and energy
range.

28 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

Suboptimal folding

• Generate all suboptimal structures within a certain energy range from the MFE specified by the -e option:

$ RNAsubopt -e 1 -s < test.seq
CUACGGCGCGGCGCCCUUGGCGA -500 100
...........((((...)))). -5.00
....((((...))))........ -4.80
(((.((((...))))..)))... -4.20
...((.((.((...)).)).)). -4.10

The text output shows an energy sorted list (option -s) of all secondary structures within 1~kcal/mol of the MFE
structure. Our sequence actually has a ground state structure (-5.70) and three structures within 1~kcal/mol range.

MFE folding alone gives no indication that there are actually a number of plausible structures. Remember that
RNAsubopt cannot automatically plot structures, therefore you can use the tool RNAplot. Note that you can’t
simply pipe the output of RNAsubopt to RNAplot using:

$ RNAsubopt < test.seq | RNAplot

You need to manually create a file for each structure you want to plot. Here, for example we created a new file
named suboptstructure.txt:

> suboptstructure-4.20
CUACGGCGCGGCGCCCUUGGCGA
(((.((((...))))..)))...

The fasta header is optional, but useful (without it the outputfile will be named rna.ps).

The next two lines contain the sequence and the suboptimal structure you want to plot; in this case we plotted the
structure with the folding energy of -4.20.

Then plot it with

$ RNAplot < suboptstructure.txt

Note that the number of suboptimal structures grows exponentially with sequence length and therefore this approach
is only tractable for sequences with less than 100 nt. To keep the number of suboptimal structures manageable the
option --noLP can be used, forcing RNAsubopt to produce only structures without isolated base pairs. While
RNAsubopt produces all structures within an energy range, mfold produces only a few, hopefully representative,
structures. Try folding the sequence on the mfold server at http://mfold.rna.albany.edu/?q=mfold.

Sometimes you want to get information about unusual properties of the Boltzmann ensemble (the sum of all RNA
structures possible) for which no specialized program exists. For example you want to know all fractions of a
bacterial mRNA in the Boltzmann ensemble where the Shine-Dalgarno (SD) sequence is unpaired. If the SD
sequence is concealed by secondary structure the translation efficiency is reduced.

In such cases you can resort to drawing a representative sample of structures from the Boltzmann ensemble by
using the option -p. Now you can simply count how many structures in the sample possess the feature you are
looking for. This number divided by the size of your sample gives you the desired fraction.

The following example calculates the fraction of structures in the ensemble that have bases 6 to 8 unpaired.

3.1. Global RNA Secondary Structure Prediction 29

http://mfold.rna.albany.edu/?q=mfold

ViennaRNA, Release 2.6.4

Sampling the Boltzmann Ensemble

RNAsubopt also implements a statisctical sampling algorithm to draw secondary structures from the ensemble
according to their equilibrium probability [Ding and Lawrence, 2003]:

• Draw a sample of size 10,000 from the Boltzmann ensemble

• Calculate the desired property, e.g. by using a perl script:

$ RNAsubopt -p 10000 < test.seq > tt
$ perl -nle '$h++ if substr($_,5,3) eq "...";
END {print $h/$.}' tt
0.391960803919608

A far better way to calculate this property is to use RNAfold -p to get the ensemble free energy, which is related
to the partition function via 𝐹 = −𝑅𝑇 ln(𝑄), for the unconstrained (𝐹𝑢) and the constrained case (𝐹𝑐), where the
three bases are not allowed to form base pairs (use option -C), and evaluate 𝑝𝑐 = exp((𝐹𝑢 − 𝐹𝑐)/𝑅𝑇) to get the
desired probability.

So let’s do the calculation using RNAfold:

$ RNAfold -p
Input string (upper or lower case); @ to quit
....,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8
CUACGGCGCGGCGCCCUUGGCGA
length = 23
CUACGGCGCGGCGCCCUUGGCGA
...........((((...)))).
minimum free energy = -5.00 kcal/mol
....{,{{...||||...)}}}.
free energy of ensemble = -5.72 kcal/mol
....................... { 0.00 d=4.66}
frequency of mfe structure in ensemble 0.311796; ensemble diversity 6.36

Now we have calculated the free ensemble energy of the ensemble over all structures 𝐹𝑢, in the next step we have
to calculate it for the structures using a constraint (𝐹𝑐).

Following notation has to be used for defining the constraint:

• | : paired with another base

• . : no constraint at all

• x : base must not pair

• < : base i is paired with a base j<i

• > : base i is paired with a base j>i

• matching brackets (): base i pairs base j

So our constraint should look like this:

.....xxx...............

Next call the application with following command and provide the sequence and constraint we just created:

$ RNAfold -p -C

The output should look like this:

length = 23
CUACGGCGCGGCGCCCUUGGCGA
...........((((...)))).

(continues on next page)

30 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

(continued from previous page)

minimum free energy = -5.00 kcal/mol
...........((((...)))).
free energy of ensemble = -5.14 kcal/mol
...........((((...)))). { -5.00 d=0.42}
frequency of mfe structure in ensemble 0.792925; ensemble diversity 0.79

Afterwards evaluate the desired probability according to the formula given before e.g. with a simple perl script:

$ perl -e 'print exp(-(5.72-5.14)/(0.00198*310.15))."\n"'

You can see that there is a slight difference between the RNAsubopt run with 10,000 samples and the RNAfold run
including all structures.

3.2 Consensus Structure Prediction

Consensus structures can be predicted by a modified version of the secondary structure prediction algorithm that
takes as input a set of aligned sequences instead of a single sequence.

Sequence co-variations are a direct consequence of RNA base pairing rules and can be deduced to alignments.
RNA helices normally contain only 6 out of the 16 possible combinations: the Watson-Crick pairs GC, CG, AU, UA,
and the somewhat weaker wobble pairs GU and UG. Mutations in helical regions therefore have to be correlated. In
particular we often find compensatory mutations where a mutation on one side of the helix is compensated by a
second mutation on the other side, e.g. a CG pair changes into a UA pair. Mutations where only one pairing partner
changes (such as CG to UG are termed consistent mutations.

The energy function consists of the mean energy averaged over the sequences, plus a covariance term that favors
pairs with consistent and compensatory mutations and penalizes pairs that cannot be formed by all structures. For
details see Hofacker et al. [2002] and Bernhart et al. [2008].

3.2.1 The Program RNAalifold

Introduction

RNAalifold generalizes the folding algorithm for multiple sequence alignments (MSA), treating the entire align-
ment as a single generalized sequence. To assign an energy to a structure on such a generalized sequence, the
energy is simply averaged over all sequences in the alignment. This average energy is augmented by a covariance
term, that assigns a bonus or penalty to every possible base pair (𝑖, 𝑗) based on the sequence variation in columns
𝑖 and 𝑗 of the alignment.

Compensatory mutations are a strong indication of structural conservation, while consistent mutations provide a
weaker signal. The covariance term used by RNAalifold therefore assigns a bonus of 1 kcal/mol to each consistent
and 2 kcal/mol for each compensatory mutation. Sequences that cannot form a standard base pair incur a penalty of
−1 kcal/mol. Thus, for every possible consensus pair between two columns 𝑖 and 𝑗 of the alignment a covariance
score𝐶𝑖𝑗 is computed by counting the fraction of sequence pairs exhibiting consistent and compensatory mutations,
as well as the fraction of sequences that are inconsistent with the pair. The weight of the covariance term relative
to the normal energy function, as well as the penalty for inconsistent mutations can be changed via command line
parameters.

Apart from the covariance term, the folding algorithm in RNAalifold is essentially the same as for single sequence
folding. In particular, folding an alignment containing just one sequence will give the same result as single sequence
folding using RNAfold. For𝑁 sequences of length 𝑛 the required CPU time scales as𝒪(𝑁 ·𝑛2+𝑛3) while memory
requirements grow as the square of the sequence length. Thus RNAalifold is in general faster than folding each
sequence individually. The main advantage, however, is that the accuracy of consensus structure predictions is
generally much higher than for single sequence folding, where typically only between 40% and 70% of the base
pairs are predicted correctly.

3.2. Consensus Structure Prediction 31

ViennaRNA, Release 2.6.4

Apart from prediction of MFE structures RNAalifold also implements an algorithm to compute the partition func-
tion over all possible (consensus) structures and the thermodynamic equilibrium probability for each possible pair.
These base pairing probabilities are useful to see structural alternatives, and to distinguish well defined regions,
where the predicted structure is most likely correct, from ambiguous regions.

As a first example we’ll produce a consensus structure prediction for the following four tRNA sequences.

$ cat > four.seq
>M10740 Yeast-PHE
GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUUUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCA
>K00349 Drosophila-PHE
GCCGAAAUAGCUCAGUUGGGAGAGCGUUAGACUGAAGAUCUAAAGGUCCCCGGUUCAAUCCCGGGUUUCGGCA
>K00283 Halobacterium volcanii Lys-tRNA-1
GGGCCGGUAGCUCAUUUAGGCAGAGCGUCUGACUCUUAAUCAGACGGUCGCGUGUUCGAAUCGCGUCCGGCCCA
>AF346993
CAGAGUGUAGCUUAACACAAAGCACCCAACUUACACUUAGGAGAUUUCAACUUAACUUGACCGCUCUGA

RNAalifold uses aligned sequences as input. Thus, our first step will be to align the sequences. We use clustalw2
in this example, since it’s one of the most widely used alignment programs and has been shown to work well
on structural RNAs. Other alignment programs can be used (including programs that attempt to do structural
alignment of RNAs), but for this example the resulting multiple sequence alignment should be in Clustal format.
Get clustalw2 and install it as you have done it with the other packages: http://www.clustal.org/clustal2.

Consensus Structure from related Sequences

• Prepare a sequence file (use file four.seq and copy it to your working directory)

• Align the sequences

• Compute the consensus structure from the alignment

• Inspect the output files alifold.out, alirna.ps, alidot.ps

• For comparison fold the sequences individually using RNAfold

$ clustalw2 four.seq > four.out

Clustalw2 creates two more output files, four.aln and four.dnd. For RNAalifold you need the .aln file.

$ RNAalifold -p four.aln
$ RNAfold -p < four.seq

RNAalifold output:

__GCCGAUGUAGCUCAGUUGGG_AGAGCGCCAGACUGAAAAUCAGAAGGUCCCGUGUUCAAUCCACGGAUCCGGCA__
..(((((((..((((.........)))).(((((.......))))).....(((((.......))))))))))))...
minimum free energy = -15.12 kcal/mol (-13.70 + -1.43)
..(((((({..((((.........)))).(((((.......))))).....(((((.......)))))}))))))...
free energy of ensemble = -15.75 kcal/mol
frequency of mfe structure in ensemble 0.361603
..(((((((..((((.........)))).(((((.......))))).....(((((.......))))))))))))... -15.20
→˓{-13.70 + -1.50}

RNAfold output:

>M10740 Yeast-PHE
GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUUUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCA
((((((((........((((.((((((..((((...........))))..))))))..))))..)))))))). (-21.60)
((((((({...,,.{,((((.((((((..((((...........))))..))))))..))))),)))))))). [-23.20]
((((((((.........(((.((((((..((((...........))))..))))))..)))...)))))))). {-20.00 d=9.
→˓63}

(continues on next page)

32 Chapter 3. Getting Started

http://www.clustal.org/clustal2

ViennaRNA, Release 2.6.4

(continued from previous page)

frequency of mfe structure in ensemble 0.0744065; ensemble diversity 15.35
>K00349 Drosophila-PHE
[...]

The output contains a consensus sequence and the consensus structure in dot-bracket notation. The consensus
structure has an energy of −15.12 kcal/mol, which in turn consists of the average free energy of the structure
−13.70 kcal/mol and the covariance term −1.43 kcal/mol. The strongly negative covariance term shows that there
must be a fair number of consistent and compensatory mutations, but in contrast to the average free energy it’s not
meaningful in the biophysical sense.

Compare the predicted consensus structure with the structures predicted for the individual sequences using
RNAfold. How often is the correct ``clover-leaf” shape predicted?

For better visualization, a structure annotated alignment or color annotated structure drawing can be generated by
using the --aln and --color options of RNAalifold.

$ RNAalifold --color --aln four.aln
$ gv aln.ps &
$ gv alirna.ps &

RNAalifold Output Files

Content of the alifold.out file:

4 sequence; length of alignment 78
alifold output

6 72 0 99.8% 0.007 GC:2 GU:1 AU:1
33 43 0 98.9% 0.033 GC:2 GU:1 AU:1
31 45 0 99.0% 0.030 CG:3 UA:1
15 25 0 98.9% 0.045 CG:3 UA:1
5 73 1 99.7% 0.008 CG:2 GC:1
13 27 0 99.1% 0.042 CG:4
14 26 0 99.1% 0.042 UA:4
4 74 1 99.5% 0.015 CG:3

[...]

The last output file produced by RNAalifold -p, named alifold.out, is a plain text file with detailed informa-
tion on all plausible base pairs sorted by the likelihood of the pair. In the example above we see that the pair (6, 72)
has no inconsistent sequences, is predicted almost with probability 1, and occurs as a GC pair in two sequences, a
GU pair in one, and a AU pair in another.

RNAalifold automatically produces a drawing of the consensus structure in Postscript format and writes it to the
file alirna.ps. In the structure graph consistent and compensatory mutations are marked by a circle around the
variable base(s), i.e. pairs where one pairing partner is encircled exhibit consistent mutations, whereas pairs sup-
ported by compensatory mutations have both bases marked. Pairs that cannot be formed by some of the sequences
are shown gray instead of black.

The structure layout and dotplot files alirna.ps and alidot.ps should look as follows:

3.2. Consensus Structure Prediction 33

ViennaRNA, Release 2.6.4

In the example given, many pairs show such inconsistencies. This is because one of the sequences (AF346993) is
not aligned well by clustalw.

Note: Subsequent calls to RNAalifold will overwrite any existing output alirna.ps (alidot.ps, alifold.
out) files in the current directory. Be sure to rename any files you want to keep.

Structure predictions for the individual sequences

The consensus structure computed by RNAalifold will contain only pairs that can be formed by most of the
sequences. The structures of the individual sequences will typically have additional base pairs that are not part of
the consensus structure. Moreover, ncRNA may exhibit a highly conserved core structure while other regions are
more variable. It may therefore be desirable to produce structure predictions for one particular sequence, while
still using covariance information from other sequences.

This can be accomplished by first computing the consensus structure for all sequences using RNAalifold, then
folding individual sequences using RNAfold -C with the consensus structure as a constraint. In constraint folding
mode RNAfold -C allows only base pairs to form which are compatible with the constraint structure. This resulting
structure typically contains most of the constraint (the consensus structure) plus some additional pairs that are
specific for this sequence.

The refold.pl script removes gaps and maps the consensus structure to each individual sequence.

$ RNAalifold RNaseP.aln > RNaseP.alifold
$ gv alirna.ps
$ refold.pl RNaseP.aln RNaseP.alifold | head -3 > RNaseP.cfold
$ RNAfold -C --noLP < RNaseP.cfold > RNaseP.refold
$ gv E-coli_ss.ps

If you compare the refolded structure (E-coli_ss.ps) with the structure you get by simply folding the E.coli
sequence in the RNaseP.seq file (RNAfold --noLP) you find a clear rearrangement.

In cases where constrained folding results in a structure that is very different from the consensus, or if the energy
from constrained folding is much worse than from unconstrained folding, this may indicate that the sequence in
question does not really share a common structure with the rest of the alignment or is misaligned. One should then
either remove or re-align that sequence and recompute the consensus structure.

Note: Note that since RNase P forms sizable pseudo-knots, a perfect prediction is impossible in this case.

34 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

3.3 RNA-RNA interaction

A common problem is the prediction of binding sites between two RNAs, as in the case of miRNA-mRNA inter-
actions. Following tools of the ViennaRNA Package can be used to calculate base pairing probabilities.

3.3.1 The Program RNAcofold

Introduction

RNAcofold works much like RNAfold but uses two RNA sequences as input which are then allowed to form a
dimer structure. In the input the two RNA sequences should be concatenated using the & character as separator.
As in RNAfold the -p option can be used to compute partition function and base pairing probabilities.

Since dimer formation is concentration dependent, RNAcofold can be used to compute equilibrium concentrations
for all five monomer and (homo/hetero)-dimer species, given input concentrations for the monomers (see the man
page for details).

Two Sequences one Structure

• Prepare a sequence file (t.seq) for input that looks like this:

>t
GCGCUUCGCCGCGCGCC&GCGCUUCGCCGCGCGCA

• Compute the MFE and the ensemble properties

• Look at the generated PostScript files t_ss.ps and t_dp.ps

$ RNAcofold -p < t.seq
>t
GCGCUUCGCCGCGCGCC&GCGCUUCGCCGCGCGCA
((((..((..((((...&))))..))..))))... (-17.70)
((((..{(,.((((,,.&))))..}),.)))),,. [-18.26]
frequency of mfe structure in ensemble 0.401754 , delta G binding= -3.95

3.3. RNA-RNA interaction 35

ViennaRNA, Release 2.6.4

Table 1: Secondary Structure and Dot Plot

In the dot plot a cross marks the chain break between the two concatenated sequences.

Concentration Dependency

Cofolding is an intermolecular process, therefore whether duplex formation will actually occur is concentration
dependent. Trivially, if one of the molecules is not present, no dimers are going to be formed. The partition
functions of the molecules give us the equilibrium constants:

𝐾𝐴𝐵 =
[𝐴𝐵]

[𝐴][𝐵]
=

𝑍𝐴𝐵

𝑍𝐴𝑍𝐵

with these and mass conservation, the equilibrium concentration of homodimers, heterodimers and monomers can
be computed in dependence of the start concentrations of the two molecules.

This is most easily done by creating a file with the initial concentrations of molecules 𝐴 and 𝐵 in two columns:

[a_1]([mol/l]) [b_1]([mol/l])
[a_2]([mol/l]) [b_2]([mol/l])

[...]

[a_n]([mol/l]) & [b_n]([mol/l])

• Prepare a concentration file for input with this little perl script:

$ perl -e '$c=1e-07; do {print "$c\t$c\n"; $c*=1.71;} while $c<0.2' > concfile

36 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

This script creates a file displaying values from 1e-07 to just below 0.2, with 1.71-fold steps in between. For
convenience, concentration of molecule A is the same as concentration of molecule B in each row. This will
facilitate visualization of the results.

• Compute the MFE, the ensemble properties and the concentration dependency of hybridization:

$ RNAcofold -f concfile < t.seq > cofold.out

• Look at the generated output with:

$ less cofold.out

which should be similar to:

[...]
Free Energies:
AB AA BB A B
-18.261023 -17.562553 -18.274376 -7.017902 -7.290237
Initial concentrations relative Equilibrium concentrations
A B AB AA BB ␣
→˓A B
1e-07 1e-07 0.00003 0.00002 0.00002 ␣
→˓0.49994 0.49993
[...]

The five different free energies were printed out first, followed by a list of all the equilibrium concentrations, where
the first two columns denote the initial (absolute) concentrations of molecules 𝐴 and 𝐵, respectively. The next five
columns denote the equilibrium concentrations of dimers and monomers, relative to the total particle number.

Note: The concentrations don’t add up to one, except in the case where no dimers are built – if you want to know
the fraction of particles in a dimer, you have to take the relative dimer concentrations times 2.

Since relative concentrations of species depend on two independent values - initial concentration of A as well as
initial concentration of B - it is not trivial to visualize the results. For this reason we used the same concentration
for A and for B. Another possibility would be to keep the initial concentration of one molecule constant. As an
example we show the following plot of t.seq.

Now we use some commandline tools to render our plot. We use tail -n +11 to show all lines starting with line
11 (1-10 are cut) and pipe it into an awk command, which prints every column but the first from our input. This is
then piped to xmgrace. With -log x -nxy - we tell it to plot the x axis in logarithmic scale and to read data file
in X Y1 Y2 . . . format.

$ tail -n +11 cofold.out | awk '{print $2, $3, $4, $5, $6, $7}' | xmgrace -log x -nxy␣
→˓-

3.3. RNA-RNA interaction 37

ViennaRNA, Release 2.6.4

Concentration Dependency Plot

Since the two sequences are almost identical, the monomer and homo-dimer concentrations behave very similarly.
In this example, at a concentration of about 1 mmol 50% of the molecule is still in monomer form.

3.3.2 The Program RNAduplex

Introduction

If the sequences are very long (many kb) RNAcofold is too slow to be useful. The RNAduplex program is a
fast alternative, that works by predicting only intermolecular base pairs. It’s almost as fast as simple sequence
alignment, but much more accurate than a BLAST search.

The example below searches the 3’ UTR of an mRNA for a miRNA binding site.

Binding site prediction with RNAduplex

The file duplex.seq contains the 3’UTR of NM_024615 and the microRNA mir-145.

$ RNAduplex < duplex.seq
>NM_024615
>hsa-miR-145
.(((((.(((...((((((((((.&)))))))))))))))))). 34,57 : 1,19 (-21.90)

Most favorable binding has an interaction energy of -21.90 kcal/mol and pairs up on positions 34-57 of the UTR
with positions 1-22 of the miRNA.

RNAduplex can also produce alternative binding sites, e.g. running RNAduplex -e 10 would list all binding sites
within 10 kcal/mol of the best one.

Since RNAduplex forms only intermolecular pairs, it neglects the competition between intramolecular folding
and hybridization. Thus, it is recommended to use RNAduplex as a pre-filter and analyse good RNAduplex hits
additionally with RNAcofold or RNAup. Using the example above, running RNAup will yield:

38 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

Binding site prediction with RNAup

$ RNAup -b < duplex.seq
>NM_024615
>hsa-miR-145
(((((((&))))))) 50,56 : 1,7 (-8.41 = -9.50 + 0.69 + 0.40)
GCUGGAU&GUCCAGU
RNAup output in file: hsa-miR-145_NM_024615_w25_u1.out

The free energy of the duplex is -9.50 kcal/mol and shows a discrepancy to the structure and energy value computed
by RNAduplex (differences may arise from the fact that RNAup computes partition functions rather than optimal
structures).

However, the total free energy of binding is less favorable (-8.41 kcal/mol), since it includes the energetic penalty
for opening the binding site on the mRNA (0.69 kcal/mol) and miRNA (0.40 kcal/mol). The -b option includes
the probability of unpaired regions in both RNAs.

You can also run RNAcofold on the example to see the complete structure after hybridization (neither RNAduplex
nor RNAup produce structure drawings). Note however, that the input format for RNAcofold is different. An input
file suitable for RNAcofold has to be created from the duplex.seq file first (use any text editor).

As a more difficult example, let’s look at the interaction of the bacterial smallRNA RybB and its target mRNA
ompN. First we’ll try predicting the binding site using RNAduplex:

$ RNAduplex < RybB.seq
>RybB
>ompN
.((((..((((((.(((....((((((((..(((((.((..((.((....((((..(((((((((((..((((((&
.))))))..))))))).)))).....))))....)).)).)).))).))..))))........))))..))).)))))).)))).
5,79 : 80,164 (-34.60)

Note, that the predicted structure spans almost the full length of the RybB small RNA. Compare the predicted
interaction to the structures predicted for RybB and ompN alone, and ask yourself whether the predicted interaction
is indeed plausible.

Below the structure of ompN on the left and RybB on the right side. The respective binding regions predicted by
RNAduplex are marked in red:

3.3. RNA-RNA interaction 39

ViennaRNA, Release 2.6.4

GCCAC-----TGCTTTTCTTTGATGTCCCCATTTT-GTGGA-------GC-CCATCAACCCCGCCATTTCGGTT---CAAG-
→˓GTTGGTGGGTTTTTT
||| |||| |||||| ||| ||||| |||| || ||| || || || |||| |||| || ␣
→˓||| |||||| -40.30
AGGTCAAACAACGGC-AGAAACAATATT--TAAAGTCGCCGCACACGACGCGGTCGTCGGT-
→˓CGTCTCGGCCCTACTGTTCACGGTTATGAAAAGAAACC-3'

Compare the RNAduplex prediction with the interaction predicted by RNAcofold, RNAup and the handcrafted
prediction you see above.

40 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

3.4 Plotting Structures

3.4.1 The Program RNAplot

Introduction

You can manually add additional annotation to structure drawings using the RNAplot program (for information
see its man page). Here’s a somewhat complicated example:

$ RNAfold 5S.seq > 5S.fold
$ RNAplot --pre "76 107 82 102 GREEN BFmark 44 49 0.8 0.8 0.8 Fomark \
1 15 8 RED omark 80 cmark 80 -0.23 -1.2 (pos80) Label 90 95 BLUE Fomark" < 5S.fold

$ gv 5S_ss.ps

3.4. Plotting Structures 41

ViennaRNA, Release 2.6.4

PostScript macros

RNAplot is a very useful tool to color structure layout plots. The --pre tag adds PostScript code required to color
distinct regions of your molecule. There are some predefined statements with different options for annotations
listed below:

Command Description
i cmark draws circle around base i
i j c gmark draw basepair i,j with c counter examples in grey
i j lw rgb omark stroke segment i. . . j with linewidth lw and color (rgb)
i j rgb Fomark fill segment i. . . j with color (rgb)
i j k l rgb BFmark fill block between pairs i,j and k,l with color (rgb)
i dx dy (text) Label adds a textlabel with an offset dx and dy relative to base i

Predefined color options are BLACK, RED, GREEN, BLUE, WHITE but you can also replace the value to some
standard RGB code (e.g. 0 5 8 for lightblue).

To simply add the annotation macros to the PostScript file without any actual annotation you can use the follow-
ing program call

$ RNAplot --pre "" < 5S.fold

If you now open the structure layout file 5S_ss.ps with a text editor you’ll see the additional macros for cmark,
omark, etc. along with some show synopsis on how to use them. Actual annotations can then be added between
the lines:

% Start Annotations

and:

% End Annotations

Here, you simply need to add the same string of commands you would provide through the --pre option of
RNAplot.

42 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

3.5 RNA Design

3.5.1 The Program RNAinverse

Introduction

RNAinverse searches for sequences folding into a predefined structure, thereby inverting the folding algorithm.
Input consists of the target structures (in dot-bracket notation) and a starting sequence, which is optional.

Lower case characters in the start sequence indicate fixed positions, i.e. they can be used to add sequence con-
straints. N’s in the starting sequence will be replaced by a random nucleotide. For each search the best sequence
found and its Hamming distance to the start sequence are printed to stdout. If the the search was unsuccessful a
structure distance to the target is appended.

By default the program stops as soon as it finds a sequence that has the target as MFE structure. The op-
tion -Fp switches RNAinverse to the partition function mode where the probability of the target structure
exp(−𝐸(𝑆)/𝑅𝑇)/𝑍 is maximized. This tends to produce sequences with a more well-defined structure.

This probability is written in dot-brackets after the found sequence and Hamming distance. With the option -R
you can specify how often the search should be repeated.

Sequence Design

• Prepare an input file inv.in containing the target structure and sequence constraints:

(((.(((....))).)))
NNNgNNNNNNNNNNaNNN

• Design sequences using RNAinverse:

$ RNAinverse < inv.in
GGUgUUGGAUCCGAaACC 5

or design even more sequences with:

$ RNAinverse -R5 -Fp < inv.in
GGUgUGAACCCUCGaACC 5
GGCgCCCUUUUGGGaGCC 12 (0.967418)
CUCgAUCUCACGAUaGGG 6
GGCgCCCGAAAGGGaGCC 13 (0.967548)
GUUgAGCCCAUGCUaAGC 6
GGCgCCCUUAUGGGaGCC 10 (0.967418)
CGGgUGUUGUGACAaCCG 5
GCGgGUCGAAAGGCaCGC 12 (0.925482)
GCCgUAUCCGGGUGaGGC 6
GGCgCCCUUUUGGGaGCC 13 (0.967418)

The output consists of the calculated sequence and the number of mutations needed to get the MFE-structure from
the start sequence (start sequence not shown). Additionaly, with the partition function folding (-Fp) set, the second
output is another refinement so that the ensemble preferes the MFE and folds into your given structure with a distinct
probability, shown in brackets.

3.5. RNA Design 43

ViennaRNA, Release 2.6.4

Other RNA design tools

Another useful program for inverse folding is RNA designer, see http://www.rnasoft.ca. RNA Designer takes
a secondary structure description as input and returns an RNA strand that is likely to fold in the given secondary
structure.

The sequence design application of the ViennaRNA Design Webservices, see http://nibiru.tbi.univie.
ac.at/rnadesign/index.html, uses a different approach, allowing for more than one secondary structure as input. For
more detail read the online Documentation and the next section of this tutorial.

3.5.2 The Program switch.pl

Introduction

The switch.pl script can be used to design bi-stable structures, i.e. structures with two almost equally good
foldings. For two given structures there are always a lot of sequences compatible with both structures. If both
structures are reasonably stable you can find sequences where both target structures have almost equal energy and
all other structures have much higher energies. Combined with RNAsubopt, barriers and treekin, this is a very
useful tool for designing RNA switches.

The input requires two structures in dot-bracket notation and additionally you can add a sequence. It is also possible
to calculate the switching function at two different temperatures with option -T and -T2.

Designing a Switch

Now we try to create an RNA switch using switch.pl [Flamm et al., 2001]. First we create our inputfile, then
invoke the program using ten optimization runs (-n 10) and do not allow lonely pairs. Write it out to switch.out

$ cat > switch.in
((((((((......))))))))....((((((((.......))))))))
((((((((((((((((((........)))))))))))))))))).....

$ switch.pl -n 10 --noLP < switch.in > switch.out

switch.out should look similar like this, the first block represents our bi-stable structures in random order, the
second block shows the resulting sequences ordered by their score.

$ cat switch.out
GGGUGGACGUUUCGGUCCAUCCUUACGGACUGGGGCGUUUACCUAGUCC 0.9656
CAUUUGGCUUGUGUGUCGAAUGGCCCCGGUACGUAGGCUAAAUGUACCG 1.2319
GGGGGGUGCGUUCACACCCCUCAUUUGGUGUGGAUGUGCUUUCUACACU 1.1554
[...]

the resulting sequences are:

CAUUUGGCUUGUGUGUCGAAUGGCCCCGGUACGUAGGCUAAAUGUACCG 1.2319
GGGGGGUGCGUUCACACCCCUCAUUUGGUGUGGAUGUGCUUUCUACACU 1.1554
CGGGUUGUAACUGGAUAGCCUGGAAACUGUUUGGUUGUAAUCCGAACAG 1.0956
[...]

Given all 10 suggestions in our switch.out, we select the one with the best score with some command line tools
to use it as an RNAsubopt input file and build up the barriers tree.

$ tail -10 switch.out | awk '{print($1)}' | head -n 1 > subopt.in
$ RNAsubopt --noLP -s -e 25 < subopt.in > subopt.out
$ barriers -G RNA-noLP --bsize --rates --minh 2 --max 30 < subopt.out > barriers.out

44 Chapter 3. Getting Started

http://www.rnasoft.ca
http://nibiru.tbi.univie.ac.at/rnadesign/index.html
http://nibiru.tbi.univie.ac.at/rnadesign/index.html

ViennaRNA, Release 2.6.4

tail -10 cuts the last 10 lines from the switch.out file and pipes them into an awk script. The function
print($1) echoes only the first column and this is piped into the head program where the first line, which equals
the best scored sequence, is taken and written into subopt.in. Then RNAsubopt is called to process our sequence
and write the output to another file which is the input for the barriers calculation.

Below you find an example of the barrier tree calculation above done with the right settings (connected root) on
the left side and the wrong RNAsubobt -e value on the right. Keep in mind that switch.pl performs a stochastic
search and the output sequences are different every time because there are a lot of sequences which fit the structure
and switch calculates a new one everytime. Simply try to make sure.

left: Barriers tree as it should look like, all branches connected to the main root right: disconnected tree due to a
too low energy range (-e) parameter set in RNAsubopt.

Be careful to set the range -e high enough, otherwise we get a problem when calculation the kinetics using
treekin. Every branch should be somehow connected to the main root of the tree. Try -e 20 and -e 30 to
see the difference in the trees and choose the optimal value. By using --max 30 we shorten our tree to focus only
on the lowest minima.

We then select a branch preferably outside of the two main branches, here branch 30 (may differ from your own
calculation). Look at the barrier tree to find the best branch to start and replace 30 by the branch you would choose.
Now use treekin to plot concentration kinetics and think about the graph you just created.

$ treekin -m I --p0 30=1 < barriers.out > treekin.out
$ xmgrace -log x -nxy treekin.out

The graph could look like the one below, remember everytime you use switch.pl it can give you different se-
quences so the output varies too. Here the one from the example.

3.5. RNA Design 45

ViennaRNA, Release 2.6.4

3.6 RNA folding kinetics

RNA folding kinetics describes the dynamical process of how a RNA molecule approaches to its unique folded
biological active conformation (often referred to as the native state) starting from an initial ensemble of disordered
conformations e.g. the unfolded open chain. The key for resolving the dynamical behavior of a folding RNA chain
lies in the understanding of the ways in which the molecule explores its astronomically large free energy landscape,
a rugged and complex hyper-surface established by all the feasible base pairing patterns a RNA sequence can form.
The challenge is to understand how the interplay of formation and break up of base pairing interactions along the
RNA chain can lead to an efficient search in the energy landscape which reaches the native state of the molecule
on a biologically meaningful time scale.

3.6.1 The Program RNA2Dfold

RNA2Dfold is a tool for computing the MFE structure, partition function and representative sample structures of
𝜅, 𝜆 neighborhoods and projects an high dimensional energy landscape of RNA into two dimensions [Lorenz et
al., 2009]. Therefore a sequence and two user-defined reference structures are expected by the program. For each
of the resulting distance class, the MFE representative, the Boltzmann probabilities and the Gibbs free energy is
computed. Additionally, representative suboptimal secondary structures from each partition can be calculated.

$ RNA2Dfold -p < 2dfold.inp > 2dfold.out

The outputfile 2dfold.out should look like below, check it out, e.g. using less:

CGUCAGCUGGGAUGCCAGCCUGCCCCGAAAGGGGCUUGGCGUUUUGGUUGUUGAUUCAACGAUCAC
((((((((((....)))))..(((((....))))).)))))...(((((((((...))))))))). (-30.40)
((((((((((....)))))..(((((....))))).)))))...(((((((((...))))))))). (-30.40) <ref 1>
.. (0.00) <ref 2>
free energy of ensemble = -31.15 kcal/mol
k l P(neighborhood) P(MFE in neighborhood) P(MFE in ensemble) MFE ␣
→˓ E_gibbs MFE-structure
0 24 0.29435909 1.00000000 0.29435892 -30.40 -30.40 ␣
→˓((((((((((....)))))..(((((....))))).)))))...(((((((((...))))))))).
1 23 0.17076902 0.47069889 0.08038083 -29.60 -30.06 ␣
→˓((((((((((....)))))..(((((....))))).)))))....((((((((...))))))))..
2 22 0.03575448 0.37731068 0.01349056 -28.50 -29.10 ((((.
→˓(((((....)))))..(((((....)))))..))))....((((((((...))))))))..

(continues on next page)

46 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

(continued from previous page)

2 24 0.00531223 0.42621709 0.00226416 -27.40 -27.93 ␣
→˓((((((((((....))))...(((((....)))))))))))...(((((((((...))))))))).
3 21 0.00398349 0.29701636 0.00118316 -27.00 -27.75 .(((.
→˓(((((....)))))..(((((....)))))..))).....((((((((...))))))))..
3 23 0.00233909 0.26432372 0.00061828 -26.60 -27.42 ␣
→˓((((((((((....))))...(((((....)))))))))))....((((((((...))))))))..
[...]

For visualizing the output the ViennaRNA Package includes two scripts 2Dlandscape_pf.gri,
2Dlandscape_mfe.gri located in /usr/share/ViennaRNA/. gri (a language for scientific graphics
programing) is needed to create a colored postscript plot. We use the partition function script to show the free
energies of the distance classes (graph below, left):

$ gri ../Progs/VRP/share/ViennaRNA/2Dlandscape_pf.gri 2dfold.out

Compare the output file with the colored plot and determine the MFE minima with corresponding distance classes.
For easier comparision the outputfile of RNA2Dfold can be sorted by a simple sort command. For further infor-
mation regarding sort use the --help option.

$ sort -k6 -n 2dfold.out > sort.out

Now we choose the structure with the lowest energy besides our startstructure, replace the open chain structure
from our old input with that structure and repeat the steps above with our new values:

• run RNA2Dfold

• plot it using 2Dlandscape_pf.gri

The new projection (right graph) shows the two major local minima which are separated by 39 bp (red dots in figure
below) and both are likely to be populated with high probability. The landscape gives an estimate of the energy
barrier separating the two minima (about -20 kcal/mol).

The red dots mark the distance from open chain to the MFE structure respectively the distance from the 2nd best
structure to the MFE. Note that the red dots were manually added to the image afterwards so don’t panic if you
don’t see them in your gri output.

3.6. RNA folding kinetics 47

ViennaRNA, Release 2.6.4

3.6.2 The Programs barriers and treekin

Introduction

The following assumes you already have the barriers and treekin programs installed. They are not part
of the ViennaRNA Package but their latest releases can be found at https://www.tbi.univie.ac.at/RNA/Barriers/
and https://www.tbi.univie.ac.at/RNA/Treekin/, respectively. Installation proceeds as shown for the ViennaRNA
Package.

Note: One problem that often occurs during treekin installation is the dependency on blas and lapack pack-
ages. For further information according to the barriers and treekin program also see the website.

A short recall on howto install/compile a program

• Get the barriers source from https://www.tbi.univie.ac.at/RNA/Barriers/

• extract the archive and go to the directory:

$ tar -xzf Barriers-1.5.2.tar.gz
$ cd Barriers-1.5.2

• use the --prefix option to install in your Progs/ directory:

$./configure --prefix=$HOME/Tutorial/Progs/barriers-1.5.2

• make install:

$ make
$ make install

Now barriers is ready to use. Apply the same steps to install treekin.

Note: Copy the barriers and treekin binaries to your bin folder or add the path to your PATH environment
variable.

Calculate the Barrier Tree

$ echo UCCACGGCUGUUAGUGGAUAACGGC | RNAsubopt --noLP -s -e 10 > barseq.sub
$ barriers -G RNA-noLP --bsize --rates < barseq.sub > barseq.bar

You can restrict the number of local minima using the barriers command-line option --max followed by a
number. The option -G RNA-noLP instructs barriers that the input consists of RNA secondary structures without
isolated basepairs. --bsize adds size of the gradient basins and --rates tells barriers to compute rates between
macro states/basins for use with treekin. Another useful options is --minh to print only minima with a barrier
> 𝑑𝐸. Look at the output file barseq.bar, its content should be like:

UCCACGGCUGUUAGUGGAUAACGGC
1 (((((........)))))....... -6.90 0 10.00 115 0 -7.354207 23 -7.
→˓012023
2(((((((.....))))))) -6.80 1 9.30 32 58 -6.828221 38 -6.
→˓828218
3 (((...(((...))))))....... -0.80 1 0.90 1 10 -0.800000 9 -1.
→˓075516
4((..((((....)))).)).. -0.80 1 2.70 5 37 -0.973593 11 -0.
→˓996226 (continues on next page)

48 Chapter 3. Getting Started

https://www.tbi.univie.ac.at/RNA/Barriers/
https://www.tbi.univie.ac.at/RNA/Treekin/
https://www.tbi.univie.ac.at/RNA/Barriers/

ViennaRNA, Release 2.6.4

(continued from previous page)

5 0.00 1 0.40 1 14 -0.000000 26 -0.
→˓612908
6(((....((.....))))) 0.60 2 0.40 1 22 0.600000 3 0.
→˓573278
7((((((....)))...))) 1.00 1 1.50 1 95 1.000000 2 0.
→˓948187
8 .((....((......)).....)). 1.40 1 0.30 1 30 1.400000 2 1.
→˓228342

The first row holds the input sequence, the successive list the local minima ascending in energy. The meaning of
the first 5 columns is as follows

• label (number) of the local minima (1=MFE)

• structure of the minimum

• free energy of the minimum

• label of deeper local minimum the current minimum merges with (note that the MFE has no deeper local
minimum to merge with)

• height of the energy barrier to the local minimum to merge with

• numbers of structures in the basin we merge with

• number of basin which we merge to

• free energy of the basin

• number of structures in this basin using gradient walk

• gradient basin (consisting of all structures where gradientwalk ends in the minimum)

barriers produced two additional files, the PostScript file tree.eps which represents the basic information of
the barseq.bar file visually:

and a text file rates.out which holds the matrix of transition probabilities between the local minima.

3.6. RNA folding kinetics 49

ViennaRNA, Release 2.6.4

Simulating the Folding Kinetics

The program treekin is used to simulate the evolution over time of the population densities of local minima
starting from an initial population density distribution 𝑝0 (given on the command-line) and the transition rate
matrix in the file rates.out.

$ treekin -m I --p0 5=1 < barseq.bar | xmgrace -log x -nxy -

The simulation starts with all the population density in the open chain (local minimum 5, see barseq.bar). Over
time the population density of this state decays (yellow curve) and other local minima get populated. The simulation
ends with the population densities of the thermodynamic equilibrium in which the MFE (black curve) and local
minimum 2 (red curve) are the only ones populated. (Look at the dot plot of the sequence created with RNAsubopt
and RNAfold!)

3.7 Other Utilities

3.7.1 Utilities

We also ship a number of small utilities, many of them to manipulate the PostScript files produced by the structure
prediction programs RNAfold and RNAalifold.

Most of the Perl 5 utilities contain embedded pod documentation. Type e.g.

perldoc relplot.pl

for detailed instructions.

50 Chapter 3. Getting Started

ViennaRNA, Release 2.6.4

3.7. Other Utilities 51

ViennaRNA, Release 2.6.4

Available Tools

Tool Name Description
ct2db

Produce dot bracket notation of an RNA secondary
structure
given as mfold .ct file

b2mt.pl

Produce a mountain representation of a secondary
structure
from it’s dot-bracket notation, as produced by
RNAfold.
Output consists of simple x y data suitable as input
to a
plotting program. The mountain representation is a
xy plot with
sequence position on the x-axis and the number of
base pairs
enclosing that position on the y-axis.

Example:

RNAfold < my.seq | b2mt.pl | xmgrace -
→˓pipe

cmount.pl

Produce a PostScript mountain plot from a color dot
plot as
created by RNAalifold -p or alidot -p. Each base
pair
is represented by a trapez whose color encodes the
number of
consistent and compensatory mutations supporting
that pair:
Red marks pairs with no sequence variation; ochre,
green, turquoise,
blue, and violet mark pairs with 2,3,4,5,6 different
types of pairs,
respectively.

Example:

cmount.pl alidot.ps > cmount.ps

coloraln.pl

Reads a sequence alignment in CLUSTAL format and
a consensus
secondary structure (which it extracts from a
secondary structure
plot as produced by RNAalifold), and produces a
postscript figure
of the alignment annotated using the consensus
structure, coloring
base pair using the same color scheme as
cmount.pl, RNAalifold
and alidot.

Example:

coloraln.pl -s alirna.ps file.aln >␣
→˓coloraln.ps

colorrna.pl

Reads a consensus secondary structure plot and a
color dot plot
as produced by RNAalifold -p, and writes a new
secondary
structure plot in which base pairs a colored using the
color
information from the dot plot.

Example:

colorrna.pl alirna.ps alidot.ps >␣
→˓colorRNA.ps

mountain.pl

Similar to b2mt.pl, but produces a mountain plot
from the
pair probabilities contained in a PostScript dot plot.
It write
3 sets of x y data, suitable as input for a plot program.
The
first two sets containing the mountain representation
from pair
probabilities and MFE structure, the third set is the
“positional entropy” a measure of structural
well-definedness.

Example:

mountain.pl dot.ps | xmgrace -pipe

refold.pl Refold using consensus structure as constraint
relplot.pl

Reads a postscript secondary structure plot and a dot
plot
containing pair probabilities as produced by RNAfold
-p,
and produces a new structure plot, color annotated
with reliability
information in the form of either pair probabilities or
positional
entropy (default).

Example:

relplot.pl foo_ss.ps foo_dp.ps > foo_
→˓rss.ps

rotate_ss.pl

Reads a postscript secondary structure plot as
produced by
RNAfold and produces a new rotated and/or mirrored
structure plot.

Example:

rotate_ss.pl -a 30 -m foo_ss.ps > foo_
→˓new_ss.ps

switch.pl

Design sequences that can adopt two different
structure, i.e.
design RNA switches. The program will sample the
set of sequences
compatible with two input structures in order to find
sequences with
desired thermodynamic and kinetic properties. In
particular it is
possible to specify two different temperatures such
that structure
1 is favored at T1 and structure 2 at T2 to design
temperature
sensitive switches (RNA thermometers). The desired
height of the
energy barrier separating the two structures, thus
determining
the refolding time between meta-stable states.

RNAdesign.pl

Flexible design of multi-stable RNA molecules. An
initially random
sequence is iteratively mutated and evaluated
according to an
objective function (see Option: --optfun).
Whenever a better
scoring sequence has been found, the mutation is
accepted, the
algorithm terminates once a local minimum is found.
This script
makes heavy use of the RNA::Design sub-package
that comes
with the ViennaRNA Package Perl 5 interface.

52 Chapter 3. Getting Started

CHAPTER

FOUR

MANPAGES

The ViennaRNA Package comes with a number of executable programs that provide command line interfaces to
the most important algorithms implemented in RNAlib.

Find an overview of these programs and their corresponding manual pages below.

4.1 RNA2Dfold

RNA2Dfold - manual page for RNA2Dfold 2.6.4

4.1.1 Synopsis

RNA2Dfold [OPTION]...

4.1.2 DESCRIPTION

RNA2Dfold 2.6.4

Compute MFE structure, partition function and representative sample structures of k,l neighborhoods

The program partitions the secondary structure space into (basepair)distance classes according to two fixed refer-
ence structures. It expects a sequence and two secondary structures in dot-bracket notation as its inputs. For each
distance class, the MFE representative, Boltzmann probabilities and Gibbs free energy is computed. Additionally,
a stochastic backtracking routine allows one to produce samples of representative suboptimal secondary structures
from each partition

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

53

ViennaRNA, Release 2.6.4

I/O Options:

Command line options for input and output (pre-)processing

-j, --numThreads=INT

Set the number of threads used for calculations (only available when compiled with OpenMP support)

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-p, --partfunc

calculate partition function and thus, Boltzmann probabilities and Gibbs free energy

(default=off)

--stochBT=INT

backtrack a certain number of Boltzmann samples from the appropriate k,l neighborhood(s)

--neighborhood=<k>:<l>

backtrack structures from certain k,l-neighborhood only, can be specified multiple times
(<k>:<l>,<m>:<n>,. . .)

-K, --maxDist1=INT

maximum distance to first reference structure

If this value is set all structures that exhibit a basepair distance greater than maxDist1 will be thrown into a
distance class denoted by K=L=-1

-L, --maxDist2=INT

maximum distance to second reference structure

If this value is set all structures that exhibit a basepair distance greater than maxDist1 will be thrown into a
distance class denoted by K=L=-1

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default=”1.07”)

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

--noBT

do not backtrack structures, calculate energy contributions only

(default=off)

-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)

54 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops

(possible values=”0”, “2” default=”2”)

With -d2 dangling energies will be added for the bases adjacent to a helix on both sides in any case. The
option -d0 ignores dangling ends altogether (mostly for debugging).

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.1. RNA2Dfold 55

ViennaRNA, Release 2.6.4

4.1.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

R. Lorenz, C. Flamm, I.L. Hofacker (2009), “2D Projections of RNA folding Landscapes”, GI, Lecture Notes in
Informatics, German Conference on Bioinformatics 2009: 157, pp 11-20

M. Zuker, P. Stiegler (1981), “Optimal computer folding of large RNA sequences using thermodynamic and aux-
iliary information”, Nucl Acid Res: 9, pp 133-148

J.S. McCaskill (1990), “The equilibrium partition function and base pair binding probabilities for RNA secondary
structures”, Biopolymers: 29, pp 1105-1119

I.L. Hofacker and P.F. Stadler (2006), “Memory Efficient Folding Algorithms for Circular RNA Secondary Struc-
tures”, Bioinformatics

D. Adams (1979), “The hitchhiker’s guide to the galaxy”, Pan Books, London

The calculation of mfe structures is based on dynamic programming algorithm originally developed by M. Zuker
and P. Stiegler. The partition function algorithm is based on work by J.S. McCaskill.

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.1.4 AUTHOR

Ronny Lorenz

4.1.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.2 RNAaliduplex

RNAaliduplex - manual page for RNAaliduplex 2.6.4

56 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.2.1 Synopsis

RNAaliduplex [options] <file1.aln> <file2.aln>

4.2.2 DESCRIPTION

RNAaliduplex 2.6.4

Predict conserved RNA-RNA interactions between two alignments

The program reads two alignments of RNA sequences in CLUSTAL format and predicts optimal and suboptimal
binding sites, hybridization energies and the corresponding structures. The calculation takes only inter-molecular
base pairs into account, for the general case use RNAcofold. The use of alignments allows one to focus on binding
sites that are evolutionary conserved. Note, that the two input alignments need to have equal number of sequences
and the same order, i.e. the 1st sequence in file1 will be hybridized to the 1st in file2 etc.

The computed binding sites, energies, and structures are written to stdout, one structure per line. Each line consist
of: The structure in dot bracket format with a “&” separating the two strands. The range of the structure in the two
sequences in the format “from,to : from,to”; the energy of duplex structure in kcal/mol. The format is especially
useful for computing the hybrid structure between a small probe sequence and a long target sequence.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

Algorithms:

Select additional algorithms which should be included in the calculations.

-e, --deltaEnergy=range

Compute suboptimal structures with energy in a certain range of the optimum (kcal/mol). Default is calcu-
lation of mfe structure only.

-s, --sorted

Sort output by free energy.

(default=off)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

4.2. RNAaliduplex 57

ViennaRNA, Release 2.6.4

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE

Provide salt correction for duplex initialization (in kcal/mol).

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

58 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.2.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.2.4 AUTHOR

Ivo L Hofacker, Ronny Lorenz

4.2.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.2.6 SEE ALSO

RNAduplex(1) RNAcofold(1) RNAfold(1)

4.3 RNAalifold

RNAalifold - manual page for RNAalifold 2.6.4

4.3. RNAalifold 59

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.3.1 Synopsis

RNAalifold [options] [<input0.aln>] [<input1.aln>]...

4.3.2 DESCRIPTION

RNAalifold 2.6.4

calculate secondary structures for a set of aligned RNAs

Read aligned RNA sequences from stdin or file.aln and calculate their minimum free energy (mfe) structure, parti-
tion function (pf) and base pairing probability matrix. Currently, input alignments have to be in CLUSTAL, Stock-
holm, FASTA, or MAF format. The input format must be set manually in interactive mode (default is Clustal),
but will be determined automagically from the input file, if not expplicitly set. It returns the mfe structure in
bracket notation, its energy, the free energy of the thermodynamic ensemble and the frequency of the mfe structure
in the ensemble to stdout. It also produces Postscript files with plots of the resulting secondary structure graph
(“alirna.ps”) and a “dot plot” of the base pairing matrix (“alidot.ps”). The file “alifold.out” will contain a list of
likely pairs sorted by credibility, suitable for viewing with “AliDot.pl”. Be warned that output file will overwrite
any existing files of the same name.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

-q, --quiet

Be quiet. (default=off)

This option can be used to minimize the output of additional information and non-severe warnings which
otherwise might spam stdout/stderr.

I/O Options:

Command line options for input and output (pre-)processing

-f, --input-format=C|S|F|M

File format of the input multiple sequence alignment (MSA).

If this parameter is set, the input is considered to be in a particular file format. Otherwise, the program
tries to determine the file format automatically, if an input file was provided in the set of parameters. In
case the input MSA is provided in interactive mode, or from a terminal (TTY), the programs default is to
assume CLUSTALW format. Currently, the following formats are available: ClustalW (C), Stockholm 1.0
(S), FASTA/Pearson (F), and MAF (M).

--mis

Output “most informative sequence” instead of simple consensus: For each column of the alignment output
the set of nucleotides with frequency greater than average in IUPAC notation.

(default=off)

60 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

-j, --jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default=”0”)

Default processing of input data is performed in a serial fashion, i.e. one alignment at a time. Using this
switch, a user can instead start the computation for many alignments in the input in parallel. RNAalifold
will create as many parallel computation slots as specified and assigns input alignments of the input file(s)
to the available slots. Note, that this increases memory consumption since input alignments have to be
kept in memory until an empty compute slot is available and each running job requires its own dynamic
programming matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will
most likely not follow the order of the corresponding input data set. The default of RNAalifold is to use a
specialized data structure to still keep the results output in order with the input data. However, this comes
with a trade-off in terms of memory consumption, since all output must be kept in memory for as long as
no chunks of consecutive, ordered output are available. By setting this flag, RNAalifold will not buffer
individual results but print them as soon as they have been computated.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

-n, --continuous-ids

Use continuous alignment ID numbering when no alignment ID can be retrieved from input data.

(default=off)

Due to its past, RNAalifold produces a specific set of output file names for the first input alignment,
“alirna.ps”, “alidot.ps”, etc. But for all further alignments in the input, it usually adopts a naming scheme
based on IDs, which may be retrieved from the input alignment’s meta-data, or generated by a prefix followed
by an increasing counter. Setting this flag instructs RNAalifold to use the ID naming scheme also for the
first alignment.

--auto-id

Automatically generate an ID for each alignment.

(default=off)

The default mode of RNAalifold is to automatically determine an ID from the input alignment if the input file
format allows to do that. Alignment IDs are, for instance, usually given in Stockholm 1.0 formatted input.
If this flag is active, RNAalifold ignores any IDs retrieved from the input and automatically generates an ID
for each alignment.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”alignment”)

If this parameter is set, each alignment will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_aln.ps” (annotated alignment), etc. where xxxx is the alignment number beginning
with the second alignment in the input. Use this setting in conjunction with the --continuous-ids flag to
assign IDs beginning with the first input alignment.

4.3. RNAalifold 61

ViennaRNA, Release 2.6.4

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter _ between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18].

--id-start=LONG

Specify the first number in automatically generated alignment IDs.

(default=”1”)

When alignment IDs are automatically generated, they receive an increasing number, usually starting with
1. Using this parameter, the first number can be specified to the users requirements. Note: negative num-
bers are not allowed. Note: Setting this parameter implies continuous alignment IDs, i.e. it activates the
--continuous-ids flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.

(default=”ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

Algorithms:

Select additional algorithms which should be included in the calculations.

-p, --partfunc[=INT]

Calculate the partition function and base pairing probability matrix in addition to the mfe structure. Default
is calculation of mfe structure only.

(default=”1”)

In addition to the MFE structure we print a coarse representation of the pair probabilities in form of a pseudo
bracket notation, followed by the ensemble free energy, as well as the centroid structure derived from the
pair probabilities together with its free energy and distance to the ensemble. Finally it prints the frequency
of the mfe structure.

An additionally passed value to this option changes the behavior of partition function calculation: -p0 deac-
tivates the calculation of the pair probabilities, saving about 50% in runtime. This prints the ensemble free
energy dG=-kT ln(Z).

--betaScale=DOUBLE

Set the scaling of the Boltzmann factors. (default=”1.”)

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann

62 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

factors then become exp(- dG/(kTn*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state, T the absolute temperature and n the number of sequences.

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default=”1.07”)

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

--MEA[=gamma]

Compute MEA (maximum expected accuracy) structure.

(default=”1.”)

The expected accuracy is computed from the pair probabilities: each base pair (i,j) receives a score
2*gamma*p_ij and the score of an unpaired base is given by the probability of not forming a pair. The
parameter gamma tunes the importance of correctly predicted pairs versus unpaired bases. Thus, for small
values of gamma the MEA structure will contain only pairs with very high probability. Using --MEA implies
-p for computing the pair probabilities.

--sci

Compute the structure conservation index (SCI) for the MFE consensus structure of the alignment.

(default=off)

-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)

--bppmThreshold=cutoff

Set the threshold/cutoff for base pair probabilities included in the postscript output.

(default=”1e-6”)

By setting the threshold the base pair probabilities that are included in the output can be varied. By default
only those exceeding 1e-6 in probability will be shown as squares in the dot plot. Changing the threshold
to any other value allows for increase or decrease of data.

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

-s, --stochBT=INT

Stochastic backtrack. Compute a certain number of random structures with a probability dependend on the
partition function. See -p option in RNAsubopt.

--stochBT_en=INT

same as -s option but also print out the energies and probabilities of the backtraced structures.

-N, --nonRedundant

Enable non-redundant sampling strategy.

(default=off)

4.3. RNAalifold 63

ViennaRNA, Release 2.6.4

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default=”-1”)

-C, --constraint[=filename]

Calculate structures subject to constraints. The constraining structure will be read from stdin, the alignment
has to be given as a file name on the command line.

(default=””)

The program reads first the sequence, then a string containing constraints on the structure encoded with the
symbols:

. (no constraint for this base)

| (the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets () (base i pairs base j)

With the exception of |, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type |.

--batch

Use constraints for all alignment records. (default=off)

Usually, constraints provided from input file are only applied to a single sequence alignment. Therefore,
RNAalifold will stop its computation and quit after the first input alignment was processed. Using this
switch, RNAalifold processes all sequence alignments in the input and applies the same provided constraints
to each of them.

--enforceConstraint

Enforce base pairs given by round brackets () in structure constraint.

(default=off)

--SS_cons

Use consensus structures from Stockholm file (#=GF SS_cons) as constraint.

(default=off)

Stockholm formatted alignment files have the possibility to store a secondary structure string in one of if
(#=GC) column annotation meta tags. The corresponding tag name is usually SS_cons, a consensus sec-
ondary structure. Activating this flag allows one to use this consensus secondary structure from the input
file as structure constraint. Currently, only the following characters are interpreted:

() [mathing parenthesis: column i pairs with column j]

< > [matching angular brackets: column i pairs with column j]

All other characters are not interpreted (yet). Note: Activating this flag implies --constraint.

--shape=file1,file2

Use SHAPE reactivity data to guide structure predictions.

Multiple shapefiles for the individual sequences in the alignment may be specified as a comma separated list.
An optional association of particular shape files to a specific sequence in the alignment can be expressed by
prepending the sequence number to the filename, e.g. “5=seq5.shape,3=seq3.shape” will assign the reactivity

64 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

values from file seq5.shape to the fifth sequence in the alignment, and the values from file seq3.shape to
sequence 3. If no assignment is specified, the reactivity values are assigned to corresponding sequences in
the order they are given.

--shapeMethod=D[mX][bY]

Specify the method how to convert SHAPE reactivity data to pseudo energy contributions.

(default=”D”)

Currently, the only data conversion method available is that of to Deigan et al 2009. This method is the
default and is recognized by a capital D in the provided parameter, i.e.: --shapeMethod=”D” is the default
setting. The slope m and the intercept b can be set to a non-default value if necessary. Otherwise m=1.8
and b=-0.6 as stated in the paper mentionen before. To alter these parameters, e.g. m=1.9 and b=-0.7, use
a parameter string like this: --shapeMethod=”Dm1.9b-0.7”. You may also provide only one of the two
parameters like: --shapeMethod=”Dm1.9” or --shapeMethod=”Db-0.7”.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d2 dangling energies will be added for the bases adjacent to a helix on both sides

in any case.

The option -d0 ignores dangling ends altogether (mostly for debugging).

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

4.3. RNAalifold 65

ViennaRNA, Release 2.6.4

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--cfactor=DOUBLE

Set the weight of the covariance term in the energy function

(default=”1.0”)

--nfactor=DOUBLE

Set the penalty for non-compatible sequences in the covariance term of the energy function

(default=”1.0”)

-E, --endgaps

Score pairs with endgaps same as gap-gap pairs.

(default=off)

-R, --ribosum_file=ribosumfile

use specified Ribosum Matrix instead of normal

energy model.

Matrixes to use should be 6x6 matrices, the order of the terms is AU, CG, GC, GU, UA, UG.

-r, --ribosum_scoring

use ribosum scoring matrix. (default=off)

The matrix is chosen according to the minimal and maximal pairwise identities of the sequences in the file.

--old

use old energy evaluation, treating gaps as characters.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

66 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

--color

Produce a colored version of the consensus structure plot “alirna.ps” (default b&w only)

(default=off)

--aln

Produce a colored and structure annotated alignment in PostScript format in the file “aln.ps” in the current
directory.

(default=off)

--aln-EPS-cols=INT

Number of columns in colored EPS alignment output.

(default=”60”)

A value less than 1 indicates that the output should not be wrapped at all.

--aln-stk[=prefix]

Create a multi-Stockholm formatted output file. (default=”RNAalifold_results”)

The default file name used for the output is “RNAalifold_results.stk”. Users may change the filename to
“prefix.stk” by specifying the prefix as optional argument. The file will be create in the current directory
if it does not already exist. In case the file already exists, output will be appended to it. Note: Any special
characters in the filename will be replaced by the filename delimiter, hence there is no way to pass an entire
directory path through this option yet. (See also the “–filename-delim” parameter)

--noPS

Do not produce postscript drawing of the mfe structure.

(default=off)

--noDP

Do not produce dot-plot postscript file containing base pair or stack probabilitities.

(default=off)

In combination with the -p option, this flag turns-off creation of individual dot-plot files. Consequently,
computed base pair probability output is omitted but centroid and MEA structure prediction is still per-
formed.

-t, --layout-type=INT

Choose the layout algorithm. (default=”1”)

Select the layout algorithm that computes the nucleotide coordinates. Currently, the following algorithms
are available:

0: simple radial layout

1: Naview layout (Bruccoleri et al. 1988)

2: circular layout

3: RNAturtle (Wiegreffe et al. 2018)

4.3. RNAalifold 67

ViennaRNA, Release 2.6.4

4: RNApuzzler (Wiegreffe et al. 2018)

Caveats:

Sequences are not weighted. If possible, do not mix very similar and dissimilar sequences. Duplicate sequences,
for example, can distort the prediction.

4.3.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The algorithm is a variant of the dynamic programming algorithms of M. Zuker and P. Stiegler (mfe) and J.S.
McCaskill (pf) adapted for sets of aligned sequences with covariance information.

Ivo L. Hofacker, Martin Fekete, and Peter F. Stadler (2002), “Secondary Structure Prediction for Aligned RNA
Sequences”, J.Mol.Biol.: 319, pp 1059-1066.

Stephan H. Bernhart, Ivo L. Hofacker, Sebastian Will, Andreas R. Gruber, and Peter F. Stadler (2008), “RNAalifold:
Improved consensus structure prediction for RNA alignments”, BMC Bioinformatics: 9, pp 474

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.3.4 EXAMPLES

A simple call to compute consensus MFE structure, ensemble free energy, base pair probabilities, centroid struc-
ture, and MEA structure for a multiple sequence alignment (MSA) provided as Stockholm formatted file align-
ment.stk might look like:

$ RNAalifold -p --MEA alignment.stk

Consider the following MSA file for three sequences

STOCKHOLM 1.0

#=GF AC RF01293
#=GF ID ACA59
#=GF DE Small nucleolar RNA ACA59
#=GF AU Wilkinson A
#=GF SE Predicted; WAR; Wilkinson A
#=GF SS Predicted; WAR; Wilkinson A
#=GF GA 43.00
#=GF TC 44.90
#=GF NC 40.30
#=GF TP Gene; snRNA; snoRNA; HACA-box;
#=GF BM cmbuild -F CM SEED

(continues on next page)

68 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

(continued from previous page)

#=GF CB cmcalibrate --mpi CM
#=GF SM cmsearch --cpu 4 --verbose --nohmmonly -E 1000 -Z 549862.597050 CM SEQDB
#=GF DR snoRNABase; ACA59;
#=GF DR SO; 0001263; ncRNA_gene;
#=GF DR GO; 0006396; RNA processing;
#=GF DR GO; 0005730; nucleolus;
#=GF RN [1]
#=GF RM 15199136
#=GF RT Human box H/ACA pseudouridylation guide RNA machinery.
#=GF RA Kiss AM, Jady BE, Bertrand E, Kiss T
#=GF RL Mol Cell Biol. 2004;24:5797-5807.
#=GF WK Small_nucleolar_RNA
#=GF SQ 3

AL031296.1/85969-86120 ␣
→˓CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGUAACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
AANU01225121.1/438-603 ␣
→˓CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGUGACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
AAWR02037329.1/29294-29150 ---CUCGACACCACU---
→˓GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAUGCUAAUUAGUUGUGAGGACCAACU
#=GC SS_cons -----((((,<<<<<<<<<___________>>>>>>>>>,,,,<<<<<<<______>>>
→˓>>>>,,,,,))))::::::::::::
#=GC RF ␣
→˓CUGCcccaCAaCacuuguGCCUCaGUUACcCauagguGuAGUGaGgGuggcAaUACccaCcCucgUUgGuggUaAGGAaCAgCU
//

Then, the above program call will produce this output:

3 sequences; length of alignment 84.
>ACA59
CUGCCUCACAACAUUUGUGCCUCAGUUACCCAUAGAUGUAGUGAGGGUAACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
...((((((.(((((((((...........))))))))).))))))..........(((((......)))))............␣
→˓(-12.54 = -12.77 + 0.23)
...((((((.(((((((((...........))))))))).)))))){{,.......{{{{,......}))))............␣
→˓[-14.38]
...((((((.(((((((((...........))))))))).))))))..........((((........))))............
→˓{-12.44 = -12.33 + -0.10 d=10.94}
...((((((.(((((((((...........))))))))).))))))..........((((........))))............
→˓{-12.44 = -12.33 + -0.10 MEA=66.65}
frequency of mfe structure in ensemble 0.368739; ensemble diversity 17.77

Here, the first line is written to stderr and simply states the number of sequences and the length of the alignment.
This line can be suppressed using the --quiet option. The main output then consists of 7 lines, where the first
two resemble the FASTA header with the ID as read from the input data set, followed by the consensus sequence
in the second line. The third line consists of the consensus secondary structure in dot-bracket notation followed
by the averaged minimum free energy in parenthesis. This energy is composed of two major contributions, the
actual free energies derived from the Nearest Neighbor model, and the covariance pseudo-energy term, which are
both displayed after the equal sign. The fourth line shows the base pair propensity in pseudo dot-bracket notation
followed by the ensemble free energy dG = -kT ln(Z) in square brackets. Similarly, the next two lines state the
controid- and the MEA structure in dot-bracket notation, followed by their corresponding free energy contributions,
the mean distance (d) to the ensemble as well as the maximum expected accuracy (MEA). Again, the free energies
are split into Nearest Neighbor contribution and the covariance pseudo-energy term.

Furthermore, RNAalifold will produce three output files: ACA59_ss.ps, ACA59_dp.ps, and ACA59_ali.out that
contain the secondary structure drawing, the base pair probability dot-plot, and a detailed table of base pair prob-
abilities, respectively.

4.3. RNAalifold 69

ViennaRNA, Release 2.6.4

4.3.5 THE ALIOUT FILE

When computing base pair probabilities (--partfunc option), RNAalifold will produce a file with the suffix
ali.out. This file contains the base pairing probabilities between different alignment columns together with some
detailed statistics for the individual sequences within the alignment. The file is a simple text file with a two line
header that states the number of sequences and length of the alignment. The first couple of lines of this file may
look like:

3 sequence; length of alignment 84
alifold output
14 36 0 92.7% 0.212 CG:1 UA:2
13 37 0 92.7% 0.218 GU:1 AU:2
12 38 0 92.7% 0.231 CG:3
15 35 0 91.9% 0.239 UG:3
16 34 0 85.2% 0.434 UA:2 --:1
8 42 0 80.7% 0.526 AU:3 +
9 41 0 80.4% 0.542 CG:3 +
7 43 1 80.1% 0.541 CG:2 +

Starting with the third row, there are at least six and at most 13 columns separated by whitespaces stating: (1) the
i-position and (2) the j-position of a potential base pair (i, j), followed by (3) the number of counter examples,
i.e. the number of sequences in the alignment that can’t form a canonical base pair with their respective sequence
positions. Next is (4) the base pair probabilitiy in percent, (5) a pseudo entropy measure S_ij = S_i + S_j - p_ij
ln(p_ij), where S_i and S_j are the positional entropies for the two alignment columns i and j, and p_ij is the base pair
probability. Finally, the last columns (6-12) state the number of particular base pairs for the individual sequences in
the alignment. Here, we distinguish the base pairs “GC”,”CG”,”AU”,”UA”,”GU”,”UG”, and the special case “–”
that represents gaps at both positions i and j. Finally, base pairs that are not part of the MFE structure are marked
by an additional “+” sign in the last column.

4.3.6 AUTHOR

Ivo L Hofacker, Stephan Bernhart, Ronny Lorenz

4.3.7 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.3.8 SEE ALSO

The ALIDOT package http://www.tbi.univie.ac.at/RNA/Alidot/

4.4 RNAcofold

RNAcofold - manual page for RNAcofold 2.6.4

70 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at
http://www.tbi.univie.ac.at/RNA/Alidot/

ViennaRNA, Release 2.6.4

4.4.1 Synopsis

RNAcofold [OPTION]... [FILE]...

4.4.2 DESCRIPTION

RNAcofold 2.6.4

calculate secondary structures of two RNAs with dimerization

The program works much like RNAfold, but allows one to specify two RNA sequences which are then allowed to
form a dimer structure. RNA sequences are read from stdin in the usual format, i.e. each line of input corresponds
to one sequence, except for lines starting with > which contain the name of the next sequence. To compute the
hybrid structure of two molecules, the two sequences must be concatenated using the & character as separator.
RNAcofold can compute minimum free energy (mfe) structures, as well as partition function (pf) and base pairing
probability matrix (using the -p switch) Since dimer formation is concentration dependent, RNAcofold can be
used to compute equilibrium concentrations for all five monomer and (homo/hetero)-dimer species, given input
concentrations for the monomers. Output consists of the mfe structure in bracket notation as well as PostScript
structure plots and “dot plot” files containing the pair probabilities, see the RNAfold man page for details. In the
dot plots a cross marks the chain break between the two concatenated sequences. The program will continue to
read new sequences until a line consisting of the single character @ or an end of file condition is encountered.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/O Options:

Command line options for input and output (pre-)processing

--output-format=format-character

Change the default output format.

(default=”V”)

The following output formats are currently supported:

ViennaRNA format (V), Delimiter-separated format (D) also known as CSV

format.

--csv-delim=delimiter

Change the delimiting character for Delimiter-separated output format, such as CSV.

(default=”,”)

Delimiter-separated output defaults to comma separated values (CSV), i.e. all data in one data set is delimited
by a comma character. This option allows one to change the delimiting character to something else. Note,
to switch to tab-separated data, use $'\t' as delimiting character.

4.4. RNAcofold 71

ViennaRNA, Release 2.6.4

--csv-noheader

Do not print header for Delimiter-separated output, such as CSV.

(default=off)

-j, --jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default=”0”)

Default processing of input data is performed in a serial fashion, i.e. one sequence pair at a time. Using this
switch, a user can instead start the computation for many sequence pairs in the input in parallel. RNAcofold
will create as many parallel computation slots as specified and assigns input sequences of the input file(s)
to the available slots. Note, that this increases memory consumption since input alignments have to be
kept in memory until an empty compute slot is available and each running job requires its own dynamic
programming matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will
most likely not follow the order of the corresponding input data set. The default of RNAcofold is to use a
specialized data structure to still keep the results output in order with the input data. However, this comes
with a trade-off in terms of memory consumption, since all output must be kept in memory for as long
as no chunks of consecutive, ordered output are available. By setting this flag, RNAcofold will not buffer
individual results but print them as soon as they have been computated.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAcofold is to automatically determine an ID from the input sequence data if the
input file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences.
If this flag is active, RNAcofold ignores any IDs retrieved from the input and automatically generates an ID
for each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add
a FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_dp2.ps” (stack probabilities), etc. where xxxx is the sequence number. Note: Set-
ting this parameter implies --auto-id .

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.

72 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id .

--id-start=LONG

Specify the first number in automatically generated IDs.

(default=”1”)

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.

(default=”ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001” without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-p, --partfunc[=INT]

Calculate the partition function and base pairing probability matrix in addition to the mfe structure. Default
is calculation of mfe structure only.

(default=”1”)

In addition to the MFE structure we print a coarse representation of the pair probabilities in form of a pseudo
bracket notation, followed by the ensemble free energy, as well as the centroid structure derived from the
pair probabilities together with its free energy and distance to the ensemble. Finally it prints the frequency
of the mfe structure, and the structural diversity (mean distance between the structures in the ensemble).
See the description of pf_fold() and mean_bp_dist() and centroid() in the RNAlib documentation for details.
Note that unless you also specify -d2 or -d0, the partition function and mfe calculations will use a slightly
different energy model. See the discussion of dangling end options below.

An additionally passed value to this option changes the behavior of partition function calculation:

4.4. RNAcofold 73

ViennaRNA, Release 2.6.4

In order to calculate the partition function but not the pair probabilities

use the -p0 option and save about

50% in runtime. This prints the ensemble free energy dG=-kT ln(Z).

-a, --all_pf[=INT]

Compute the partition function and free energies not only of the hetero-dimer consisting of the two input
sequences (the AB dimer), but also of the homo-dimers AA and BB as well as A and B monomers.

(default=”1”)

The output will contain the free energies for each of these species, as well as 5 dot plots containing the
conditional pair probabilities, called “ABname5.ps”, “AAname5.ps” and so on. For later use, these dot plot
files also contain the free energy of the ensemble as a comment. Using -a automatically switches on the -p
option. Base pair probability computations may be turned off altogether by providing 0 as an argument to
this parameter. In that case, no dot plot files will be generated.

--betaScale=DOUBLE

Set the scaling of the Boltzmann factors. (default=”1.”)

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp(- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default=”1.07”)

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

-c, --concentrations

In addition to everything listed under the -a option, read in initial monomer concentrations and compute the
expected equilibrium concentrations of the 5 possible species (AB, AA, BB, A, B).

(default=off)

Start concentrations are read from stdin (unless the -f option is used) in [mol/l], equilibrium concentrations
are given realtive to the sum of the two inputs. An arbitrary number of initial concentrations can be specified
(one pair of concentrations per line).

-f, --concfile=filename

Specify a file with initial concentrations for the two sequences.

The table consits of arbitrary many lines with just two numbers (the concentration of sequence A and B).
This option will automatically toggle the -c (and thus -a and -p) options (see above).

--centroid

Compute the centroid structure. (default=off)

Additionally to the MFE structure, compute the centroid representative of the structure ensemble. Here,
we apply the base pair distance as distance measure, and report the structure that minimizes its Boltzmann
weighted base pair distance to the rest of the ensemble. Computing the centroid structure requires equilibrium
base pair probabilities. Therefore, this option implies the -p switch. For historical reasons, the centroid
structure output is deactivated by default.

--MEA[=gamma]

Compute MEA (maximum expected accuracy) structure.

(default=”1.”)

The expected accuracy is computed from the pair probabilities: each base pair (i,j) receives a score
2*gamma*p_ij and the score of an unpaired base is given by the probability of not forming a pair. The

74 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

parameter gamma tunes the importance of correctly predicted pairs versus unpaired bases. Thus, for small
values of gamma the MEA structure will contain only pairs with very high probability. Using --MEA implies
-p for computing the pair probabilities.

--bppmThreshold=cutoff

Set the threshold/cutoff for base pair probabilities included in the postscript output.

(default=”1e-5”)

By setting the threshold the base pair probabilities that are included in the output can be varied. By default
only those exceeding 1e-5 in probability will be shown as squares in the dot plot. Changing the threshold
to any other value allows for increase or decrease of data.

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default=”-1”)

-C, --constraint[=filename]

Calculate structures subject to constraints. (default=””)

The program reads first the sequence, then a string containing constraints on the structure encoded with the
symbols:

. (no constraint for this base)

| (the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets () (base i pairs base j)

With the exception of |, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type |.

--batch

Use constraints for multiple sequences. (default=off)

Usually, constraints provided from input file only apply to a single input sequence. Therefore, RNAcofold
will stop its computation and quit after the first input sequence was processed. Using this switch, RNAcofold
processes multiple input sequences and applies the same provided constraints to each of them.

--canonicalBPonly

Remove non-canonical base pairs from the structure constraint.

(default=off)

--enforceConstraint

Enforce base pairs given by round brackets () in structure constraint.

(default=off)

4.4. RNAcofold 75

ViennaRNA, Release 2.6.4

--shape=filename

Use SHAPE reactivity data to guide structure predictions.

--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default=”D”)

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.

D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapeMethod=”D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod=”Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapeMethod=”Dm1.9” or --shapeMethod=”Db-0.7”.

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

et al 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapeMethod=”Zb0.8”).

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method

Select method for SHAPE reactivity conversion.

(default=”O”)

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25”) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) O: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

76 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE

Provide salt correction for duplex initialization (in kcal/mol).

-m, --modifications[=STRING]

Allow for modified bases within the RNA sequence string.

(default=”7I6P9D”)

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are
performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:

7: 7-deaza-adenonsine (7DA)

I: Inosine

6: N6-methyladenosine (m6A)

P: Pseudouridine

9: Purine (a.k.a. nebularine)

D: Dihydrouridine

--mod-file=STRING

Use additional modified base data from JSON file.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

4.4. RNAcofold 77

ViennaRNA, Release 2.6.4

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

--noPS

Do not produce postscript drawing of the mfe structure.

(default=off)

4.4.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S.H.Bernhart, Ch. Flamm, P.F. Stadler, I.L. Hofacker, (2006), “Partition Function and Base Pairing Probabilities
of RNA Heterodimers”, Algorithms Mol. Biol.

78 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.4.4 AUTHOR

Ivo L Hofacker, Peter F Stadler, Stephan Bernhart, Ronny Lorenz

4.4.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.5 RNAdistance

RNAdistance - manual page for RNAdistance 2.6.4

4.5.1 Synopsis

RNAdistance [OPTION]...

4.5.2 DESCRIPTION

RNAdistance 2.6.4

Calculate distances between RNA secondary structures

This program reads RNA secondary structures from stdin and calculates one or more measures for their dissimilar-
ity, based on tree or string editing (alignment). In addition it calculates a “base pair distance” given by the number
of base pairs present in one structure, but not the other. For structures of different length base pair distance is not
recommended.

RNAdistance accepts structures in bracket format, where matching brackets symbolize base pairs and unpaired
bases are represented by a dot ., or coarse grained representations where hairpins, interior loops, bulges, mul-
tiloops, stacks and external bases are represented by (H), (I), (B), (M), (S), and (E), respectively. These can be
optionally weighted. Full structures can be represented in the same fashion using the identifiers (U) and (P) for
unpaired and paired bases, respectively. We call this the HIT representation (you don’t want to know what this
means). For example the following structure consists of 2 hairpins joined by a multiloop:

.((..(((...)))..((..)))). full structure (usual format);
(U)((U2)((U3)P3)(U2)((U2)P2)P2) HIT structure;
((H)(H)M) or
((((H)S)((H)S)M)S) coarse grained structure;
(((((H3)S3)((H2)S2)M4)S2)E2) weighted coarse grained.

The program will continue to read new structures until a line consisting of the single character @ or an end of file
condition is encountered. Input lines neither containing a valid structure nor starting with > are ignored.

-h, --help

Print help and exit

4.5. RNAdistance 79

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

--detailed-help

Print help, including all details and hidden options, and exit

-V, --version

Print version and exit

-D, --distance=fhwcFHWCP

Specify the distance representation to be used in calculations.

(default=”f”)

Use the full, HIT, weighted coarse, or coarse representation to calculate the distance. Capital letters indicate
string alignment otherwise tree editing is used. Any combination of distances can bespecified.

-X, --compare=p|m|f|c

Specify the comparison directive. (default=”p”)

Possible arguments for this option are: -Xp compare the structures pairwise (p), i.e. first with 2nd, third
with 4th etc. -Xm calculate the distance matrix between all structures. The output is formatted as a lower
triangle matrix. -Xf compare each structure to the first one. -Xc compare continuously, that is i-th with
(i+1)th structure.

-S, --shapiro

Use the Bruce Shapiro’s cost matrix for comparing coarse structures.

(default=off)

-B, --backtrack[=<filename>]

Print an “alignment” with gaps of the structures, to show matching substructures. The aligned structures are
written to <filename>, if specified.

(default=”none”)

If <filename> is not specified, the output is written to stdout, unless the -Xm option is set in which case
“backtrack.file” is used.

4.5.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

B.A. Shapiro (1988), “An algorithm for comparing multiple RNA secondary structures” CABIOS: 4, pp 381-393

B.A. Shapiro, K. Zhang (1990), “Comparing multiple RNA secondary structures using tree comparison”, CABIOS:
6, pp 309-318

W. Fontana, D.A.M. Konings, P.F. Stadler and P. Schuster P (1993), “Statistics of RNA secondary structures”,
Biopolymers: 33, pp 1389-1404

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

80 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

4.5.4 AUTHOR

Walter Fontana, Ivo L Hofacker, Peter F Stadler

4.5.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.6 RNAdos

RNAdos - manual page for RNAdos 2.6.4

4.6.1 Synopsis

RNAdos [OPTIONS]

4.6.2 DESCRIPTION

RNAdos 2.6.4

Calculate the density of states for each energy band of an RNA

The program reads an RNA sequence and computes the density of states for each energy band.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/O Options:

Command line options for input and output (pre-)processing

-s, --sequence=STRING

The RNA sequence (ACGU).

-j, --numThreads=INT

Set the number of threads used for calculations (only available when compiled with OpenMP support)

4.6. RNAdos 81

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-e, --max-energy=INT

Structures are only counted until this threshold is reached. Default is 0 kcal/mol.

(default=”0”)

-b, --hashtable-bits=INT

Set the size of the hash table for each cell in the dp-matrices.

(default=”20”)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

82 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.6.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

J. Cupal, I.L. Hofacker, P.F. Stadler (1996), “Dynamic programming algorithm for the density of states of RNA
secondary structures” Computer Science and Biology 96, Proc. German Conf. on Bioinformatics 1996, pp. 184-
186.

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.6.4 AUTHOR

Gregor Entzian, Ronny Lorenz

4.6.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.6.6 SEE ALSO

RNAsubopt(1)

4.7 RNAduplex

RNAduplex - manual page for RNAduplex 2.6.4

4.7. RNAduplex 83

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.7.1 Synopsis

RNAduplex [OPTION]...

4.7.2 DESCRIPTION

RNAduplex 2.6.4

Compute the structure upon hybridization of two RNA strands

reads two RNA sequences from stdin or <filename> and computes optimal and suboptimal secondary structures for
their hybridization. The calculation is simplified by allowing only inter-molecular base pairs, for the general case
use RNAcofold. The computed optimal and suboptimal structure are written to stdout, one structure per line. Each
line consist of: The structure in dot bracket format with a & separating the two strands. The range of the structure
in the two sequences in the format “from,to : from,to”; the energy of duplex structure in kcal/mol. The format is
especially useful for computing the hybrid structure between a small probe sequence and a long target sequence.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

-s, --sorted

Sort the printed output by free energy.

(default=off)

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations.

-e, --deltaEnergy=range

Compute suboptimal structures with energy in a certain range of the optimum (kcal/mol). Default is calcu-
lation of mfe structure only.

84 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE

Provide salt correction for duplex initialization (in kcal/mol).

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

4.7. RNAduplex 85

ViennaRNA, Release 2.6.4

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.7.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.7.4 AUTHOR

Ivo L Hofacker, Ronny Lorenz

4.7.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

86 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.7.6 SEE ALSO

RNAcofold(l) RNAfold(l)

4.8 RNAeval

RNAeval - manual page for RNAeval 2.6.4

4.8.1 Synopsis

RNAeval [OPTIONS] [<input0>] [<input1>]...

4.8.2 DESCRIPTION

RNAeval 2.6.4

Determine the free energy of a (consensus) secondary structure for (an alignment of) RNA sequence(s)

Evaluates the free energy of a particular (consensus) secondary structure for an (an alignment of) RNA molecule(s).
The energy unit is kcal/mol and contains a covariance pseudo-energy term for multiple sequence alignments (--msa
option) and corresponding consensus structures. The program will continue to read new sequences and structures
until a line consisting of the single character @ or an end of file condition is encountered. If the input sequence
or structure contains the separator character & the program calculates the energy of the co-folding of two RNA
strands, where the & marks the boundary between the two strands.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Print out energy contribution of each loop in the structure.

(default=off)

I/O Options:

Command line options for input and output (pre-)processing

-i, --infile=filename

Read a file instead of reading from stdin.

The default behavior of RNAeval is to read input from stdin or the file(s) that follow(s) the RNAeval com-
mand. Using this parameter the user can specify input file names where data is read from. Note, that any
additional files supplied to RNAeval are still processed as well.

4.8. RNAeval 87

ViennaRNA, Release 2.6.4

-a, --msa

Input is multiple sequence alignment in Stockholm 1.0 format.

(default=off)

Using this flag indicates that the input is a multiple sequence alignment (MSA) instead of (a) single se-
quence(s). Note, that only STOCKHOLM format allows one to specify a consensus structure. Therefore,
this is the only supported MSA format for now!

--mis

Output “most informative sequence” instead of simple consensus: For each column of the alignment output
the set of nucleotides with frequency greater than average in IUPAC notation.

(default=off)

-j, --jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default=”0”)

Default processing of input data is performed in a serial fashion, i.e. one sequence at a time. Using this
switch, a user can instead start the computation for many sequences in the input in parallel. RNAeval will
create as many parallel computation slots as specified and assigns input sequences of the input file(s) to the
available slots. Note, that this increases memory consumption since input alignments have to be kept in mem-
ory until an empty compute slot is available and each running job requires its own dynamic programming
matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will most
likely not follow the order of the corresponding input data set. The default of RNAeval is to use a specialized
data structure to still keep the results output in order with the input data. However, this comes with a trade-
off in terms of memory consumption, since all output must be kept in memory for as long as no chunks of
consecutive, ordered output are available. By setting this flag, RNAeval will not buffer individual results but
print them as soon as they have been computated.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAeval is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAeval ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Note: Setting this parameter
implies --auto-id .

88 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter _ between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id .

--id-start=LONG

Specify the first number in automatically generated IDs.

(default=”1”)

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

Algorithms:

Select additional algorithmic details which should be included in the calculations.

-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--shape=filename

Use SHAPE reactivity data to guide structure predictions.

--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default=”D”)

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.

D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapeMethod=”D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string

4.8. RNAeval 89

ViennaRNA, Release 2.6.4

like this: --shapeMethod=”Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapeMethod=”Dm1.9” or --shapeMethod=”Db-0.7”.

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

et al 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapeMethod=”Zb0.8”).

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012.Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method

Select method for SHAPE reactivity conversion.

(default=”O”)

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25”) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) O: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

90 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default for
mfe and partition function folding. The option -d0 ignores dangling ends altogether (mostly for debugging).
With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the moment the
implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3.

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--logML

Recalculate energies of structures using a logarithmic energy function for multi-loops before output.

(default=off)

This option does not effect structure generation, only the energies that are printed out. Since logML lowers
energies somewhat, some structures may be missing.

--cfactor=DOUBLE

Set the weight of the covariance term in the energy function

(default=”1.0”)

--nfactor=DOUBLE

Set the penalty for non-compatible sequences in the covariance term of the energy function

(default=”1.0”)

-R, --ribosum_file=ribosumfile

use specified Ribosum Matrix instead of normal

energy model.

Matrixes to use should be 6x6 matrices, the order of the terms is AU, CG, GC, GU, UA, UG.

-r, --ribosum_scoring

use ribosum scoring matrix. (default=off)

The matrix is chosen according to the minimal and maximal pairwise identities of the sequences in the file.

--old

use old energy evaluation, treating gaps as characters.

(default=off)

4.8. RNAeval 91

ViennaRNA, Release 2.6.4

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.8.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.8.4 AUTHOR

Ivo L Hofacker, Peter F Stadler, Ronny Lorenz

4.8.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.9 RNAfold

RNAfold - manual page for RNAfold 2.6.4

92 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.9.1 Synopsis

RNAfold [OPTIONS] [<input0.fa>] [<input1.fa>]...

4.9.2 DESCRIPTION

RNAfold 2.6.4

Calculate minimum free energy secondary structures and partition function of RNAs

The program reads RNA sequences, calculates their minimum free energy (mfe) structure and prints the mfe struc-
ture in bracket notation and its free energy. If not specified differently using commandline arguments, input is
accepted from stdin or read from an input file, and output printed to stdout. If the -p option was given it also
computes the partition function (pf) and base pairing probability matrix, and prints the free energy of the thermo-
dynamic ensemble, the frequency of the mfe structure in the ensemble, and the ensemble diversity to stdout.

It also produces PostScript files with plots of the resulting secondary structure graph and a “dot plot” of the base
pairing matrix. The dot plot shows a matrix of squares with area proportional to the pairing probability in the upper
right half, and one square for each pair in the minimum free energy structure in the lower left half. For each pair
i-j with probability p>10E-6 there is a line of the form

i j sqrt(p) ubox

in the PostScript file, so that the pair probabilities can be easily extracted.

Sequences may be provided in a simple text format where each sequence occupies a single line. Output files are
named “rna.ps” and “dot.ps”. Existing files of the same name will be overwritten.

It is also possible to provide sequence data in FASTA format. In this case, the first word of the FASTA header
will be used as prefix for output file names. PostScript files “prefix_ss.ps” and “prefix_dp.ps” are produced for the
structure and dot plot, respectively. Note, however, that once FASTA input was provided all following sequences
must be in FASTA format too.

To avoid problems with certain operating systems and/or file systems the prefix will ALWAYS be sanitized! This
step substitutes any special character in the prefix by a filename delimiter. See the --filename-delim option to
change the delimiting character according to your requirements.

The program will continue to read new sequences until a line consisting of the single character @ or an end of file
(EOF) condition is encountered.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

4.9. RNAfold 93

ViennaRNA, Release 2.6.4

I/O Options:

Command line options for input and output (pre-)processing

-i, --infile=filename

Read a file instead of reading from stdin.

The default behavior of RNAfold is to read input from stdin or the file(s) that follow(s) the RNAfold com-
mand. Using this parameter the user can specify input file names where data is read from. Note, that any
additional files supplied to RNAfold are still processed as well.

-o, --outfile[=filename]

Print output to file instead of stdout.

This option may be used to write all output to output files rather than printing to stdout. The default filename
is “RNAfold_output.fold” if no FASTA header precedes the input sequences and the --auto-id feature is
inactive. Otherwise, output files with the scheme “prefix.fold” are generated, where the “prefix” is taken
from the sequence id, e.g. the FASTA header. The user may specify a single output file name for all data
generated from the input by supplying a filename as argument following immediately after this parameter.
In case a file with the same filename already exists, any output of the program will be appended to it. Note:
Any special characters in the filename will be replaced by the filename delimiter, hence there is no way to
pass an entire directory path through this option (yet). (See also the “–filename-delim” parameter)

-j, --jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default=”0”)

Default processing of input data is performed in a serial fashion, i.e. one sequence at a time. Using this
switch, a user can instead start the computation for many sequences in the input in parallel. RNAfold will
create as many parallel computation slots as specified and assigns input sequences of the input file(s) to the
available slots. Note, that this increases memory consumption since input alignments have to be kept in mem-
ory until an empty compute slot is available and each running job requires its own dynamic programming
matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will most
likely not follow the order of the corresponding input data set. The default of RNAfold is to use a specialized
data structure to still keep the results output in order with the input data. However, this comes with a trade-
off in terms of memory consumption, since all output must be kept in memory for as long as no chunks of
consecutive, ordered output are available. By setting this flag, RNAfold will not buffer individual results but
print them as soon as they have been computated.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAfold is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAfold ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

94 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_dp2.ps” (stack probabilities), etc. where xxxx is the sequence number. Note: Set-
ting this parameter implies --auto-id .

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id .

--id-start=LONG

Specify the first number in automatically generated IDs.

(default=”1”)

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.

(default=”ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001” without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

4.9. RNAfold 95

ViennaRNA, Release 2.6.4

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-p, --partfunc[=INT]

Calculate the partition function and base pairing probability matrix.

(default=”1”)

In addition to the MFE structure we print a coarse representation of the pair probabilities in form of a pseudo
bracket notation followed by the ensemble free energy. This notation makes use of the letters ., ,, |, {, }, (,
and) denoting bases that are essentially unpaired, weakly paired, strongly paired without preference, weakly
upstream (downstream) paired, or strongly up- (down-)stream paired bases, respectively. On the next line
the centroid structure as derived from the pair probabilities together with its free energy and distance to the
ensemble is shown. Finally it prints the frequency of the mfe structure, and the structural diversity (mean
distance between the structures in the ensemble). See the description of vrna_pf() and mean_bp_dist()
and vrna_centroid() in the RNAlib documentation for details. Note that unless you also specify -d2 or
-d0, the partition function and mfe calculations will use a slightly different energy model. See the discussion
of dangling end options below.

An additionally passed value to this option changes the behavior of partition function calculation: -p0 Cal-
culate the partition function but not the pair probabilities, saving about 50% in runtime. This prints the
ensemble free energy dG=-kT ln(Z). -p2 Compute stack probabilities, i.e. the probability that a pair (i,
j) and the immediately interior pair (i+1,j-1) are formed simultaneously in addition to pair probabilities.
A second postscript dot plot named “name_dp2.ps”, or “dot2.ps” (if the sequence does not have a name), is
produced that contains pair probabilities in the upper right half and stack probabilities in the lower left.

--betaScale=DOUBLE

Set the scaling of the Boltzmann factors. (default=”1.”)

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp(- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default=”1.07”)

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

--MEA[=gamma]

Compute MEA (maximum expected accuracy) structure.

(default=”1.”)

The expected accuracy is computed from the pair probabilities: each base pair (i,j) receives a score
2*gamma*p_ij and the score of an unpaired base is given by the probability of not forming a pair. The
parameter gamma tunes the importance of correctly predicted pairs versus unpaired bases. Thus, for small
values of gamma the MEA structure will contain only pairs with very high probability. Using --MEA implies
-p for computing the pair probabilities.

-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)

--ImFeelingLucky

Return exactly one stochastically backtracked structure.

(default=off)

96 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

This function computes the partition function and returns exactly one secondary structure stochastically
sampled from the Boltzmann equilibrium according to its probability in the ensemble

--bppmThreshold=cutoff

Set the threshold/cutoff for base pair probabilities included in the postscript output.

(default=”1e-5”)

By setting the threshold the base pair probabilities that are included in the output can be varied. By default
only those exceeding 1e-5 in probability will be shown as squares in the dot plot. Changing the threshold
to any other value allows for increase or decrease of data.

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default=”-1”)

-C, --constraint[=filename]

Calculate structures subject to constraints. (default=””)

The program reads first the sequence, then a string containing constraints on the structure encoded with the
symbols:

. (no constraint for this base)

| (the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets () (base i pairs base j)

With the exception of |, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type |.

--batch

Use constraints for multiple sequences. (default=off)

Usually, constraints provided from input file only apply to a single input sequence. Therefore, RNAfold
will stop its computation and quit after the first input sequence was processed. Using this switch, RNAfold
processes multiple input sequences and applies the same provided constraints to each of them.

--canonicalBPonly

Remove non-canonical base pairs from the structure constraint.

(default=off)

--enforceConstraint

Enforce base pairs given by round brackets () in structure constraint.

(default=off)

--shape=filename

Use SHAPE reactivity data to guide structure predictions.

4.9. RNAfold 97

ViennaRNA, Release 2.6.4

--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default=”D”)

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.

D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapeMethod=”D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod=”Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapeMethod=”Dm1.9” or --shapeMethod=”Db-0.7”.

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

et al 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapeMethod=”Zb0.8”).

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method

Select method for SHAPE reactivity conversion.

(default=”O”)

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25”) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) O: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

--motif=SEQUENCE,STRUCTURE,ENERGY

Specify stabilizing energy of a ligand binding

to a particular sequence/structure motif.

Some ligands binding to RNAs require and/or induce particular sequence and structure motifs. For instance
they bind to an interior loop, or small hairpin loop. If for such cases a binding free energy is known, the
binding and therefore stabilizing effect of the ligand can be included in the folding recursions. Interior loop
motifs are specified as concatenations of 5`` and 3`` motif, separated by an & character.

Energy contributions must be specified in kcal/mol.

See the manpage for an example usage of this option.

--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

98 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

-m, --modifications[=STRING]

Allow for modified bases within the RNA sequence string.

(default=”7I6P9D”)

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are
performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:

7: 7-deaza-adenonsine (7DA)

I: Inosine

6: N6-methyladenosine (m6A)

P: Pseudouridine

9: Purine (a.k.a. nebularine)

D: Dihydrouridine

--mod-file=STRING

Use additional modified base data from JSON file.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the

4.9. RNAfold 99

ViennaRNA, Release 2.6.4

moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

--noPS

Do not produce postscript drawing of the mfe structure.

(default=off)

100 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--noDP

Do not produce dot-plot postscript file containing base pair or stack probabilitities.

(default=off)

In combination with the -p option, this flag turns-off creation of individual dot-plot files. Consequently,
computed base pair probability output is omitted but centroid and MEA structure prediction is still per-
formed.

-t, --layout-type=INT

Choose the layout algorithm. (default=”1”)

Select the layout algorithm that computes the nucleotide coordinates. Currently, the following algorithms
are available:

0: simple radial layout

1: Naview layout (Bruccoleri et al. 1988)

2: circular layout

3: RNAturtle (Wiegreffe et al. 2018)

4: RNApuzzler (Wiegreffe et al. 2018)

4.9.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

M. Zuker, P. Stiegler (1981), “Optimal computer folding of large RNA sequences using thermodynamic and aux-
iliary information”, Nucl Acid Res: 9, pp 133-148

J.S. McCaskill (1990), “The equilibrium partition function and base pair binding probabilities for RNA secondary
structures”, Biopolymers: 29, pp 1105-1119

I.L. Hofacker & P.F. Stadler (2006), “Memory Efficient Folding Algorithms for Circular RNA Secondary Struc-
tures”, Bioinformatics

A.F. Bompfuenewerer, R. Backofen, S.H. Bernhart, J. Hertel, I.L. Hofacker, P.F. Stadler, S. Will (2007), “Variations
on {RNA} Folding and Alignment: Lessons from Benasque”, J. Math. Biol.

D. Adams (1979), “The hitchhiker’s guide to the galaxy”, Pan Books, London

The calculation of mfe structures is based on dynamic programming algorithm originally developed by M. Zuker
and P. Stiegler. The partition function algorithm is based on work by J.S. McCaskill.

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.9. RNAfold 101

ViennaRNA, Release 2.6.4

4.9.4 EXAMPLES

Single line sequence input and calculation of partition function and MEA structure

$ RNAfold --MEA -d2 -p

The program will then prompt for sequence input. Using the example sequence “CGACGTAGATGCTAGCT-
GACTCGATGC” and pressing ENTER the output of the program will be similar to

CGACGUAGAUGCUAGCUGACUCGAUGC
(((.((((.......)).)))))....
minimum free energy = -1.90 kcal/mol
(((.((((.......))},})))....
free energy of ensemble = -2.86 kcal/mol
(((.(.((.......))..)))).... { 0.80 d=2.81}
(((.((((.......))).)))).... { -1.90 MEA=22.32}
frequency of mfe structure in ensemble 0.20997; ensemble diversity 4.19

Here, the first line just repeats the sequence input. The second line contains a MFE structure in dot bracket notation
followed by the minimum free energy. After this, the pairing probabilities for each nucleotide are shown in a pseudo
dot-bracket notation followed by the free energy of ensemble. The next two lines show the centroid structure with
its free energy and its distance to the ensemble as well as the MEA structure, its free energy and the maximum
expected accuracy, respectively. The last line finally contains the frequency of the MFE representative in the
complete ensemble of secondary structures and the ensemble diversity. For further details about the calculation
and interpretation of the given output refer to the reference manual of RNAlib.

Since version 2.0 it is also possible to provide FASTA file sequence input. Assume you have a file containing two
sequences in FASTA format, e.g

$ cat sequences.fa
>seq1
CGGCUCGCAACAGACCUAUUAGUUUUACGUAAUAUUUG
GAACGAUCUAUAACACGACUUCACUCUU
>seq2
GAAUGACCCGAUAACCCCGUAAUAUUUGGAACGAUCUA
UAACACGACUUCACUCUU

In order to compute the MFE for the two sequences the user can use the following command

$ RNAfold < sequences.fa

which would result in an output like this

>seq1
CGGCUCGCAACAGACCUAUUAGUUUUACGUAAUAUUUGGAACGAUCUAUAACACGACUUCACUCUU
.((.(((...((((..(((((........)))))))))...))).))................... (-5.40)
>seq2
GAAUGACCCGAUAACCCCGUAAUAUUUGGAACGAUCUAUAACACGACUUCACUCUU
.......((((..............))))........................... (-2.00)

102 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

4.9.5 CONSTRAINT EXAMPLES

Secondary structure constraints may be given in addition to the sequence information, too. Using the first sequence
of the previous example and restricting the nucleotides of the outermost helix to be unpaired, i.e. base pairs (2,47)
and (3,46) the input file should have the following form

$ cat sequence_unpaired.fa
>seq1
CGGCUCGCAACAGACCUAUUAGUUUUACGUAAUAUUUG
GAACGAUCUAUAACACGACUUCACUCUU
.xx...................................
.......xx...................

Calling RNAfold with the structure constraint option -C it shows the following result

$ RNAfold -C < sequence_unpaired.fa
>seq1
CGGCUCGCAACAGACCUAUUAGUUUUACGUAAUAUUUGGAACGAUCUAUAACACGACUUCACUCUU
....(((...((((..(((((........)))))))))...)))...................... (-4.20)

This represents the minimum free energy and a structure representative of the RNA sequence given that nucleotides
2,3,46 and 47 must not be involved in any base pair. For further information about constrained folding refer to the
details of the -C option and the reference manual of RNAlib.

Since version 2.2 the ViennaRNA Package distinguishes hard and soft constraints. As a consequence, structure
predictions are easily amenable to a versatile set of constraints, such as maximal base pair span, incorporation of
SHAPE reactivity data, and RNA-ligand binding to hairpin, or interior loop motifs.

Restricting the maximal span of a base pair

A convenience commandline option allows you to easily limit the distance (j - i + 1) between two nucleotides i and
j that form a basepair. For instance a limit of 600nt can be accomplished using:

$ RNAfold --maxBPspan 600

Guide structure prediction with SHAPE reactivity data

Use SHAPE reactivity data to guide secondary structure prediction:

$ RNAfold --shape=reactivities.dat < sequence.fa

where the file reactivities.dat is a two column text file with sequence positions (1-based) and normalized reactivity
values (usually between 0 and 2. Missing values may be left out, or assigned a negative score:

$ cat reactivities.dat
9 -999 # No reactivity information
10 -999
11 0.042816 # normalized SHAPE reactivity
12 0 # also a valid SHAPE reactivity
15 0.15027 # Missing data for pos. 13-14
...
42 0.16201

Note, that RNAfold will only process the first sequence in the input file, when provided with SHAPE reactivity
data!

Complex structure constraints and grammar extensions

Structure constraints beyond those that can be expressed with a pseudo-dot bracket notation may be provided in a
so-called command file:

4.9. RNAfold 103

ViennaRNA, Release 2.6.4

$ RNAfold --commands=constraints.txt < sequence.fa

The command file syntax is a generalization of constraints as used in UNAfold/mfold. Each line starts with a
one or two letter command followed by command parameters. For structure constraints, this amounts to a single
command character followed by three or four numbers. In addition, optional auxiliary modifier characters may
be used to limit the constraint to specific loop types. For base pair specific constraints, we currently distinguish
pairs in exterior loops (E), closing pairs of hairpin loops (H), closing (I) and enclosed (i) pairs of interior loops,
and closing (M) and enclosed (m) pairs of multibranch loops. Nucleotide-wise constraints may be limited to their
loop context using the corresponding uppercase characters. The default is to apply a constraint to all (A) loop
types. Furthermore, pairing constraints for single nucleotides may be limited to upstream (U), or downstream (D)
orientation. The command file specification is as follows:

F i 0 k [TYPE] [ORIENTATION] # Force nucleotides i...i+k-1 to be paired
F i j k [TYPE] # Force helix of size k starting with (i,j) to be formed
P i 0 k [TYPE] # Prohibit nucleotides i...i+k-1 to be paired
P i j k [TYPE] # Prohibit pairs (i,j),...,(i+k-1,j-k+1)
P i-j k-l [TYPE] # Prohibit pairing between two ranges
C i 0 k [TYPE] # Nucleotides i,...,i+k-1 must appear in context TYPE
C i j k # Remove pairs conflicting with (i,j),...,(i+k-1,j-k+1)
E i 0 k e # Add pseudo-energy e to nucleotides i...i+k-1
E i j k e # Add pseudo-energy e to pairs (i,j),...,(i+k-1,j-k+1)
UD m e [LOOP] # Add ligand binding to unstructured domains with motif
m and binding free energy e

[LOOP] = { E, H, I, M, A }
[TYPE] = [LOOP] + { i, m }
[ORIENTATION] = { U, D }

Again, RNAfold by default only processes the first sequence in the input sequence when provided with constraints
in a command file. To apply the exact same constraints to each of the input sequences in a multi FASTA file, use
the batch mode commandline option:

$ RNAfold --constraint=constraints.txt --batch < sequences.fa

Ligand binding contributions to specific hairpin/interior loop motifs

A convenience function allows one to specify a hairping/interior loop motif where a ligand is binding with a partic-
ular binding free energy dG. Here is an example that adds a theophylline binding motif. Free energy contribution
of this motif of dG=-9.22kcal/mol is derived from k_d=0.32umol/l, taken from Jenison et al. 1994. Although the
structure motif consists of a symmetric interior loop of size 6, followed by a small helix of 3 basepairs, and a bulge
of 3 nucleotides, the entire structure can still be represented by one interior loop. See the below mofif description
where the & character splits the motif into a 5’ and a 3’ part. The first line gives the sequences motif, the second
line shows the actual structure motif of the aptamer pocket, and the third line is the interior loop motif that fully
encapsulates the theophylline aptamer:

GAUACCAG&CCCUUGGCAGC
(...((((&)...)))...)
(......(&).........)

To use the above information in the folding recursions of RNAfold, one only needs to provide the motif itself, and
binding free energy:

$ RNAfold --motif="GAUACCAG&CCCUUGGCAGC,(...((((&)...)))...),-9.22" < sequences.fa

Adding the –verbose option to the above call of RNAfold also prints the sequence position of each motif found in
the MFE structure. In case interior-loop like motifs are provided, two intervals are printed denoting the 5`` and 3``
part, respectively.

Ligand binding contributions to unpaired segments of the RNA structure

104 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

The extension of the RNA folding grammar with unstructured domains allows for an easy incorporation of ligands
that bind to unpaired stretches of an RNA structure. To model such interactions only two parameters are required:
(i) a sequence motif in IUPAC notation that specifies where the ligand binds to, and (ii) a binding free energy that
can be derived from the association/dissociation constant of the ligand. With these two parameters in hand, the
modification of RNAfold to include the competition of regular intramolecular base pairing and ligand interaction
is as easy as writing a simple command file of the form:

UD m e [LOOP]

where m is the motif string in upper-case IUPAC notation, and e the binding free energy in kcal/mol and optional
loop type restriction [LOOP]. See also the command file specification as defined above.

For instance, having a protein with a 4-nucleotide footprint binding AAAA, a binding free energy e = -5.0 kcal/mol,
and a binding restriction to exterior- and multibranch loops results in a command file:

$ cat commands.txt
UD AAAA -5.0 ME

and the corresponding call to RNAfold to compute MFE and equilibrium probabilities becomes:

$ RNAfold --commands=commands.txt -p < sequence.fa

The resulting MFE plot will be annotated to display the binding site(s) of the ligand, and the base pair probability
dot-plot is extended to include the probability that a particular nucleotide is bound by the ligand.

4.9.6 POST-TRANSCRIPTIONAL MODIFICATION EXAMPLES

Many RNA molecules harbor (post-transcriptional) modifications. These modified base often change the pairing
behavior or energy contribution for the loops they are part of. To accommodate for that effect (to a certain degree)
one may use additional correcting energy parameters for loops with the respective modified bases. In literature,
a few stacking- and some terminal mismatch energies can be found. Some of them are already provided within
the ViennaRNA Package. The –modification and –mod-file command line parameters can be used to apply these
parameters in the predictions. While the former allows one to select a subset of implemented modified base correc-
tions, the latter enables the prediction programs to read energy parameters for modified bases from a user-provided
JSON file.

Consider, for instance, the following tRNA sequence with dihydrouridines and pseudouridines annotated by their
respective one-letter codes D and P:

$ cat tRNAphe.fa
>tRNAphe
GCCGAAAUAGCUCAGDDGGGAGAGCGPPAGACUGAAGAPCUAAAGGDCCCUGGUPCGAUCCCGGGUUUCGGCACCA

Now, a prediction that includes support for the destabilizing effect of D and the stabilizing effects of P within base
pair stacks can be done as follows:

$ RNAfold --modifications=DP < tRNAphe.fa
>tRNAphe
GCCGAAAUAGCUCAGDDGGGAGAGCGPPAGACUGAAGAPCUAAAGGDCCCUGGUPCGAUCCCGGGUUUCGGCACCA
(((((((..((((........)))).(((((.......)))))....(((.((......)).)))))))))).... (-23.37)

4.9. RNAfold 105

ViennaRNA, Release 2.6.4

4.9.7 AUTHOR

Ivo L Hofacker, Walter Fontana, Sebastian Bonhoeffer, Peter F Stadler, Ronny Lorenz

4.9.8 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.10 RNAheat

RNAheat - manual page for RNAheat 2.6.4

4.10.1 Synopsis

RNAheat [OPTIONS] [<input0>] [<input1>]...

4.10.2 DESCRIPTION

RNAheat 2.6.4

calculate specific heat of RNAs

Reads RNA sequences from stdin or input files and calculates their specific heat in the temperature range t1 to t2,
from the partition function by numeric differentiation. The result is written to stdout as a list of pairs of temperature
in C and specific heat in kcal/(mol*K). The program will continue to read new sequences until a line consisting of
the single character @ or an end of file condition is encountered.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

-i, --infile=filename

Read a file instead of reading from stdin

The default behavior of RNAheat is to read input from stdin or the file(s) that follow(s) the RNAheat com-
mand. Using this parameter the user can specify input file names where data is read from. Note, that any
additional files supplied to RNAheat are still processed as well.

106 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

-j, --jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default=”0”)

Default processing of input data is performed in a serial fashion, i.e. one sequence at a time. Using this
switch, a user can instead start the computation for many sequences in the input in parallel. RNAheat will
create as many parallel computation slots as specified and assigns input sequences of the input file(s) to the
available slots. Note, that this increases memory consumption since input alignments have to be kept in mem-
ory until an empty compute slot is available and each running job requires its own dynamic programming
matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will most
likely not follow the order of the corresponding input data set. The default of RNAheat is to use a specialized
data structure to still keep the results output in order with the input data. However, this comes with a trade-
off in terms of memory consumption, since all output must be kept in memory for as long as no chunks of
consecutive, ordered output are available. By setting this flag, RNAheat will not buffer individual results but
print them as soon as they have been computated.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAheat is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAheat ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names)

(default=”sequence”)

If this parameter is set, each sequences’ FASTA id will be prefixed with the provided string. FASTA ids then
take the form “>prefix_xxxx” where xxxx is the sequence number. Note: Setting this parameter implies
--auto-id .

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using

4.10. RNAheat 107

ViennaRNA, Release 2.6.4

this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id .

--id-start=LONG

Specify the first number in automatically generated alignment IDs.

(default=”1”)

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

Algorithms:

Select additional algorithms which should be included in the calculations.

--Tmin=t1

Lowest temperature.

(default=”0”)

--Tmax=t2

Highest temperature.

(default=”100”)

--stepsize=FLOAT

Calculate partition function every stepsize degrees C.

(default=”1.”)

-m, --ipoints=ipoints

The program fits a parabola to 2*ipoints+1 data points to calculate 2nd derivatives. Increasing this parameter
produces a smoother curve.

(default=”2”)

-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default=”-1”)

108 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops

(default=”2”)

With -d2 dangling energies will be added for the bases adjacent to a helix on both sides in any case

.HP -d0 ignores dangling ends altogether (mostly for debugging).

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

4.10. RNAheat 109

ViennaRNA, Release 2.6.4

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.10.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.10.4 AUTHOR

Ivo L Hofacker, Peter F Stadler, Ronny Lorenz

4.10.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.10.6 SEE ALSO

RNAfold(1)

110 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.11 RNAinverse

RNAinverse - manual page for RNAinverse 2.6.4

4.11.1 Synopsis

RNAinverse [OPTION]...

4.11.2 DESCRIPTION

RNAinverse 2.6.4

Find RNA sequences with given secondary structure

The program searches for sequences folding into a predefined structure, thereby inverting the folding algorithm.
Target structures (in bracket notation) and starting sequences for the search are read alternately from stdin. Char-
acters in the start sequence other than “AUGC” (or the alphabet specified with -a) will be treated as wild cards
and replaced by a random character. Any lower case characters in the start sequence will be kept fixed during the
search. If necessary, the sequence will be elongated to the length of the structure. Thus a string of “N”s as well as
a blank line specify a random start sequence. For each search the best sequence found and its Hamming distance
to the start sequence are printed to stdout. If the the search was unsuccessful, a structure distance to the target is
appended. The -Fp and -R options can modify the output format, see commandline options below. The program
will continue to read new structures and sequences until a line consisting of the single character “@” or an end of
file condition is encountered.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

In conjunction with a negative value supplied to -R , print the last subsequence and substructure for each
unsuccessful search.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations.

-F, --function=mp

Use minimum energy (-Fm), partition function folding (-Fp) or both (-Fmp).

(default=”m”)

In partition function mode, the probability of the target structure exp(-E`(S)/kT)/Q is maximized.
This probability is written in brackets after the found sequence and Hamming
distance. In most cases you'll want to use the :option:-f` option in conjunction with -Fp,
see below.

4.11. RNAinverse 111

ViennaRNA, Release 2.6.4

-f, --final=FLOAT

In combination with -Fp stop search when sequence is found with E(s)-F is smaller than final, where F=-
kT*ln(Q).

-R, --repeat[=INT]

Search repeatedly for the same structure. If an argument is supplied to this option it must follow the option
flag immediately. E.g.: -R5

(default=”1”)

If repeats is negative search until --repeats exact solutions are found, no output is done for unsuccessful
searches. Be aware, that the program will not terminate if the target structure can not be found. If no value
is supplied with this option, the default value is used.

-a, --alphabet=ALPHABET

Find sequences using only nucleotides from a given alphabet.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. When passing the placeholder file name “DNA”, DNA param-
eters are loaded without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

112 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB will
imply that AB and BA are allowed pairs. e.g. RNAfold -nsp -GA will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.11.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

D.H. Turner, N. Sugimoto, S.M. Freier (1988), “RNA structure prediction”, Ann Rev Biophys Biophys Chem: 17,
pp 167-192

M. Zuker, P. Stiegler (1981), “Optimal computer folding of large RNA sequences using thermodynamic and aux-
iliary information”, Nucl Acid Res: 9, pp 133-148

J.S. McCaskill (1990), “The equilibrium partition function and base pair binding probabilities for RNA secondary
structures”, Biopolymers: 29, pp 1105-1119

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

4.11. RNAinverse 113

ViennaRNA, Release 2.6.4

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.11.4 EXAMPLES

To search 5 times for sequences forming a simple hairpin structure interrupted by one GA mismatch call

$ RNAinverse -R 5

and enter the lines

(((.(((....))).)))
NNNgNNNNNNNNNNaNNN

4.11.5 AUTHOR

Ivo L Hofacker

4.11.6 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.12 RNALalifold

RNALalifold - manual page for RNALalifold 2.6.4

4.12.1 Synopsis

RNALalifold [options] <file1.aln>

4.12.2 DESCRIPTION

RNALalifold 2.6.4

calculate locally stable secondary structures for a set of aligned RNAs

reads aligned RNA sequences from stdin or file.aln and calculates locally stable RNA secondary structure with a
maximal base pair span. For a sequence of length n and a base pair span of L the algorithm uses only O(n+L*L)
memory and O(n*L*L) CPU time. Thus it is practical to “scan” very large genomes for short RNA

structures.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

114 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

-v, --verbose

Be verbose.

(default=off)

-q, --quiet

Be quiet. (default=off)

This option can be used to minimize the output of additional information and non-severe warnings which
otherwise might spam stdout/stderr.

I/O Options:

Command line options for input and output (pre-)processing

-f, --input-format=C|S|F|M

File format of the input multiple sequence alignment (MSA).

If this parameter is set, the input is considered to be in a particular file format. Otherwise, the program
tries to determine the file format automatically, if an input file was provided in the set of parameters. In
case the input MSA is provided in interactive mode, or from a terminal (TTY), the programs default is to
assume CLUSTALW format. Currently, the following formats are available: ClustalW (C), Stockholm 1.0
(S), FASTA/Pearson (F), and MAF (M).

--csv

Create comma separated output (csv)

(default=off)

--aln[=prefix]

Produce output alignments and secondary structure plots for each hit found.

This option tells the program to produce, for each hit, a colored and structure annotated (sub)alignment and
secondary structure plot in PostScript format. It also adds the subalignment hit into a multi-Stockholm
formatted file “RNALalifold_results.stk”. The postscript output file names are “aln_start_end.eps” and
“ss_start_end.eps”. All files will be created in the current directory. The optional argument string can
be used to set a specific prefix that is used to name the output files. The file names then become “pre-
fix_aln_start_end.eps”, “prefix_ss_start_end.eps”, and “prefix.stk”. Note: Any special characters in the pre-
fix will be replaced by the filename delimiter, hence there is no way to pass an entire directory path through
this option yet. (See also the “–filename-delim” parameter)

--aln-stk[=prefix]

Add hits to a multi-Stockholm formatted output file.

(default=”RNALalifold_results”)

The default file name used for the output is “RNALalifold_results.stk”. Users may change the filename to
“prefix.stk” by specifying the prefix as optional argument. The file will be create in the current directory
if it does not already exist. In case the file already exists, output will be appended to it. Note: Any special
characters in the prefix will be replaced by the filename delimiter, hence there is no way to pass an entire
directory path through this option yet. (See also the “–filename-delim” parameter)

--mis

Output “most informative sequence” instead of simple consensus: For each column of the alignment output
the set of nucleotides with frequency greater than average in IUPAC notation.

(default=off)

--split-contributions

Split the free energy contributions into separate parts

(default=off)

4.12. RNALalifold 115

ViennaRNA, Release 2.6.4

By default, only the total energy contribution for each hit is returned. Using this option, this contribution
is split into individual parts, i.e. the Nearest Neighbor model energy, the covariance pseudo energy, and if
applicable, a remaining pseudo energy derived from special constraints, such as probing signals like SHAPE.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each alignment.

(default=off)

The default mode of RNALalifold is to automatically determine an ID from the input alignment if the input
file format allows to do that. Alignment IDs are, for instance, usually given in Stockholm 1.0 formatted input.
If this flag is active, RNALalifold ignores any IDs retrieved from the input and automatically generates an
ID for each alignment.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”alignment”)

If this parameter is set, each alignment will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_aln.ps” (annotated alignment), etc. where xxxx is the alignment number beginning
with the second alignment in the input. Use this setting in conjunction with the --continuous-ids flag to
assign IDs beginning with the first input alignment.

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18].

--id-start=LONG

Specify the first number in automatically generated alignment IDs.

(default=”1”)

When alignment IDs are automatically generated, they receive an increasing number, usually starting with
1. Using this parameter, the first number can be specified to the users requirements. Note: negative num-
bers are not allowed. Note: Setting this parameter implies continuous alignment IDs, i.e. it activates the
--continuous-ids flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.

(default=”ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid

116 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-L, --maxBPspan=INT

Set the maximum allowed separation of a base pair to span. I.e. no pairs (i,j) with j-i>span will be allowed.

(default=”70”)

--threshold=DOUBLE

Energy threshold in kcal/mol per nucleotide above which secondary structure hits are omitted in the output.

(default=”-0.1”)

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--shape=file1,file2

Use SHAPE reactivity data to guide structure predictions.

Multiple shapefiles for the individual sequences in the alignment may be specified as a comma separated list.
An optional association of particular shape files to a specific sequence in the alignment can be expressed by
prepending the sequence number to the filename, e.g. “5=seq5.shape,3=seq3.shape” will assign the reactivity
values from file seq5.shape to the fifth sequence in the alignment, and the values from file seq3.shape to
sequence 3. If no assignment is specified, the reactivity values are assigned to corresponding sequences in
the order they are given.

--shapeMethod=D[mX][bY]

Specify the method how to convert SHAPE reactivity data to pseudo energy contributions.

(default=”D”)

Currently, the only data conversion method available is that of to Deigan et al 2009. This method is the
default and is recognized by a capital D in the provided parameter, i.e.: --shapeMethod=”D” is the default
setting. The slope m and the intercept b can be set to a non-default value if necessary. Otherwise m=1.8
and b=-0.6 as stated in the paper mentionen before. To alter these parameters, e.g. m=1.9 and b=-0.7, use
a parameter string like this: --shapeMethod=”Dm1.9b-0.7”. You may also provide only one of the two
parameters like: --shapeMethod=”Dm1.9” or --shapeMethod=”Db-0.7”.

4.12. RNALalifold 117

ViennaRNA, Release 2.6.4

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

118 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--cfactor=DOUBLE

Set the weight of the covariance term in the energy function

(default=”1.0”)

--nfactor=DOUBLE

Set the penalty for non-compatible sequences in the covariance term of the energy function

(default=”1.0”)

-R, --ribosum_file=ribosumfile

use specified Ribosum Matrix instead of normal

energy model.

Matrixes to use should be 6x6 matrices, the order of the terms is AU, CG, GC, GU, UA, UG.

-r, --ribosum_scoring

use ribosum scoring matrix. (default=off)

The matrix is chosen according to the minimal and maximal pairwise identities of the sequences in the file.

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

--aln-EPS[=prefix]

Produce colored and structure annotated subalignment for each hit.

The default file name used for the output is “aln_start_end.eps” where “start” and “end” denote the first
and last column of the subalignment relative to the input (1-based). Users may change the filename to
“prefix_aln_start_end.eps” by specifying the prefix as optional argument. Files will be create in the current
directory. Note: Any special characters in the prefix will be replaced by the filename delimiter, hence there
is no way to pass an entire directory path through this option yet. (See also the “–filename-delim” parameter)

4.12. RNALalifold 119

ViennaRNA, Release 2.6.4

--aln-EPS-cols=INT

Number of columns in colored EPS alignment output.

(default=”60”)

A value less than 1 indicates that the output should not be wrapped at all.

--aln-EPS-ss[=prefix]

Produce colored consensus secondary structure plots in PostScript format.

The default file name used for the output is “ss_start_end.eps” where “start” and “end” denote the first
and last column of the subalignment relative to the input (1-based). Users may change the filename to
“prefix_ss_start_end.eps” by specifying the prefix as optional argument. Files will be create in the current
directory. Note: Any special characters in the prefix will be replaced by the filename delimiter, hence there
is no way to pass an entire directory path through this option yet. (See also the “–filename-delim” parameter)

4.12.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

I.L. Hofacker, B. Priwitzer, and P.F. Stadler (2004), “Prediction of Locally Stable RNA Secondary Structures for
Genome-Wide Surveys”, Bioinformatics: 20, pp 186-190

Stephan H. Bernhart, Ivo L. Hofacker, Sebastian Will, Andreas R. Gruber, and Peter F. Stadler (2008), “RNAalifold:
Improved consensus structure prediction for RNA alignments”, BMC Bioinformatics: 9, pp 474

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.12.4 AUTHOR

Ivo L Hofacker, Ronny Lorenz

4.12.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

120 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.13 RNALfold

RNALfold - manual page for RNALfold 2.6.4

4.13.1 Synopsis

RNALfold [OPTION]...

4.13.2 DESCRIPTION

RNALfold 2.6.4

calculate locally stable secondary structures of RNAs

Compute locally stable RNA secondary structure with a maximal base pair span. For a sequence of length n and
a base pair span of L the algorithm uses only O(n+L*L) memory and O(n*L*L) CPU time. Thus it is practical to
“scan” very large genomes for short RNA structures. Output consists of a list of secondary structure components
of size <= L, one entry per line. Each output line contains the predicted local structure its energy in kcal/mol and
the starting position of the local structure.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/O Options:

Command line options for input and output (pre-)processing

-i, --infile=filename

Read a file instead of reading from stdin

The default behavior of RNALfold is to read input from stdin. Using this parameter the user can specify an
input file name where data is read from.

-o, --outfile[=filename]

Print output to file instead of stdout.

This option may be used to write all output to output files rather than printing to stdout. The number of
output files created for batch input (multiple sequences) depends on three conditions: (i) In case an optional
filename is given as parameter argument, a single file with the specified filename will be written into. If the
optional argument is omitted, (ii) FASTA input or an active --auto-id switch will write to multiple files
that follow the naming scheme “prefix.lfold”. Here, “prefix” is taken from the sequence id as specified in the
FASTA header. Lastly, (iii) single-line sequence input without FASTA header will be written to a single file
“RNALfold_output.lfold”. In case an output file already exists, any output of the program will be appended
to it. Since the filename argument is optional, it must immediately follow the short option flag to not be
mistaken as new parameter to the program. For instance ``-ornafold.out`` will write to a file “rnafold.out”.

4.13. RNALfold 121

ViennaRNA, Release 2.6.4

Note: Any special characters in the filename will be replaced by the filename delimiter, hence there is no
way to pass an entire directory path through this option yet. (See also the “–filename-delim” parameter)

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNALfold is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNALfold ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx.lfold” where xxxx is the sequence number. Note: Setting
this parameter implies --auto-id .

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id .

--id-start=LONG

Specify the first number in automatically generated IDs.

(default=”1”)

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.

(default=”ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

122 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001” without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-L, --span=INT

Set the maximum distance between any two pairing nucleotides.

(default=”150”)

This option specifies the window length L and therefore the upper limit for the distance between the bases i
and j of any pair (i, j), i.e. (j - i + 1) <= L.

-z, --zscore[=DOUBLE]

Limit the output to predictions with a Z-score below a threshold.

(default=”-2”)

This option activates z-score regression using a trained SVM. Any predicted structure that exceeds the spec-
ified threshold will be ommited from the output. Since the Z-score threshold is given as a negative number,
it must immediately preceed the short option to not be mistaken as a separate argument, e.g. -z-2.9 sets the
threshold to a value of -2.9

--zscore-pre-filter

Apply the z-score filtering in the forward recursions.

(default=off)

The default mode of z-score filtering considers the entire structure space to decide whether or not a locally
optimal structure at any position i is reported or not. When using this post-filtering step, however, alternative
locally optimal structures

starting at i with higher energy but lower z-score can be easily missed. The

pre-filter

option restricts the structure space already in the forward recursions, such

that

only optimal solution among those candidates that satisfy the z-score

threshold are considered. Therefore, good results according to the z-score threshold criterion are less likely
to be superseded by results with better energy but worse z-score. Note, that activating this switch results in
higher computation time which scales linear in the window length.

--zscore-report-subsumed

Report subsumed structures if their z-score is less than that of the enclosing structure.

(default=off)

In default mode, RNALfold only reports locally optimal structures if they are no constituents of another,
larger structure with less free energy. In z-score mode, however, such a larger structure may have a higher
z-score, thus may be less informative than the smaller substructure. Using this switch activates reporting
both, the smaller and the larger structure if the z-score of the smaller is lower than that of the larger.

4.13. RNALfold 123

ViennaRNA, Release 2.6.4

-b, --backtrack-global

Backtrack a global MFE structure. (default=off)

Instead of just reporting the locally stable secondary structure a global MFE structure can be constructed
that only consists of locally optimal substructures. This switch activates a post-processing step that takes the
locally optimal structures to generate the global MFE structure which constitutes the MFE value reported
in the last line. The respective global MFE structure is printed just after the inut sequence part on the last
line, preceding the global MFE score. Note, that this option implies -o/–outfile since the locally optimal
structures must be read after the regular prediction step! Also note, that using this option in combination with
-z/–zscore implies --zscore-pre-filter to ensure proper construction of the global MFE structure!

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--shape=filename

Use SHAPE reactivity data to guide structure predictions.

--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default=”D”)

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.

D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapeMethod=”D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod=”Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapeMethod=”Dm1.9” or --shapeMethod=”Db-0.7”.

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

et al 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapeMethod=”Zb0.8”).

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method

Select method for SHAPE reactivity conversion.

(default=”O”)

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25”) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) O: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

124 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

-m, --modifications[=STRING]

Allow for modified bases within the RNA sequence string.

(default=”7I6P9D”)

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are
performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:

7: 7-deaza-adenonsine (7DA)

I: Inosine

6: N6-methyladenosine (m6A)

P: Pseudouridine

9: Purine (a.k.a. nebularine)

D: Dihydrouridine

--mod-file=STRING

Use additional modified base data from JSON file.

4.13. RNALfold 125

ViennaRNA, Release 2.6.4

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

126 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

4.13.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

I.L. Hofacker, B. Priwitzer, and P.F. Stadler (2004), “Prediction of Locally Stable RNA Secondary Structures for
Genome-Wide Surveys”, Bioinformatics: 20, pp 186-190

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.13.4 AUTHOR

Ivo L Hofacker, Peter F Stadler, Ronny Lorenz

4.13.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.13.6 SEE ALSO

RNAplfold(1) RNALalifold(1)

4.14 RNAmultifold

RNAmultifold - manual page for RNAmultifold 2.6.4

4.14.1 Synopsis

RNAmultifold [OPTION]... [FILE]...

4.14. RNAmultifold 127

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.14.2 DESCRIPTION

RNAmultifold 2.6.4

Compute secondary structures of multiple interacting RNAs

The program works much like RNAfold, but allows one to specify multiple RNA sequences which are then allowed
to form conncected components. RNA sequences are read from stdin in the usual format, i.e. each line of input
corresponds to one sequence, except for lines starting with “>” which contain the name of the next sequence(s).
Multiple strands must be concatenated using the ``&`` character as separator. RNAmultifold can compute MFE,
partition function, corresponding ensemble free energy and base pairing probabilities. These properties are either
computed for a particular arrangement (concatenation) of sequences, for the full ensemble of the complex of input
RNAs, or all complexes formed by the input sequences up to a specified number of interacting sequences. Output
consists of a PostScript “dot plot” file containing the pair probabilities, see the RNAfold man page for details.
The program will continue to read new sequences until a line consisting of the single character @ or an end of file
condition is encountered.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/O Options:

Command line options for input and output (pre-)processing

-j, --jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default=”0”)

Default processing of input data is performed in a serial fashion, i.e. one sequence pair at a time. Using this
switch, a user can instead start the computation for many sequence pairs in the input in parallel. RNAmul-
tifold will create as many parallel computation slots as specified and assigns input sequences of the input
file(s) to the available slots. Note, that this increases memory consumption since input alignments have to
be kept in memory until an empty compute slot is available and each running job requires its own dynamic
programming matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will most
likely not follow the order of the corresponding input data set. The default of RNAmultifold is to use a
specialized data structure to still keep the results output in order with the input data. However, this comes
with a trade-off in terms of memory consumption, since all output must be kept in memory for as long as
no chunks of consecutive, ordered output are available. By setting this flag, RNAmultifold will not buffer
individual results but print them as soon as they have been computated.

128 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAmultifold is to automatically determine an ID from the input sequence data if the
input file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences.
If this flag is active, RNAmultifold ignores any IDs retrieved from the input and automatically generates an
ID for each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to
add a FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_dp2.ps” (stack probabilities), etc. where xxxx is the sequence number. Note: Set-
ting this parameter implies --auto-id .

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id .

--id-start=LONG

Specify the first number in automatically generated IDs.

(default=”1”)

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.

(default=”ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

4.14. RNAmultifold 129

ViennaRNA, Release 2.6.4

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001” without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-p, --partfunc[=INT]

Calculate the partition function and base pairing probability matrix in addition to the MFE structure. Default
is calculation of mfe structure only.

(default=”1”)

In addition to the MFE structure we print a coarse representation of the pair probabilities in form of a pseudo
bracket notation, followed by the ensemble free energy. Note that unless you also specify -d2 or -d0, the
partition function and mfe calculations will use a slightly different energy model. See the discussion of
dangling end options below.

An additionally passed value to this option changes the behavior of partition function calculation:

In order to calculate the partition function but not the pair probabilities

use the -p0 option and save about

50% in runtime. This prints the ensemble free energy dG=-kT ln(Z).

-a, --all_pf[=INT]

Compute the partition function and free energies not only for the complex formed by the input sequences
(the “ABC. . . mutimer”), but also of all complexes formed by the input sequences up to the number of input
sequences, e.g. AAA, AAB, ABB, BBB, etc.

(default=”1”)

The output will contain the free energies for each of these species. Using -a automatically switches on the
-p option.

-c, --concentrations

In addition to everything listed under the -a option, read in initial monomer concentrations and compute the
expected equilibrium concentrations of all possible species (A, B, AA, BB, AB, etc).

(default=off)

Start concentrations are read from stdin (unless the -f option is used) in [mol/l], equilibrium concentrations
are given realtive to the sum of the inputs. An arbitrary number of initial concentrations can be specified
(one tuple of concentrations per line).

-f, --concfile=filename

Specify a file with initial concentrations for the input sequences.

The table consits of arbitrary many lines with multiple numbers separated by whitespace (the concentration
of the input sequences A, B, C, etc.). This option will automatically toggle the -c (and thus -a and -p)
options (see above).

130 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--absolute-concentrations Report absolute instead of relative

concentrations

(default=off)

--betaScale=DOUBLE

Set the scaling of the Boltzmann factors. (default=”1.”)

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp(- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default=”1.07”)

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

--bppmThreshold=cutoff

Set the threshold/cutoff for base pair probabilities included in the postscript output.

(default=”1e-5”)

By setting the threshold the base pair probabilities that are included in the output can be varied. By default
only those exceeding 1e-5 in probability will be shown as squares in the dot plot. Changing the threshold
to any other value allows for increase or decrease of data.

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Note, only intramolecular G-quadruplexes are considered.

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default=”-1”)

--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

4.14. RNAmultifold 131

ViennaRNA, Release 2.6.4

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

132 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.14.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.14.4 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.15 RNApaln

RNApaln - manual page for RNApaln 2.6.4

4.15.1 Synopsis

RNApaln [OPTION]...

4.15. RNApaln 133

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.15.2 DESCRIPTION

RNApaln 2.6.4

RNA alignment based on sequence base pairing propensities

Uses string-alignment techniques to perform fast pairwise structural alignments of RNAs. Similar to RNApdist
secondary structure is incorporated in an approximate manner by computing base pair probabilities, which are
then reduced to a vector holding the probability that a base is paired upstream, downstream, or remains unpaired.
Such pair propsensity vectors can then be compared using standard alignment algorithms. In contrast to RNApdist,
RNApaln performs similarity (instead of distance) alignments, considers both sequence and structure information,
and uses affine (rather than linear) gap costs. RNApaln can perform semi-local alignments by using free end gaps,
a true local alignment mode is planned.

The same approach has since been used in the StraL program from Gerhard Steeger’s group. Since StraL has
optimized parameters and a multiple alignment mode, it be be currently the better option.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

-B, --printAlignment[=filename]

Print an “alignment” with gaps of the

profiles

The aligned structures are written to filename, if specified Otherwise output is written to stdout, unless the
-Xm option is set in which case “backtrack.file” is used.

(default=”stdout”)

The following symbols are used:

(

) essentially upstream (downstream) paired bases

{

} weakly upstream (downstream) paired bases

|

strongly paired bases without preference

,

weakly paired bases without preference

.

essentially unpaired bases.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

134 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Algorithms:

Select additional algorithms which should be included in the calculations.

-X, --mode=pmfc

Set the alignment mode to be used.

The alignment mode is passed as a single character value. The following options are available: p - Compare
the structures pairwise, that is first with 2nd, third with 4th etc. This is the default.

``m``

• Calculate the distance matrix between all structures. The output is

formatted as a lower triangle matrix.

f - Compare each structure to the first one.

c - Compare continuously, that is i-th with (i+1)th structure.

--gapo=open

Set the gap open penalty

--gape=ext

Set the gap extension penalty

--seqw=w

Set the weight of sequence (compared to structure) in the scoring function.

--endgaps

Use free end-gaps

(default=off)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. When passing the placeholder file name “DNA”, DNA param-
eters are loaded without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

4.15. RNApaln 135

ViennaRNA, Release 2.6.4

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB will
imply that AB and BA are allowed pairs. e.g. RNAfold -nsp -GA will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

136 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

4.15.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

Bonhoeffer S, McCaskill J S, Stadler P F, Schuster P (1993), “RNA multi-structure landscapes”, Euro Biophys J:
22, pp 13-24

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.15.4 AUTHOR

Peter F Stadler, Ivo L Hofacker, Sebastian Bonhoeffer

4.15.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.16 RNAparconv

RNAparconv - manual page for RNAparconv 2.6.4

4.16.1 Synopsis

RNAparconv [options] [<input file>] [<output file>]

4.16.2 DESCRIPTION

RNAparconv 2.6.4

Convert energy parameter files from ViennaRNA 1.8.4 to 2.0 format

Converts energy parameter files from “old” ViennaRNAPackage 1.8.4 format to the new format used since Vien-
naRNAPackage 2.0. The Program reads a valid energy parameter file or valid energy parameters from stdin and
prints the converted energy parameters to stdout or a specified output file. Per default, the converted output file
contains the whole set of energy parameters used throughout ViennaRNAPackage 1.8.4. The user can specify sets
of energy parameters that should not be included in the output.

-h, --help

Print help and exit

4.16. RNAparconv 137

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

-i, --input=filename

Specify an input file name. If argument is missing the energy parameter input can be supplied via stdin.

-o, --output=filename

Specify an output file name. If argument is missing the converted energy parameters are printed to stdout.

--vanilla

Print just as much as needed to represent the given energy parameters data set. This option overrides all
other output settings!

(default=off)

--dump

Just dump Vienna 1.8.4 energy parameters in format used since 2.0. This option skips any energy parameter
input!

(default=off)

--silent

Print just energy parameters and appropriate comment lines but suppress all other output

(default=off)

--without-HairpinE

Do not print converted hairpin energies and enthalpies

(default=off)

--without-StackE

Do not print converted stacking energies and enthalpies

(default=off)

--without-IntE

Do not print converted interior loop energies, enthalpies and asymetry factors

(default=off)

--without-BulgeE

Do not print converted bulge loop energies and enthalpies

(default=off)

--without-MultiE

Do not print converted multi loop energies and enthalpies

(default=off)

--without-MismatchE

Do not print converted exterior loop mismatch energies and enthalpies

(default=off)

138 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--without-MismatchH

Do not print converted hairpin mismatch energies and enthalpies

(default=off)

--without-MismatchI

Do not print converted interior loop mismatch energies and enthalpies

(default=off)

--without-MismatchM

Do not print converted multi loop mismatch energies and enthalpies

(default=off)

--without-Dangle5

Do not print converted 5’ dangle energies and enthalpies

(default=off)

--without-Dangle3

Do not print converted 3’ dangle energies and enthalpies

(default=off)

--without-Misc

Do not print converted Misc energies and enthalpies (TerminalAU, DuplexInit, lxc)

(default=off)

4.16.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.16.4 AUTHOR

Ronny Lorenz

4.16. RNAparconv 139

ViennaRNA, Release 2.6.4

4.16.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.17 RNApdist

RNApdist - manual page for RNApdist 2.6.4

4.17.1 Synopsis

RNApdist [OPTION]...

4.17.2 DESCRIPTION

RNApdist 2.6.4

Calculate distances between thermodynamic RNA secondary structures ensembles

This program reads RNA sequences from stdin and calculates structure distances between the thermodynamic
ensembles of their secondary structures.

To do this the partition function and matrix of base pairing probabilities is computed for each sequence. The
probability matrix is then condensed into a vector holding for each base the probabilities of being unpaired, paired
upstream, or paired downstream, respectively. These profiles are compared by a standard alignment algorithm.

The base pair probabilities are also saved as postscript “dot plots” (as in RNAfold) in the files “name_dp.ps”, where
name is the name of the sequence, or a number if unnamed.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

140 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

Algorithms:

Select additional algorithms which should be included in the calculations.

-X, --compare=p|m|f|c

Specify the comparison directive. (default=”p”)

Possible arguments for this option are: -Xp compare the structures pairwise (p), i.e. first with 2nd, third
with 4th etc. -Xm calculate the distance matrix between all structures. The output is formatted as a lower
triangle matrix. -Xf compare each structure to the first one. -Xc compare continuously, that is i-th with
(i+1)th structure.

-B, --backtrack[=<filename>]

Print an “alignment” with gaps of the profiles. The aligned structures are written to <filename>, if specified.

(default=”none”)

Within the profile output, the following symbols will be used:

()

essentially upstream (downstream) paired bases

{}

weakly upstream (downstream) paired bases

|

strongly paired bases without preference

,

weakly paired bases without preference

.

essentially unpaired bases.

If <filename> is not specified, the output is written to stdout, unless the

“-Xm” option is set in which case “backtrack.file” is used.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. When passing the placeholder file name “DNA”, DNA param-
eters are loaded without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

4.17. RNApdist 141

ViennaRNA, Release 2.6.4

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

set energy model for treatment of dangling bases.

(possible values=”0”, “2” default=”2”)

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB will
imply that AB and BA are allowed pairs. e.g. RNAfold -nsp -GA will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

142 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

4.17.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S. Bonhoeffer, J.S. McCaskill, P.F. Stadler, P. Schuster (1993), “RNA multi-structure landscapes”, Euro Biophys
J:22, pp 13-24

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.17.4 AUTHOR

Peter F Stadler, Ivo L Hofacker, Sebastian Bonhoeffer.

4.17.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.18 RNAPKplex

RNAPKplex - manual page for RNAPKplex 2.6.4

4.18.1 Synopsis

RNAPKplex [OPTION]...

4.18.2 DESCRIPTION

RNAPKplex 2.6.4

predicts RNA secondary structures including pseudoknots

Computes RNA secondary structures by first making two sequence intervals accessible and unpaired using the
algorithm of RNAplfold and then calculating the energy of the interaction of those two intervals. The algorithm
uses O(n^2*w^4) CPU time and O(n*w^2) memory space. The algorithm furthermore always considers dangle=2
model.

It also produces a PostScript file with a plot of the pseudoknot-free secondary structure graph, in which the bases
forming the pseuodknot are marked red.

Sequences are read in a simple text format where each sequence occupies a single line. Each sequence may be
preceded by a line of the form .. code:

4.18. RNAPKplex 143

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

> name

to assign a name to the sequence. If a name is given in the input, the PostScript file “name.ps” is produced for
the structure graph. Other- wise the file name defaults to PKplex.ps. Existing files of the same name will be
overwritten. The input format is similar to fasta except that even long sequences may not be interrupted by line
breaks, and the header lines are optional. The program will continue to read new sequences until a line consisting
of the single character @ or an end of file condition is encountered.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/O Options:

Command line options for input and output (pre-)processing

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations.

-c, --cutoff=FLOAT

Report only base pairs with an average probability > cutoff in the dot plot.

(default=”0.01”)

-e, --energyCutoff=DOUBLE

Energy cutoff or pseudoknot initiation cost. Minimum energy gain of a pseudoknot interaction for it to be
returned. Pseudoknots with smaller energy gains are rejected.

(default=”-8.10”)

-s, --subopts=DOUBLE

print suboptimal structures whose energy difference of the pseudoknot to the optimum pseudoknot is smaller
than the given value.

(default=”0.0”)

NOTE: The final energy of a structure is calculated as the sum of the pseudoknot interaction energy, the
penalty for initiating a pseudoknot and the energy of the pseudoknot-free part of the structure. The -s
option only takes the pseudoknot interaction energy into account, so the final energy differences may be
bigger than the specified value (default=0.).

144 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.18. RNAPKplex 145

ViennaRNA, Release 2.6.4

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.18.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.18.4 AUTHOR

Wolfgang Beyer

4.18.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.19 RNAplex

RNAplex - manual page for RNAplex 2.6.4

4.19.1 Synopsis

RNAplex [options]

146 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.19.2 DESCRIPTION

RNAplex 2.6.4

Find targets of a query RNA

reads two RNA sequences from stdin or <filename> and computes optimal and suboptimal secondary structures
for their hybridization. The calculation is simplified by allowing only inter-molecular base pairs. Accessibility
effects can be estimated by RNAplex if a RNAplfold accessibility profile is provided. The computed optimal and
suboptimal structure are written to stdout, one structure per line. Each line consist of: The structure in dot bracket
format with a “&” separating the two strands. The range of the structure in the two sequences in the format “from,to
: from,to”; the energy of duplex structure in kcal/mol. The format is especially useful for computing the hybrid
structure between a small probe sequence and a long target sequence.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

--version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

-q, --query=STRING

File containing the query sequence.

Input sequences can be given piped to RNAplex or given in a query file with the -q option. Note that the -q
option implies that the -t option is also used

-t, --target=STRING

File containing the target sequence.

Input sequences can be given piped to RNAplex or given in a target file with the -t option. Note that the -t
option implies that the -q option is also used

-a, --accessibility-dir=STRING

Location of the accessibility profiles.

This option switches the accessibility modes on and indicates in which directory accessibility profiles as
generated by RNAplfold can be found

-b, --binary

Allow the reading and parsing of memory dumped opening energy file

(default=off)

The -b option allows one to read and process opening energy files which are saved in binary format

This can reduce by a factor of 500x-1000x the time needed to process those

files. RNAplex recognizes the corresponding opening energy files by looking for files named after the se-
quence and containing the suffix _openen_bin. Please look at the man page of RNAplfold if you need more
information on how to produce binary opening energy files.

4.19. RNAplex 147

ViennaRNA, Release 2.6.4

Algorithms:

Options which alter the computing behaviour of RNAplex.

-l, --interaction-length=INT

Maximal length of an interaction (default=”40”)

Maximal allowed length of an interaction

-c, --extension-cost=INT

Cost to add to each nucleotide in a duplex (default=”0”)

Cost of extending a duplex by one nucleotide. Allows one to find compact duplexes, having few/small
bulges or interior loops Only useful when no accessibility profiles are available. This option is disabled if
accessibility profiles are used (-a option)

-p, --probe-mode

Compute Tm for probes (default=off)

Use this option if you want to compute the melting temperature of your probes

-Q, --probe-concentration=DOUBLE

Set the probe concentration for the Tm

computation

(default=”0.1”)

-N, --na-concentration=DOUBLE Set the Na+ concentration for the Tm

computation.

(default=”1.0”)

-M, --mg-concentration=DOUBLE Set the Mg2+ concentration for the Tm

computation.

(default=”1.0”)

-K, --k-concentration=DOUBLE

Set the K+ concentration for the Tm computation.

(default=”1.0”)

-U, --tris-concentration=DOUBLE

Set the tris+ concentration for the Tm

computation.

(default=”1.0”)

-f, --fast-folding=INT

Speedup of the target search (default=”0”)

This option allows one to decide if the backtracking has to be done (-f 0, -f 2) or not (-f 1). For -f 0
the structure is computed based on the standard energy model. This is the slowest and most precise mode of
RNAplex. With -f 2, the structure is computed based on the approximated plex model. If a lot of targets
are returned this is can greatly improve the runtime of RNAplex. -f 1 is the fastest mode, as no structure
are recomputed

-V, --scale-accessibility=DOUBLE

Rescale all opening energy by a factor V

(default=”1.0”)

Scale-factor for the accessibility. If V is set to 1 then the scaling has no effect on the accessibility.

148 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

-A, --alignment-mode

Tells RNAplex to compute interactions based on alignments

(default=off)

If the A option is set RNAplex expects clustalw files as input for the -q and -t option.

-k, --convert-to-bin

If set, RNAplex will convert all opening energy file in a directory set by the -a option into binary opening
energy files

(default=off)

RNAplex can be used to convert existing text formatted opening energy files into binary formatted files. In
this mode RNAplex does not compute interactions.

-z, --duplex-distance=INT

Distance between target 3’ ends of two consecutive duplexes

(default=”0”)

Distance between the target 3’ends of two consecutive duplexes. Should be set to the maximal length of
interaction to get good results

Smaller z leads to larger overlaps between consecutive duplexes.

-e, --energy-threshold=DOUBLE Minimal energy for a duplex to be returned

(default=”-100000”)

Energy threshold for a duplex to be returned. The threshold is set on the total energy of interaction, i.e. the
hybridization energy corrected for opening energy if -a is set or the energy corrected by -c. If unset, only
the mfe will be returned

-L, --WindowLength=INT

Tells how large the region around the target site should be for redrawing the alignment interaction

(default=”1”)

This option allows one to specify how large the region surrounding the target site should be set when gener-
ating the alignment figure of the interaction

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

-C, --constraint

Calculate structures subject to constraints. (default=off)

The program reads first the sequence, then a string containing constraints on the structure for the query
sequence encoded with the symbols: . (no constraint for this base) | (the corresponding base has to be
paired)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

4.19. RNAplex 149

ViennaRNA, Release 2.6.4

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. When passing the placeholder file name “DNA”, DNA param-
eters are loaded without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE

Provide salt correction for duplex initialization (in kcal/mol).

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

-I, --produce-ps=STRING

Draw an alignment annotated interaction from RNAplex.

This option allows one to produce interaction figures in PS-format a la RNAalifold, where base-pair con-
servation is represented in color-coded format. In this mode no interaction are computed, but the -I option
indicates the location of the file containing interactions between two RNA (alignments/sequence) from a
previous run. If the -A option is not set a structure figure a la RNAfold with color-coded annotation of the
accessibilities is returned

150 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

4.19.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The calculation of duplex structure is based on dynamic programming algorithm originally developed by
Rehmsmeier and in parallel by Hofacker.

H. Tafer and I.L. Hofacker (2008), “RNAplex: a fast tool for RNA-RNA interaction search.”, Bioinformatics:
24(22), pp 2657-2663

S. Bonhoeffer, J.S. McCaskill, P.F. Stadler, P. Schuster (1993), “RNA multi-structure landscapes”, Euro Biophys
J: 22, pp 13-24

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.19.4 AUTHOR

Hakim Tafer, Ivo L. Hofacker

4.19.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.20 RNAplfold

RNAplfold - manual page for RNAplfold 2.6.4

4.20.1 Synopsis

RNAplfold [OPTION]...

4.20. RNAplfold 151

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.20.2 DESCRIPTION

RNAplfold 2.6.4

calculate locally stable secondary structure - pair probabilities

Computes local pair probabilities for base pairs with a maximal span of L. The probabilities are averaged over all
windows of size L that contain the base pair. For a sequence of length n and a window size of L the algorithm
uses only O(n+L*L) memory and O(n*L*L) CPU time. Thus it is practical to “scan” very large genomes for short
stable RNA structures.

Output consists of a dot plot in postscript file, where the averaged pair probabilities can easily be parsed and visually
inspected.

The -u option makes i possible to compute the probability that a stretch of x consequtive nucleotides is unpaired,
which is useful for predicting possible binding sites. Again this probability is averaged over all windows containing
the region.

.B WARNING! Output format changed!!

The output is a plain text matrix containing on each line a position i followed by the probability that i is unpaired,
[i-1..i] is unpaired [i-2..i] is unpaired and so on to the probability that [i-x+1..i] is unpaired.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/O Options:

Command line options for input and output (pre-)processing

-c, --cutoff=FLOAT

Report only base pairs with an average probability larger than cutoff in the dot plot.

(default=”0.01”)

-o, --print_onthefly

Save memory by printing out everything during computation.

(default=off)

NOTE: activated per default for sequences over 1M bp.

-O, --opening_energies

Switch output from probabilities to their logarithms.

(default=off)

This is NOT exactly the mean energies needed to unfold the respective stretch of bases! (implies --ulength
option).

152 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--plex_output

Create additional output files for RNAplex.

(default=off)

-b, --binaries

Output accessibility profiles in binary format. (default=off)

The binary files produced by RNAplfold do not need to be parsed by RNAplex,

so that they are directly loaded into memory. This is useful when large sequences have to be searched for
putative hybridization sites. Another advantage of the binary format is the 50% file size decrease.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAplfold is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAplfold ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”sequence”)

If this parameter is set, each sequences’ FASTA id will be prefixed with the provided string. FASTA ids
then take the form “>prefix_xxxx” where xxxx is the sequence number. Hence, the output files will obey
the following naming scheme: “prefix_xxxx_dp.ps” (dot-plot), “prefix_xxxx_lunp” (unpaired probabilities),
etc. Note: Setting this parameter implies --auto-id .

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id .

--id-start=LONG

Specify the first number in automatically generated IDs.

(default=”1”)

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

4.20. RNAplfold 153

ViennaRNA, Release 2.6.4

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.

(default=”ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001” without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

Algorithms:

Select and change parameters of (additional) algorithms which should be included in the calculations.

-W, --winsize=size

Average the pair probabilities over windows of given size.

(default=”70”)

-L, --span=size

Set the maximum allowed separation of a base pair to span.

By setting the maximum base pair span no pairs (i,j) with j-i > span will be allowed. Defaults to winsize if
parameter is omitted.

-u, --ulength=length

Compute the mean probability that regions of length 1 to a given length are unpaired.

(default=”31”)

Output is saved in a _lunp file.

--betaScale=DOUBLE

Set the scaling of the Boltzmann factors. (default=”1.”)

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp(- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default=”1.07”)

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

154 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--shape=filename

Use SHAPE reactivity data to guide structure predictions.

--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default=”D”)

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.

D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapeMethod=”D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod=”Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapeMethod=”Dm1.9” or --shapeMethod=”Db-0.7”.

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

et al 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapeMethod=”Zb0.8”).

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method

Select method for SHAPE reactivity conversion.

(default=”O”)

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25”) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) O: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

4.20. RNAplfold 155

ViennaRNA, Release 2.6.4

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

-m, --modifications[=STRING]

Allow for modified bases within the RNA sequence string.

(default=”7I6P9D”)

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are
performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:

7: 7-deaza-adenonsine (7DA)

I: Inosine

6: N6-methyladenosine (m6A)

P: Pseudouridine

9: Purine (a.k.a. nebularine)

D: Dihydrouridine

--mod-file=STRING

Use additional modified base data from JSON file.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

Specify “dangling end” model for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d2 dangling energies will be added for the bases adjacent to a helix on both sides in any case while
-d0 ignores dangling ends altogether (mostly for debugging).

156 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.20.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S. H. Bernhart, U. Mueckstein, and I.L. Hofacker (2011), “RNA Accessibility in cubic time”, Algorithms Mol
Biol. 6: 3.

S. H. Bernhart, I.L. Hofacker, and P.F. Stadler (2006), “Local Base Pairing Probabilities in Large RNAs”, Bioin-
formatics: 22, pp 614-615

4.20. RNAplfold 157

ViennaRNA, Release 2.6.4

A.F. Bompfuenewerer, R. Backofen, S.H. Bernhart, J. Hertel, I.L. Hofacker, P.F. Stadler, S. Will (2007), “Variations
on RNA Folding and Alignment: Lessons from Benasque”, J. Math. Biol.

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.20.4 AUTHOR

Stephan H Bernhart, Ivo L Hofacker, Peter F Stadler, Ronny Lorenz

4.20.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.20.6 SEE ALSO

RNALfold(1)

4.21 RNAplot

RNAplot - manual page for RNAplot 2.6.4

4.21.1 Synopsis

RNAplot [OPTIONS] [<input0>] [<input1>]...

4.21.2 DESCRIPTION

RNAplot 2.6.4

Draw RNA Secondary Structures

The program reads (aligned) RNA sequences and structures in the format as produced by RNAfold or Stockholm
1.0 and produces drawings of the secondary structure graph. Coordinates for the structure graphs are produced
using either E. Bruccoleri’s naview routines, or a simple radial layout method. For aligned sequences and consensus
structures (--msa option) the graph may be annotated by covariance information. Additionally, a color-annotated
EPS alignment figure can be produced, similar to that obtained by RNAalifold and RNALalifold. If the sequence
was preceded by a FASTA header, or if the multiple sequence alignment contains an ID field, these IDs will be
taken as names for the output file(s): “name_ss.ps” and “name_aln.ps”. Otherwise “rna.ps” and “aln.ps” will be
used. This behavior may be over-ruled by explicitly setting a filename prefix using the --auto-id option. Existing
files of the same name will be overwritten.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

158 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

-i, --infile=<filename>

Read a file instead of reading from stdin.

The default behavior of RNAplot is to read input from stdin or the file(s) that follow(s) the RNAplot com-
mand. Using this parameter the user can specify input file names where data is read from. Note, that any
additional files supplied to RNAplot are still processed as well.

-a, --msa

Input is multiple sequence alignment in Stockholm 1.0 format. (default=off)

Using this flag indicates that the input is a multiple sequence alignment (MSA) instead of (a) single se-
quence(s). Note, that only STOCKHOLM format allows one to specify a consensus structure. Therefore,
this is the only supported MSA format for now!

--mis

Output “most informative sequence” instead of simple consensus (default=off)

For each column of the alignment output this is the set of nucleotides with frequency greater than average in
IUPAC notation.

-j, --jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. (default=”0”)

Default processing of input data is performed in a serial fashion, i.e. one sequence at a time. Using this
switch, a user can instead start the computation for many sequences in the input in parallel. RNAplot will
create as many parallel computation slots as specified and assigns input sequences of the input file(s) to the
available slots. Note, that this increases memory consumption since input alignments have to be kept in mem-
ory until an empty compute slot is available and each running job requires its own dynamic programming
matrices. A value of 0 indicates to use as many parallel threads as computation cores are available.

-o, --output-format=ps|gml|xrna|svg

Specify output format. (default=”ps”)

Available formats are: PostScript (ps), Graph Meta Language (gml), Scalable Vector Graphics (svg), and
XRNA save file (xrna). Output filenames will end in “.ps” “.gml” “.svg” “.ss”, respectively.

--pre=string

Add annotation macros to postscript file, and add the postscript code in “string” just before the code to draw
the structure. This is an easy way to add annotation.

--post=string

Same as --pre but in contrast to adding the annotation macros. E.g to mark position 15 with circle use
--post=”15 cmark”.

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAfold is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAfold ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

4.21. RNAplot 159

ViennaRNA, Release 2.6.4

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_dp2.ps” (stack probabilities), etc. where xxxx is the sequence number. Note: Set-
ting this parameter implies --auto-id .

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id .

--id-start=LONG

Specify the first number in automatically generated IDs.

(default=”1”)

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.

(default=”ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001” without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

160 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

--covar

Annotate covariance of base pairs in consensus structure.

(default=off)

--aln

Produce a colored and structure annotated alignment in PostScript format in the file “aln.ps” in the current
directory.

(default=off)

--aln-EPS-cols=INT

Number of columns in colored EPS alignment output.

(default=”60”)

A value less than 1 indicates that the output should not be wrapped at all.

-t, --layout-type=INT

Choose the plotting layout algorithm. (default=”1”)

Select the layout algorithm that computes the nucleotide coordinates. Currently, the following algorithms
are available:

0: simple radial layout

1: Naview layout (Bruccoleri et al. 1988)

2: circular layout

3: RNAturtle (Wiegreffe et al. 2018)

4: RNApuzzler (Wiegreffe et al. 2018)

--noOptimization

Disable the drawing space optimization of RNApuzzler.

(default=off)

--ignoreExteriorIntersections

Ignore intersections with the exterior loop

within the RNA-tree.

(default=off)

--ignoreAncestorIntersections

Ignore ancestor intersections within the

RNA-tree.

(default=off)

--ignoreSiblingIntersections

Ignore sibling intersections within the

RNA-tree.

(default=off)

--allowFlipping

Allow flipping of exterior loop branches to resolve exterior branch intersections.

(default=off)

4.21. RNAplot 161

ViennaRNA, Release 2.6.4

4.21.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.21.4 AUTHOR

Ivo L Hofacker, Ronny Lorenz

4.21.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.22 RNApvmin

RNApvmin - manual page for RNApvmin 2.6.4

4.22.1 Synopsis

RNApvmin [options] <file.shape>

4.22.2 DESCRIPTION

RNApvmin 2.6.4

Calculate a perturbation vector that minimizes discripancies between predicted and observed pairing probabilities

The program reads a RNA sequence from stdin and uses an iterative minimization process to calculate a perturba-
tion vector that minimizes the discripancies between predicted pairing probabilites and observed pairing probabil-
ities (deduced from given shape reactivities). Experimental data is read from a given SHAPE file and normalized
to pairing probabilities. The experimental data has to be provided in a multiline plain text file where each line
has the format [position] [nucleotide] [absolute shape reactivity] (e.g. 3 A 0.7). The objective
function used for the minimization may be weighted by choosing appropriate values for sigma and tau.

The minimization progress will be written to stderr. Once the minimization has terminated, the obtained perturba-
tion vector is written to stdout.

-h, --help

Print help and exit

162 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

-j, --numThreads=INT

Set the number of threads used for calculations.

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

--shapeConversion=STRING

Specify the method used to convert SHAPE reactivities to pairing probabilities.

(default=”O”)

The following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide
to be unpaired.

M: Use linear mapping according to Zarringhalam et al. 2012

C: Use a cutoff-approach to divide into paired and unpaired nucleotides (e.g. “C0.25”)

S: Skip the normalizing step since the input data already represents probabilities for being unpaired rather
than raw reactivity values

L: Use a linear model to convert the reactivity into a probability for being unpaired (e.g. “Ls0.68i0.2” to use
a slope of 0.68 and an intercept of 0.2)

O: Use a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-
2.29” to use a slope of 1.6 and an intercept of -2.29)

--tauSigmaRatio=DOUBLE

Ratio of the weighting factors tau and sigma. (default=”1.0”)

A high ratio will lead to a solution as close as possible to the experimental data, while a low ratio will lead
to results close to the thermodynamic prediction without guiding pseudo energies.

--objectiveFunction=INT

The energies of the perturbation vector and the discripancies between predicted and observed pairing prob-
abilities contribute to the objective function. This parameter defines, which function is used to process the
contributions before summing them up. 0 square 1 absolute.

(default=”0”)

--sampleSize=INT

The iterative minimization process requires to evaluate the gradient of the objective function.

(default=”1000”)

A sample size of 0 leads to an analytical evaluation which scales as O(N^4). Choosing a sample size >0
estimates the gradient by sampling the given number of sequences from the ensemble, which is much faster.

4.22. RNApvmin 163

ViennaRNA, Release 2.6.4

-N, --nonRedundant

Enable non-redundant sampling strategy.

(default=off)

--intermediatePath=STRING Write an output file for each iteration of the

minimization process.

Each file contains the used perturbation vector and the score of the objective function. The number of the
iteration will be appended to the given path.

--initialVector=DOUBLE

Specify the vector of initial pertubations. (default=”0”)

Defines the initial perturbation vector which will be used as starting vector for the minimization process. The
value 0 results in a null vector. Every other value x will be used to populate the initial vector with random
numbers from the interval [-x,x].

--minimizer=ENUM

Set the minimizing algorithm used for finding an appropriate perturbation vector.

(possible values="conjugate_fr",

“conjugate_pr”, “vector_bfgs”, “vector_bfgs2”, “steepest_descent”, “default” default=”default”)

The default option uses a custom implementation of the gradient descent algorithms while all other options
represent various algorithms implemented in the GNU Scientific Library. When the GNU Scientific Library
can not be found, only the default minimizer is available.

--initialStepSize=DOUBLE

The initial stepsize for the minimizer methods.

(default=”0.01”)

--minStepSize=DOUBLE

The minimal stepsize for the minizimer methods.

(default=”1e-15”)

--minImprovement=DOUBLE

The minimal improvement in the default minizimer method that has to be surpassed to considered a new
result a better one.

(default=”1e-3”)

--minimizerTolerance=DOUBLE

The tolerance to be used in the GSL minimizer

methods.

(default=”1e-3”)

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default=”1.07”)

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

164 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default=”-1”)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

4.22. RNApvmin 165

ViennaRNA, Release 2.6.4

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.22.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S. Washietl, I.L. Hofacker, P.F. Stadler, M. Kellis (2012) “RNA folding with soft constraints: reconciliation of
probing data and thermodynamics secondary structure prediction” Nucl Acids Res: 40(10), pp 4261-4272

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

166 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

4.22.4 EXAMPLES

RNApvmin acceptes a SHAPE file and a corresponding nucleotide sequence, which is read form stdin.

RNApvmin sequence.shape < sequence.fasta > sequence.pv

The normalized SHAPE reactivity data has to be stored in a text file, where each line contains the position and the
reactivity for a certain nucleotide ([position] [nucleotide] [SHAPE reactivity]).

1 A 1.286
2 U 0.383
3 C 0.033
4 C 0.017
...
...
98 U 0.234
99 G 0.885

The nucleotide information in the SHAPE file is optional and will be used to cross check the given input sequence if
present. If SHAPE reactivities could not be determined for every nucleotide, missing values can simply be omited.

The progress of the minimization will be printed to stderr. Once a solution was found, the calculated perturbation
vector will be print to stdout and can then further be used to constrain RNAfold’s MFE/partition function calculation
by applying the perturbation energies as soft constraints.

RNAfold --shape=sequence.pv --shapeMethod=W < sequence.fasta

4.22.5 AUTHOR

Dominik Luntzer, Ronny Lorenz

4.22.6 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.23 RNAsnoop

RNAsnoop - manual page for RNAsnoop 2.6.4

4.23.1 Synopsis

RNAsnoop [options]

4.23. RNAsnoop 167

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

4.23.2 DESCRIPTION

RNAsnoop 2.6.4

Find targets of a query H/ACA snoRNA

reads a target RNA sequence and a H/ACA snoRNA sequence from a target and query file, respectively and com-
putes optimal and suboptimal secondary structures for their hybridization. The calculation can be done roughly in
O(nm), where is n the length of the target sequence and m is the length of the snoRNA stem, as it is specially tailored
to the special case of H/ACA snoRNA. For general purpose target predictions, please have a look at RNAduplex,
RNAup, RNAcofold and RNAplex. Accessibility effects can be estimated by RNAsnoop if a RNAplfold accessi-
bility profile is provided.

The computed optimal and suboptimal structure are written to stdout, one structure per line. Each line consist
of: The structure in dot bracket format with a & separating the two strands. The <> brackets represent snoRNA
intramolecular interactions, while the () brackets represent intermolecular interactions between the snoRNA and
its target.

The range of the structure in the two sequences in the format “from,to : from,to”; the energy of duplex structure in
kcal/mol. If available the opening energy are also returned.

--help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

-V, --version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

-s, --query=STRING

File containing the query sequence.

Input sequences can be given piped to RNAsnoop or given in a query file with the -s option. Note that the
-s option implies that the -t option is also used.

-t, --target=STRING

File containing the target sequence.

Input sequences can be given piped to RNAsnoop or given in a target file with the -t optionNote that the -t
option implies that the -s option is also used.

-S, --suffix=STRING

Specificy the suffix that was added by RNAup to the accessibility files.

(default=”_u1_to_30.out”)

-P, --from-RNAplfold=STRING

Specify the directory where accessibility profile generated by RNAplfold are found.

-U, --from-RNAup=STRING

Specify the directory where accessibility profiles generated by RNAup are found.

-O, --output_directory=STRING Set where the generated figures should be

stored.

(default=”./”)

168 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Algorithms:

Options which alter the computing behaviour of RNAplex. Please note that the options allowing to
filter out snoRNA-RNA duplexes expect the energy to be given in decacal/mol instead of kcal/mol. A
threshold of -2.8(kcal/mol) should be given as :option:`-280`(decacal/mol).

-A, --alignment-mode

Specify if RNAsnoop gets alignments or single sequences as input.

(default=off)

-f, --fast-folding=INT

Speedup of the target search. (default=”1”)

This option allows one to decide if the backtracking has to be done (-f 1) or not (-f 0). For -f 1 the
structure is computed based on the standard energy model. This is the slowest mode of RNAsnoop. -f 0 is
the fastest mode, as no structure are recomputed and only the interaction energy is returned.

-c, --extension-cost=INT

Cost to add to each nucleotide in a duplex. (default=”0”)

Cost of extending a duplex by one nucleotide. Allows one to find compact duplexes, having few/small
bulges or interior loops. Only useful when no accessibility profiles are available. This option is disabled if
accessibility profiles are used (-P option).

-e, --energy-threshold=DOUBLE Maximal energy difference between the mfe and

the desired suboptimal.

(default=”-1”)

Energy range for a duplex to be returned. The threshold is set on the total energy of interaction, i.e. the
hybridizationenergy corrected for opening energy if -a is set or the energy corrected by -c. If unset, only
the mfe will be returned.

-o, --minimal-right-duplex=INT

Minimal Right Duplex Energy

(default=”-270”)

-l, --minimal-loop-energy=INT Minimal Right Duplex Energy.

(default=”-280”)

Minimal Stem Loop Energy of the snoRNA. The energy should be given in decacalories, i.e. a minimal
stem-loop energy of -2.8 kcal/mol corresponds to -280 decacal/mol.

.HP -p, :option:`–minimal-left-duplex`=*INT* Minimal Left Duplex Energy.

(default=”-170”)

-q, --minimal-duplex=INT

Minimal Duplex Energy.

(default=”-1090”)

-d, --duplex-distance=INT

Distance between target 3’ ends of two consecutive duplexes.

(default=”2”)

Distance between the target 3’ends of two consecutive duplexes. Should be set to the maximal length of
interaction to get good results. Smaller d leads to larger overlaps between consecutive duplexes.

.HP -h , :option:`–minimal-stem-length`=*INT* Minimal snoRNA stem length.

(default=”5”)

.HP -i, :option:`–maximal-stem-length`=*INT* Maximal snoRNA stem length.

4.23. RNAsnoop 169

ViennaRNA, Release 2.6.4

(default=”120”)

-j, --minimal-duplex-box-length=INT

Minimal distance between the duplex end and the

H/ACA box.

(default=”11”)

-k, --maximal-duplex-box-length=INT

Maximal distance between the duplex end and the

H/ACA box.

(default=”16”)

-m, --minimal-snoRNA-stem-loop-length=INT

Minimal number of nucleotides between the

beginning of stem loop and

beginning of the snoRNA sequence.

(default=”1”)

-n, --maximal-snoRNA-stem-loop-length=INT

Maximal number of nucleotides between the

beginning of stem loop and

beginning of the snoRNA sequence.

(default=”100000”)

-v, --minimal-snoRNA-duplex-length=INT

Minimal distance between duplex start and

snoRNA.

(default=”0”)

-w, --maximal-snoRNA-duplex-length=INT

Maximal distance between duplex start and

snoRNA.

(default=”0”)

-x, --minimal-duplex-stem-energy=INT

Minimal duplex stem energy.

(default=”-1370”)

-y, --minimal-total-energy=INT

Minimal total energy.

(default=”100000”)

-a, --maximal-stem-asymmetry=INT

Maximal snoRNA stem asymmetry.

(default=”30”)

-b, --minimal-lower-stem-energy=INT

Minimal lower stem energy.

(default=”100000”)

-L, --alignmentLength=INT

Limit the extent of the interactions to L nucleotides.

(default=”25”)

170 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

-C, --constraint

Calculate the stem structure subject to constraints.

(default=off)

The program reads first the stem sequence, then a string containing constraints on the structure encoded with
the symbols:

. (no constraint for this base)

(the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets () (base i pairs base j)

With the exception of “|”, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type “|”.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots.

-I, --produce-ps

Draw annotated 2D structures for a list of dot-bracket structures.

(default=off)

This option allows one to produce interaction figures in PS-format with conservation/accessibility annotation,
if available.

-N, --direct-redraw

Outputs 2D interactions concurrently with the interaction calculation for each suboptimal interaction. The
-I option should be preferred.

(default=off)

4.23.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The calculation of duplex structure is based on dynamic programming algorithm originally developed by
Rehmsmeier and in parallel by Hofacker.

4.23. RNAsnoop 171

ViennaRNA, Release 2.6.4

H. Tafer, S. Kehr, J. Hertel, I.L. Hofacker, P.F. Stadler (2009), “RNAsnoop: efficient target prediction for H/ACA
snoRNAs.”, Bioinformatics: 26(5), pp 610-616

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.23.4 AUTHOR

Hakim Tafer, Ivo L. Hofacker

4.23.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.24 RNAsubopt

RNAsubopt - manual page for RNAsubopt 2.6.4

4.24.1 Synopsis

RNAsubopt [OPTION]...

4.24.2 DESCRIPTION

RNAsubopt 2.6.4

calculate suboptimal secondary structures of RNAs

Reads RNA sequences from stdin and (in the default -e mode) calculates all suboptimal secondary structures
within a user defined energy range above the minimum free energy (mfe). It prints the suboptimal structures in
dot-bracket notation followed by the energy in kcal/mol to stdout. Be careful, the number of structures returned
grows exponentially with both sequence length and energy range.

Alternatively, when used with the -p option, RNAsubopt produces Boltzmann weighted samples of secondary
structures.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

172 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

-v, --verbose

Be verbose.

(default=off)

I/O Options:

Command line options for input and output (pre-)processing

-i, --infile=filename

Read a file instead of reading from stdin.

The default behavior of RNAsubopt is to read input from stdin. Using this parameter the user can specify an
input file name where data is read from.

-o, --outfile[=filename]

Print output to file instead of stdout.

This option may be used to write all output to output files rather than printing to stdout. The default filename
is “RNAsubopt_output.sub” if no FASTA header precedes the input sequences and the --auto-id feature
is inactive. Otherwise, output files with the scheme “prefix.sub” are generated, where the “prefix” is taken
from the sequence id. The user may specify a single output file name for all data generated from the input
by supplying an optional string as argument to this parameter. In case a file with the same filename already
exists, any output of the program will be appended to it. Note: Any special characters in the filename will be
replaced by the filename delimiter, hence there is no way to pass an entire directory path through this option
yet. (See also the “–filename-delim” parameter)

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAsubopt is to automatically determine an ID from the input sequence data if the
input file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences.
If this flag is active, RNAsubopt ignores any IDs retrieved from the input and automatically generates an ID
for each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add
a FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).

(default=”sequence”)

If this parameter is set, each sequences’ FASTA id will be prefixed with the provided string. FASTA ids then
take the form “>prefix_xxxx” where xxxx is the sequence number. Note: Setting this parameter implies
--auto-id .

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=”_”)

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.

(default=”4”)

4.24. RNAsubopt 173

ViennaRNA, Release 2.6.4

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id .

--id-start=LONG

Specify the first number in automatically generated IDs.

(default=”1”)

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.

(default=”ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001” without the additional data available
in the FASTA header, e.g. “NM_0001.sub”. With this flag set, no truncation of the output filenames is
performed, i.e. output filenames receive the full FASTA header data as prefixes. Note, however, that invalid
characters (such as whitespace) will be substituted by a delimiting character or simply removed, (see also
the parameter option --filename-delim).

Algorithms:

Select the algorithms which should be applied to the given RNA sequence(s).

-e, --deltaEnergy=range

Compute suboptimal structures with energy in a certain range of the optimum (kcal/mol).

Default is calculation of mfe structure only.

--deltaEnergyPost=range

Only print structures with energy within range of the mfe after post reevaluation of energies.

Useful in conjunction with -logML, -d1 or -d3: while the -e option specifies the range before energies are
re-evaluated, this option specifies the maximum energy after re-evaluation.

-s, --sorted

Sort the suboptimal structures by energy and lexicographical order.

(default=off)

Structures are first sorted by energy in ascending order. Within groups of the same energy, structures are
then sorted in ascending in lexicographical order of their dot-bracket notation. See the --en-only flag to
deactivate this second step. Note that sorting is done in memory, thus it can easily lead to exhaution of RAM!
This is especially true if the number of structures produced becomes large or the RNA sequence is rather
long. In such cases better use an external sort method, such as UNIX “sort”.

174 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--en-only

Only sort structures by free energy. (default=off)

In combination with --sorted , this flag deactivates the second sorting criteria and sorts structures solely
by their free energy instead of additionally sorting by lexicographic order in each energy band. This might
save some time during the sorting process in situations where lexicographic order is not required.

-p, --stochBT=number

Randomly draw structures according to their probability in the Boltzmann ensemble.

Instead of producing all suboptimals in an energy range, produce a random sample of suboptimal struc-
tures, drawn with probabilities equal to their Boltzmann weights via stochastic backtracking in the partition
function. The -e and -p options are mutually exclusive.

--stochBT_en=number

Same as “–stochBT” but also print free energies and probabilities of the backtraced structures.

--betaScale=DOUBLE

Set the scaling of the Boltzmann factors. (default=”1.”)

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp(- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-N, --nonRedundant

Enable non-redundant sampling strategy.

(default=off)

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default=”1.07”)

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)

-D, --dos

Compute density of states instead of secondary structures.

(default=off)

This option enables the evaluation of the number of secondary structures in certain energy bands around the
MFE.

-z, --zuker

Compute Zuker suboptimals instead of all suboptimal structures within an energy band around the MFE.

(default=off)

-g, --gquad

Incoorporate G-Quadruplex formation. (default=off)

No support of G-quadruplex prediction for stochastic backtracking and Zuker-style suboptimals yet).

4.24. RNAsubopt 175

ViennaRNA, Release 2.6.4

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default=”-1”)

-C, --constraint[=filename]

Calculate structures subject to constraints. (default=””)

The program reads first the sequence, then a string containing constraints on the structure encoded with the
symbols:

. (no constraint for this base)

| (the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets () (base i pairs base j)

With the exception of |, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type |.

--batch

Use constraints for multiple sequences. (default=off)

Usually, constraints provided from input file only apply to a single input sequence. Therefore, RNAsubopt
will stop its computation and quit after the first input sequence was processed. Using this switch, RNAsubopt
processes multiple input sequences and applies the same provided constraints to each of them.

--canonicalBPonly

Remove non-canonical base pairs from the structure constraint.

(default=off)

--enforceConstraint

Enforce base pairs given by round brackets () in structure constraint.

(default=off)

--shape=filename

Use SHAPE reactivity data to guide structure predictions.

--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default=”D”)

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.

D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapeMethod=”D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod=”Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapeMethod=”Dm1.9” or --shapeMethod=”Db-0.7”.

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

176 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

et al 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapeMethod=”Zb0.8”).

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method

Select method for SHAPE reactivity conversion.

(default=”O”)

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25”) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) O: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

-m, --modifications[=STRING]

Allow for modified bases within the RNA sequence string.

(default=”7I6P9D”)

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are

4.24. RNAsubopt 177

ViennaRNA, Release 2.6.4

performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:

7: 7-deaza-adenonsine (7DA)

I: Inosine

6: N6-methyladenosine (m6A)

P: Pseudouridine

9: Purine (a.k.a. nebularine)

D: Dihydrouridine

--mod-file=STRING

Use additional modified base data from JSON file.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d0 ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--logML

Recompute energies of structures using a logarithmic energy function for multi-loops before output. (de-
fault=off)

This option does not effect structure generation, only the energies that are printed out. Since logML lowers
energies somewhat, some structures may be missing.

178 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

--energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.24.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S. Wuchty, W. Fontana, I. L. Hofacker and P. Schuster (1999), “Complete Suboptimal Folding of RNA and the
Stability of Secondary Structures”, Biopolymers: 49, pp 145-165

M. Zuker (1989), “On Finding All Suboptimal Foldings of an RNA Molecule”, Science 244.4900, pp 48-52

Y. Ding, and C.E. Lawrence (2003), “A statistical sampling algorithm for RNA secondary structure prediction”,
Nucleic Acids Research 31.24, pp 7280-7301

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.24. RNAsubopt 179

ViennaRNA, Release 2.6.4

4.24.4 AUTHOR

Ivo L Hofacker, Stefan Wuchty, Walter Fontana, Ronny Lorenz

4.24.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.25 RNAup

RNAup - manual page for RNAup 2.6.4

4.25.1 Synopsis

RNAup [OPTION]...

4.25.2 DESCRIPTION

RNAup 2.6.4

Calculate the thermodynamics of RNA-RNA interactions

RNAup calculates the thermodynamics of RNA-RNA interactions, by decomposing the binding into two stages.
(1) First the probability that a potential binding sites remains unpaired (equivalent to the free energy needed to
open the site) is computed. (2) Then this accessibility is combined with the interaction energy to obtain the total
binding energy. All calculations are done by computing partition functions over all possible conformations.

RNAup provides two different modes: By default RNAup computes accessibilities, in terms of the free energies
needed to open a region (default length 4). It prints the region of highest accessibility and its opening energy to
stdout, opening energies for all other regions are written to a file.

.br In interaction mode the interaction between two RNAs is calculated. It is invoked if the input consists of
two sequences concatenated with an &, or if the options -X[pf] or -b are given. Unless the -b option is specified
RNAup assumes that the longer RNA is a structured target sequence while the shorter one is an unstructured small
RNA. .br Additionally, for every position along the target sequence we write the best free energy of binding for an
interaction that includes this position to the the output file. Output to stdout consists of the location and free energy,
dG, for the optimal region of interaction. The binding energy dG is also split into its components the interaction
energy dGint and the opening energy dGu_l (and possibly dGu_s for the shorter sequence). .br In addition we
print the optimal interaction structure as computed by RNAduplex for this region. Note that it can happen that the
RNAduplex computed optimal interaction does not coincide with the optimal RNAup region. If the two predictions
don’t match the structure string is replaced by a run of “.” and a message is written to stderr. .br

Each sequence should be in 5`` to 3`` direction. If the sequence is preceded by a line of the form .. code:

> name

the output file “name_ux_up.out” is produced, where the “x” in “ux” is the value set by the -u option. Otherwise
the file name defaults to RNA_ux_up.out. The output is concatenated if a file with the same name exists. .br

RNA sequences are read from stdin as strings of characters. White space and newline within a sequence cause
an error! Newline is used to separate sequences. The program will continue to read new sequences until a line
consisting of the single character @ or an end of file condition is encountered.

-h, --help

Print help and exit

180 Chapter 4. Manpages

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/O Options:

Command line options for input and output (pre-)processing

-o, --no_output_file

Do not produce an output file.

(default=off)

--no_header

Do not produce a header with the command line parameters used in the outputfile.

(default=off)

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations.

-u, --ulength=length

Specify the length of the unstructured region in the output.

(default=”4”)

The probability of being unpaired is plotted on the right border of the unpaired region. You can specify up
to 20 different length values: use “-” to specify a range of continuous values (e.g. -u 4-8) or specify a list
of comma separated values (e.g. -u 4,8,15).

-c, --contributions=SHIME

Specify the contributions listed in the output. (default=”S”)

By default only the full probability of being unpaired is plotted. The -c option allows one to get the different
contributions (c) to the probability of being unpaired: The full probability of being unpaired (“S” is the sum
of the probability of being unpaired in the exterior loop (“E”), within a hairpin loop (“H”), within an interior
loop (“I”) and within a multiloop (“M”). Any combination of these letters may be given.

Calculations of RNA-RNA interactions:

-w, --window=INT

Set the maximal length of the region of interaction.

(default=”25”)

-b, --include_both

Include the probability of unpaired regions in both (b) RNAs.

(default=off)

By default only the probability of being unpaired in the longer RNA (target) is used.

4.25. RNAup 181

ViennaRNA, Release 2.6.4

-5, --extend5=INT

Extend the region of interaction in the target to some residues on the 5’ side.

The underlying assumption is that it is favorable for an interaction if not only the direct region of contact is
unpaired but also a few residues 5’

-3, --extend3=INT

Extend the region of interaction in the target to some residues on the 3’ side.

The underlying assumption is that it is favorable for an interaction if not only the direct region of contact is
unpaired but also a few residues 3’

--interaction_pairwise

Activate pairwise interaction mode. (default=off)

The first sequence interacts with the 2nd, the third with the 4th etc. If activated, two interacting sequences
may be given in a single line separated by “&” or each sequence may be given on an extra line.

--interaction_first

Activate interaction mode using first sequence only.

(default=off)

The interaction of each sequence with the first one is calculated (e.g. interaction of one mRNA with many
small RNAs). Each sequence has to be given on an extra line

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default=”1.07”)

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

-C, --constraint

Apply structural constraint(s) during prediction.

(default=off)

The program first reads the sequence(s), then a dot-bracket like string containing constraints on the structure.
The following symbols are recognized:

. . . . no constraint for this base

x . . . the base is unpaired

< . . . the base pairs downstream, i.e. i is paired with j > i

> . . . the base pairs upstream, i.e. i is paired with j < i

() . . . base i pairs with base j

| . . . the corresponding base has to be paired intermolecularily (only for

interaction mode)

182 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default=”37.0”)

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)

Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE

Provide salt correction for duplex initialization (in kcal/mol).

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

Specify “dangling end” model for bases adjacent to helices in free ends and multi-loops.

(default=”2”)

With -d2 dangling energies will be added for the bases adjacent to a helix on both sides in any case.

The option -d0 ignores dangling ends altogether (mostly for debugging).

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU

Do not allow GU pairs.

(default=off)

--noClosingGU

Do not allow GU pairs at the end of helices.

(default=off)

--nsp=STRING

Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp=”-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

4.25. RNAup 183

ViennaRNA, Release 2.6.4

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD. . . alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.

(default=”2.8”)

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.

(default=”6.0”)

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.25.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

U. Mueckstein, H. Tafer, J. Hackermueller, S.H. Bernhart, P.F. Stadler, and I.L. Hofacker (2006), “Thermodynamics
of RNA-RNA Binding”, Bioinformatics: 22(10), pp 1177-1182

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.25.4 EXAMPLES

.B Output to stdout:

In Interaction mode RNAup prints the most favorable interaction energy between the two sequences to stdout.
The most favorable interaction energy (dG) depends on the position in the longer sequence (region [i,j]) and the
position in the shorter sequence (region[k,l]): dG[i,j;k,l]. dG[i,j;k,l] is the largest contribution to dG[i,j] = sum_kl
dG[i,j;k,l] which is given in the output file: therefore dG[i,j;k,l] <= dG[i,j].

``....,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8``
> franz
GGAGUAGGUUAUCCUCUGUU
> sissi
AGGACAACCU
dG = dGint + dGu_l
(((((.((((&)))).))))) 6,15 : 1,10 (-6.66 = -9.89 + 3.23)

(continues on next page)

184 Chapter 4. Manpages

ViennaRNA, Release 2.6.4

(continued from previous page)

AGGUUAUCCU&AGGACAACCU
RNAup output in file: franz_sissi_w25_u3_4_up.out

where the result line contains following information

RNAduplex results [i,j] [k,l] dG = dGint + dGu_l
(((((.((((&)))).))))) 6,15 : 1,10 (-6.66=-9.89+3.23)

.RD .B Output to file:

Output to file contains a header including date, the command line of the call to RNAup, length and names of the
input sequence(s) followed by the sequence(s). The first sequence is the target sequence. Printing of the header
can be turned off using the -nh option.

The line directly after the header gives the column names for the output:

position dGu_l for -u 3 dGu_l for -u 4 dG
pos u3S u3H u4S u4H dG

where all information refers to the target sequence. The dGu_l column contains information about the -u value
(u=3 or u=4) and the contribution to the free energy to open all structures “S” or only hairpin loops “H”, see option
-c. NA means that no results is possible (e.g. column u3S row 2: no region of length 3 ending at position 2 exists).

Thu Apr 10 09:15:11 2008
RNAup -u 3,4 -c SH -b
20 franz
GGAGUAGGUUAUCCUCUGUU
10 sissi
AGGACAACCU
pos u3S u3H u4S u4H dG
1 NA NA NA NA -1.540
2 NA NA NA NA -1.540
3 1.371 NA NA NA -1.217
4 1.754 5.777 1.761 NA -1.393
5 1.664 3.140 1.811 5.800 -1.393

If the -b option is selected position and dGu_s values for the shorter sequence are written after the information for
the target sequence.

4.25.5 AUTHOR

Ivo L Hofacker, Peter F Stadler, Ulrike Mueckstein, Ronny Lorenz

4.25.6 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.25. RNAup 185

mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

Main Programs

Program Description
RNA2Dfold Compute MFE structure, partition function and representative sample structures of k,l neighbor-

hoods
RNAalidu-
plex

Predict conserved RNA-RNA interactions between two alignments

RNAalifold Calculate secondary structures for a set of aligned RNA sequences
RNAcofold Calculate secondary structures of two RNAs with dimerization
RNAdis-
tance

Calculate distances between RNA secondary structures

RNAdos Calculate the density of states for each energy band of an RNA
RNAduplex Compute the structure upon hybridization of two RNA strands
RNAeval Evaluate free energy of RNA sequences with given secondary structure
RNAfold Calculate minimum free energy secondary structures and partition function of RNAs
RNAheat Calculate the specific heat (melting curve) of an RNA sequence
RNAinverse Find RNA sequences with given secondary structure (sequence design)
RNALali-
fold

Calculate locally stable secondary structures for a set of aligned RNAs

RNALfold Calculate locally stable secondary structures of long RNAs
RNAmulti-
fold

Compute thermodynamic properties for interaction complexes of multiple RNAs

RNApaln RNA alignment based on sequence base pairing propensities
RNApdist Calculate distances between thermodynamic RNA secondary structures ensembles
RNA-
parconv

Convert energy parameter files from ViennaRNA 1.8 to 2.0 format

RNAP-
Kplex

Predict RNA secondary structures including pseudoknots

RNAplex Find targets of a query RNA
RNAplfold Calculate average pair probabilities for locally stable secondary structures
RNAplot Draw RNA Secondary Structures in PostScript, SVG, or GML
RNApvmin Calculate a perturbation vector that minimizes discrepancies between predicted and observed

pairing probabilities
RNAsnoop Find targets of a query H/ACA snoRNA
RNAsubopt Calculate suboptimal secondary structures of RNAs
RNAup Calculate the thermodynamics of RNA-RNA interactions

Additional Programs

We include the following additional programs in our distribution of the ViennaRNA Package. Whether or not they
are installed together with the ViennaRNA Package depends on its Configuration.

Program Description
AnalyseDists Analyse a distance matrix
AnalyseSeqs Analyse a set of sequences of common length
Kinfold Simulate kinetic folding of RNA secondary structures
kinwalker Predict RNA folding trajectories
RNAforester Compare RNA secondary structures via forest alignment
RNAlocmin Calculate local minima from structures via gradient walks
RNAxplorer Explore the RNA conformation space through sampling and other techniques

186 Chapter 4. Manpages

CHAPTER

FIVE

USING RNALIB

5.1 Linking against RNAlib

In order to use our implemented algorithms you simply need to link your program to our RNAlib C-library that
usually comes along with the ViennaRNA Package installation. If you’ve installed the ViennaRNA Package as a
pre-build binary package, you probably need the corresponding development package, e.g. viennarna-devel, or
viennarna-dev. The only thing that is left is to include the ViennaRNA header files into your source code, e.g.:

#include <ViennaRNA/mfe.h>

and start using our fast and efficient algorithm implementations.

See also. . .
In the C Examples section, we list a small set of example code that usually is a good starting point for your appli-
cation.

5.1.1 Compiler and Linker flags

Of course, simply adding the ViennaRNA header files into your source code is usually not enough. You probably
need to tell your compiler where to find the header files, and sometimes add additional pre-processor directives.
Whenever your installation of RNAlib was build with default settings and the header files were installed into their
default location, a simple:

-I/usr/include

pre-processor/compile flag should suffice. It can even be omitted in this case, since your compiler should search
this directory by default anyway. You only need to change the path from /usr/include to the correct location
whenever the header files have been installed into a non-standard directory.

If you’ve compiled RNAlib with some non-default settings then you probably need to define some additional pre-
processor macros:

• VRNA_DISABLE_C11_FEATURES . . . Disable C11/C++11 features.

Warning: Add this directive to your pre-processor/compile flags only if RNAlib was build with the
--disable-c11 configure option.

See also. . .
Disable C11/C++11 features and vrna_C11_features()

187

ViennaRNA, Release 2.6.4

• VRNA_WARN_DEPRECATED . . . Enable warnings for using deprecated symbols.

Note: Adding this directive enables compiler warnings whenever you use symbols in RNAlib that are marked
deprecated.

See also. . .
Deprecated symbols and Deprecated List

• USE_FLOAT_PF . . . Use single precision floating point operations instead of double precision in partition
function computations.

Warning: Define this macro only if RNAlib was build with the --enable-floatpf configure option!

See also. . .
Single precision

For instance, you might want to add the following definition(s) to your pre-processor/compile flags:

-DVRNA_DISABLE_C11_FEATURES

Finally, linking against RNAlib is achieved by adding the following linker flag:

-L/usr/lib -lRNA -flto -fopenmp

Again, the path to the library, /usr/lib, may be omitted if this path is searched for libraries by default. The
second flag tells the linker to include libRNA.a, and the remaining two flags activate Link Time Optimization and
OpenMP support, respectively.

Note: Depending on your linker, the last two flags may differ.

Depending on your configure time decisions, you can drop one or both of the last flags.

In case you’ve compiled RNAlib with LTO support (See Link Time Optimization) and you are using a different
compiler for your third-party project that links against our library, you may add the -fno-lto flag to disable Link
Time Optimization.

See also. . .
Linking fails with LTO error

188 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

5.1.2 The pkg-config tool

Instead of hard-coding the required compiler and linker flags, you can also let the pkg-config tool automatically
determine the required flags. This tool is usually packaged for any Linux distribution and should be available for
MacOS X and MinGW as well. We ship a file RNAlib2.pc which is installed along with the static libRNA.a C-
library and populated with all required compiler and linker flags that correspond to your configure time decisions.

The compiler flags required for properly building your code that uses RNAlib can be easily obtained via:

pkg-config --cflags RNAlib2

You get the corresponding linker flags using:

pkg-config --libs RNAlib2

With this widely accepted standard it is also very easy to integrate RNAlib in your autotools project, just have a
look at the PKG_CHECK_MODULES macro.

5.2 C Examples

5.2.1 MFE Prediction (simple interface)

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ViennaRNA/fold.h>
#include <ViennaRNA/utils/basic.h>

int
main()
{
/* The RNA sequence */
char *seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";

/* allocate memory for MFE structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));

/* predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_fold(seq, structure);

/* print sequence, structure and MFE */
printf("%s\n%s [%6.2f]\n", seq, structure, mfe);

/* cleanup memory */
free(structure);

return 0;
}

5.2. C Examples 189

ViennaRNA, Release 2.6.4

5.2.2 MFE Prediction (VRNA 3.0 interface)

#include <stdlib.h>
#include <stdio.h>

#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/mfe.h>

int
main()
{
/* initialize random number generator */
vrna_init_rand();

/* Generate a random sequence of 50 nucleotides */
char *seq = vrna_random_string(50, "ACGU");

/* Create a fold compound for the sequence */
vrna_fold_compound_t *fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);

/* allocate memory for MFE structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * (strlen(seq) +␣

→˓1));

/* predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_mfe(fc, structure);

/* print sequence, structure and MFE */
printf("%s\n%s [%6.2f]\n", seq, structure, mfe);

/* cleanup memory */
free(seq);
free(structure);
vrna_fold_compound_free(fc);

return 0;
}

5.2.3 MFE and Centroid structure Prediction

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <ViennaRNA/data_structures.h>
#include <ViennaRNA/params/basic.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/eval.h>
#include <ViennaRNA/fold.h>
#include <ViennaRNA/part_func.h>

(continues on next page)

190 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

(continued from previous page)

int
main(int argc,

char *argv[])
{
char *seq =

→˓"AGACGACAAGGUUGAAUCGCACCCACAGUCUAUGAGUCGGUGACAACAUUACGAAAGGCUGUAAAAUCAAUUAUUCACCACAGGGGGCCCCCGUGUCUAG
→˓";
char *mfe_structure = vrna_alloc(sizeof(char) * (strlen(seq) +␣

→˓1));
char *prob_string = vrna_alloc(sizeof(char) * (strlen(seq) +␣

→˓1));

/* get a vrna_fold_compound with default settings */
vrna_fold_compound_t *vc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);

/* call MFE function */
double mfe = (double)vrna_mfe(vc, mfe_structure);

printf("%s\n%s (%6.2f)\n", seq, mfe_structure, mfe);

/* rescale parameters for Boltzmann factors */
vrna_exp_params_rescale(vc, &mfe);

/* call PF function */
FLT_OR_DBL en = vrna_pf(vc, prob_string);

/* print probability string and free energy of ensemble */
printf("%s (%6.2f)\n", prob_string, en);

/* compute centroid structure */
double dist;
char *cent = vrna_centroid(vc, &dist);

/* print centroid structure, its free energy and mean distance to the ensemble */
printf("%s (%6.2f d=%6.2f)\n", cent, vrna_eval_structure(vc, cent), dist);

/* free centroid structure */
free(cent);

/* free pseudo dot-bracket probability string */
free(prob_string);

/* free mfe structure */
free(mfe_structure);

/* free memory occupied by vrna_fold_compound */
vrna_fold_compound_free(vc);

return EXIT_SUCCESS;
}

5.2. C Examples 191

ViennaRNA, Release 2.6.4

5.2.4 Suboptimal Structure Prediction

using the callback mechanism

#include <stdlib.h>
#include <stdio.h>

#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/subopt.h>

void
subopt_callback(const char *structure,

float energy,
void *data)

{
/* simply print the result and increase the counter variable by 1 */
if (structure)
printf("%d.\t%s\t%6.2f\n", (*((int *)data))++, structure, energy);

}

int
main()
{
/* initialize random number generator */
vrna_init_rand();

/* Generate a random sequence of 50 nucleotides */
char *seq = vrna_random_string(50, "ACGU");

/* Create a fold compound for the sequence */
vrna_fold_compound_t *fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);

int counter = 0;

/*
* call subopt to enumerate all secondary structures in an energy band of
* 5 kcal/mol of the MFE and pass it the address of the callback and counter
* variable
*/
vrna_subopt_cb(fc, 500, &subopt_callback, (void *)&counter);

/* cleanup memory */
free(seq);
vrna_fold_compound_free(fc);

return 0;
}

192 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

5.2.5 Base Pair Probabilities

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ViennaRNA/fold.h>
#include <ViennaRNA/part_func.h>
#include <ViennaRNA/utils/basic.h>

int
main()
{
/* The RNA sequence */
char *seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";

/* allocate memory for pairing propensity string (length + 1) */
char *propensity = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));

/* pointers for storing and navigating through base pair probabilities */
vrna_ep_t *ptr, *pair_probabilities = NULL;

float en = vrna_pf_fold(seq, propensity, &pair_probabilities);

/* print sequence, pairing propensity string and ensemble free energy */
printf("%s\n%s [%6.2f]\n", seq, propensity, en);

/* print all base pairs with probability above 50% */
for (ptr = pair_probabilities; ptr->i != 0; ptr++)
if (ptr->p > 0.5)
printf("p(%d, %d) = %g\n", ptr->i, ptr->j, ptr->p);

/* cleanup memory */
free(pair_probabilities);
free(propensity);

return 0;
}

5.2.6 MFE Consensus Structure Prediction

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ViennaRNA/alifold.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/alignments.h>

int
main()
{
/* The RNA sequence alignment */
const char *sequences[] = {
"CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU",

(continues on next page)

5.2. C Examples 193

ViennaRNA, Release 2.6.4

(continued from previous page)

"CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU",
"---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU",
NULL /* indicates end of alignment */

};

/* compute the consensus sequence */
char *cons = consensus(sequences);

/* allocate memory for MFE consensus structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * (strlen(sequences[0]) +␣

→˓1));

/* predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_alifold(sequences, structure);

/* print consensus sequence, structure and MFE */
printf("%s\n%s [%6.2f]\n", cons, structure, mfe);

/* cleanup memory */
free(cons);
free(structure);

return 0;
}

5.2.7 MFE Prediction (deviating from default settings)

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ViennaRNA/model.h>
#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/mfe.h>

int
main()
{
/* initialize random number generator */
vrna_init_rand();

/* Generate a random sequence of 50 nucleotides */
char *seq = vrna_random_string(50, "ACGU");

/* allocate memory for MFE structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));

/* create a new model details structure to store the Model Settings */
vrna_md_t md;

/* ALWAYS set default model settings first! */
vrna_md_set_default(&md);

(continues on next page)

194 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

(continued from previous page)

/* change temperature and activate G-Quadruplex prediction */
md.temperature = 25.0; /* 25 Deg Celcius */
md.gquad = 1; /* Turn-on G-Quadruples support */

/* create a fold compound */
vrna_fold_compound_t *fc = vrna_fold_compound(seq, &md, VRNA_OPTION_DEFAULT);

/* predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_mfe(fc, structure);

/* print sequence, structure and MFE */
printf("%s\n%s [%6.2f]\n", seq, structure, mfe);

/* cleanup memory */
free(structure);
vrna_fold_compound_free(fc);

return 0;
}

5.2.8 Soft Constraints

#include <stdlib.h>
#include <stdio.h>

#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/constraints/soft.h>
#include <ViennaRNA/mfe.h>

int
main()
{
/* initialize random number generator */
vrna_init_rand();

/* Generate a random sequence of 50 nucleotides */
char *seq = vrna_random_string(50, "ACGU");

/* Create a fold compound for the sequence */
vrna_fold_compound_t *fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);

/* Add soft constraint of -1.7 kcal/mol to nucleotide 5 whenever it appears in an␣
→˓unpaired context */
vrna_sc_add_up(fc, 5, -1.7, VRNA_OPTION_DEFAULT);

/* allocate memory for MFE structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * 51);

/* predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_mfe(fc, structure);

(continues on next page)

5.2. C Examples 195

ViennaRNA, Release 2.6.4

(continued from previous page)

/* print seqeunce, structure and MFE */
printf("%s\n%s [%6.2f]\n", seq, structure, mfe);

/* cleanup memory */
free(seq);
free(structure);
vrna_fold_compound_free(fc);

return 0;
}

5.2.9 A more elaborate (old) example

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "utils.h"
#include "fold_vars.h"
#include "fold.h"
#include "part_func.h"
#include "inverse.h"
#include "RNAstruct.h"
#include "treedist.h"
#include "stringdist.h"
#include "profiledist.h"

void
main()
{
char *seq1 = "CGCAGGGAUACCCGCG", *seq2 = "GCGCCCAUAGGGACGC",

*struct1, *struct2, *xstruc;
float e1, e2, tree_dist, string_dist, profile_dist, kT;
Tree *T1, *T2;
swString *S1, *S2;
float *pf1, *pf2;
FLT_OR_DBL *bppm;

/* fold at 30C instead of the default 37C */
temperature = 30.; /* must be set *before* initializing */

/* allocate memory for structure and fold */
struct1 = (char *)space(sizeof(char) * (strlen(seq1) + 1));
e1 = fold(seq1, struct1);

struct2 = (char *)space(sizeof(char) * (strlen(seq2) + 1));
e2 = fold(seq2, struct2);

free_arrays(); /* free arrays used in fold() */

/* produce tree and string representations for comparison */
xstruc = expand_Full(struct1);
T1 = make_tree(xstruc);
S1 = Make_swString(xstruc);

(continues on next page)

196 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

(continued from previous page)

free(xstruc);

xstruc = expand_Full(struct2);
T2 = make_tree(xstruc);
S2 = Make_swString(xstruc);
free(xstruc);

/* calculate tree edit distance and aligned structures with gaps */
edit_backtrack = 1;
tree_dist = tree_edit_distance(T1, T2);
free_tree(T1);
free_tree(T2);
unexpand_aligned_F(aligned_line);
printf("%s\n%s %3.2f\n", aligned_line[0], aligned_line[1], tree_dist);

/* same thing using string edit (alignment) distance */
string_dist = string_edit_distance(S1, S2);
free(S1);
free(S2);
printf("%s mfe=%5.2f\n%s mfe=%5.2f dist=%3.2f\n",

aligned_line[0], e1, aligned_line[1], e2, string_dist);

/* for longer sequences one should also set a scaling factor for
* partition function folding, e.g: */
kT = (temperature + 273.15) * 1.98717 / 1000.; /* kT in kcal/mol */
pf_scale = exp(-e1 / kT / strlen(seq1));

/* calculate partition function and base pair probabilities */
e1 = pf_fold(seq1, struct1);
/* get the base pair probability matrix for the previous run of pf_fold() */
bppm = export_bppm();
pf1 = Make_bp_profile_bppm(bppm, strlen(seq1));

e2 = pf_fold(seq2, struct2);
/* get the base pair probability matrix for the previous run of pf_fold() */
bppm = export_bppm();
pf2 = Make_bp_profile_bppm(bppm, strlen(seq2));

free_pf_arrays(); /* free space allocated for pf_fold() */

profile_dist = profile_edit_distance(pf1, pf2);
printf("%s free energy=%5.2f\n%s free energy=%5.2f dist=%3.2f\n",

aligned_line[0], e1, aligned_line[1], e2, profile_dist);

free_profile(pf1);
free_profile(pf2);

}

5.2. C Examples 197

ViennaRNA, Release 2.6.4

5.3 Python Examples

5.3.1 MFE Prediction (flat interface)

import RNA

The RNA sequence
seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA"

compute minimum free energy (MFE) and corresponding structure
(ss, mfe) = RNA.fold(seq)

print output
print("{}\n{} [{:6.2f}]".format(seq, ss, mfe))

5.3.2 MFE Prediction (object oriented interface)

import RNA;

sequence = "CGCAGGGAUACCCGCG"

create new fold_compound object
fc = RNA.fold_compound(sequence)

compute minimum free energy (mfe) and corresponding structure
(ss, mfe) = fc.mfe()

print output
print("{} [{:6.2f}]".format(ss, mfe))

5.3.3 Suboptimal Structure Prediction

import RNA

sequence = "GGGGAAAACCCC"

Set global switch for unique ML decomposition
RNA.cvar.uniq_ML = 1

subopt_data = { 'counter' : 1, 'sequence' : sequence }

Print a subopt result as FASTA record
def print_subopt_result(structure, energy, data):

if not structure == None:
print(">subopt {:d}".format(data['counter']))
print("{}\n{} [{:6.2f}]".format(data['sequence'], structure, energy))
increase structure counter
data['counter'] = data['counter'] + 1

Create a 'fold_compound' for our sequence
a = RNA.fold_compound(sequence)

Enumerate all structures 500 dacal/mol = 5 kcal/mol arround
(continues on next page)

198 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

(continued from previous page)

the MFE and print each structure using the function above
a.subopt_cb(500, print_subopt_result, subopt_data);

5.3.4 Boltzmann Sampling

a.k.a. Probabilistic Backtracing

import RNA

sequence =
→˓"UGGGAAUAGUCUCUUCCGAGUCUCGCGGGCGACGGGCGAUCUUCGAAAGUGGAAUCCGUACUUAUACCGCCUGUGCGGACUACUAUCCUGACCACAUAGU
→˓"

def store_structure(s, data):
"""
A simple callback function that stores
a structure sample into a list
"""
if s:

data.append(s)

"""
First we prepare a fold_compound object
"""

create model details
md = RNA.md()

activate unique multibranch loop decomposition
md.uniq_ML = 1

create fold compound object
fc = RNA.fold_compound(sequence, md)

compute MFE
(ss, mfe) = fc.mfe()

rescale Boltzmann factors according to MFE
fc.exp_params_rescale(mfe)

compute partition function to fill DP matrices
fc.pf()

"""
Now we are ready to perform Boltzmann sampling
"""

1. backtrace a single sub-structure of length 10
print("{}".format(fc.pbacktrack5(10)))

2. backtrace a single sub-structure of length 50
print("{}".format(fc.pbacktrack5(50)))

(continues on next page)

5.3. Python Examples 199

ViennaRNA, Release 2.6.4

(continued from previous page)

3. backtrace multiple sub-structures of length 10 at once
for s in fc.pbacktrack5(20, 10):

print("{}".format(s))

4. backtrace multiple sub-structures of length 50 at once
for s in fc.pbacktrack5(100, 50):

print("{}".format(s))

5. backtrace a single structure (full length)
print("{}".format(fc.pbacktrack()))

6. backtrace multiple structures at once
for s in fc.pbacktrack(100):

print("{}".format(s))

7. backtrace multiple structures non-redundantly
for s in fc.pbacktrack(100, RNA.PBACKTRACK_NON_REDUNDANT):

print("{}".format(s))

8. backtrace multiple structures non-redundantly (with resume option)
num_samples = 500
iterations = 15
d = None # pbacktrack memory object
s_list = []

for i in range(0, iterations):
d, ss = fc.pbacktrack(num_samples, d, RNA.PBACKTRACK_NON_REDUNDANT)
s_list = s_list + list(ss)

for s in s_list:
print("{}".format(s))

9. backtrace multiple sub-structures of length 50 in callback mode
ss = []
i = fc.pbacktrack5(100, 50, store_structure, ss)

for s in ss:
print("{}".format(s))

10. backtrace multiple full-length structures in callback mode
ss = list()
i = fc.pbacktrack(100, store_structure, ss)

for s in ss:
print("{}".format(s))

11. non-redundantly backtrace multiple full-length structures in callback mode
ss = list()
i = fc.pbacktrack(100, store_structure, ss, RNA.PBACKTRACK_NON_REDUNDANT)

for s in ss:
print("{}".format(s))

12. non-redundantly backtrace multiple full length structures
in callback mode with resume option
ss = []

(continues on next page)

200 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

(continued from previous page)

d = None # pbacktrack memory object

for i in range(0, iterations):
d, i = fc.pbacktrack(num_samples, store_structure, ss, d, RNA.PBACKTRACK_NON_

→˓REDUNDANT)

for s in ss:
print("{}".format(s))

13. backtrace a single substructure from the sequence interval [10:50]
print("{}".format(fc.pbacktrack_sub(10, 50)))

14. backtrace multiple substructures from the sequence interval [10:50]
for s in fc.pbacktrack_sub(100, 10, 50):

print("{}".format(s))

15. backtrace multiple substructures from the sequence interval [10:50] non-
→˓redundantly
for s in fc.pbacktrack_sub(100, 10, 50, RNA.PBACKTRACK_NON_REDUNDANT):

print("{}".format(s))

5.3.5 RNAfold -p MEA equivalent

#!/usr/bin/python
#

import RNA

seq =
→˓"AUUUCCACUAGAGAAGGUCUAGAGUGUUUGUCGUUUGUCAGAAGUCCCUAUUCCAGGUACGAACACGGUGGAUAUGUUCGACGACAGGAUCGGCGCACUA
→˓"

create fold_compound data structure (required for all subsequently applied ␣
→˓algorithms)
fc = RNA.fold_compound(seq)

compute MFE and MFE structure
(mfe_struct, mfe) = fc.mfe()

rescale Boltzmann factors for partition function computation
fc.exp_params_rescale(mfe)

compute partition function
(pp, pf) = fc.pf()

compute centroid structure
(centroid_struct, dist) = fc.centroid()

compute free energy of centroid structure
centroid_en = fc.eval_structure(centroid_struct)

compute MEA structure
(MEA_struct, MEA) = fc.MEA()

(continues on next page)

5.3. Python Examples 201

ViennaRNA, Release 2.6.4

(continued from previous page)

compute free energy of MEA structure
MEA_en = fc.eval_structure(MEA_struct)

print everything like RNAfold -p --MEA
print("{}\n{} ({:6.2f})".format(seq, mfe_struct, mfe))
print("{} [{:6.2f}]".format(pp, pf))
print("{} {{{:6.2f} d={:.2f}}}".format(centroid_struct, centroid_en, dist))
print("{} {{{:6.2f} MEA={:.2f}}}".format(MEA_struct, MEA_en, MEA))
print(" frequency of mfe structure in ensemble {:g}; ensemble diversity {:-6.2f}".
→˓format(fc.pr_structure(mfe_struct), fc.mean_bp_distance()))

5.3.6 MFE Consensus Structure Prediction

import RNA

The RNA sequence alignment
sequences = [

"CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU",
"CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU",
"---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU"

]

compute the consensus sequence
cons = RNA.consensus(sequences)

predict Minmum Free Energy and corresponding secondary structure
(ss, mfe) = RNA.alifold(sequences);

print output
print("{}\n{} [{:6.2f}]".format(cons, ss, mfe))

5.3.7 MFE Prediction (deviating from default settings)

import RNA

The RNA sequence
seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA"

create a new model details structure
md = RNA.md()

change temperature and dangle model
md.temperature = 20.0 # 20 Deg Celcius
md.dangles = 1 # Dangle Model 1

create a fold compound
fc = RNA.fold_compound(seq, md)

predict Minmum Free Energy and corresponding secondary structure
(ss, mfe) = fc.mfe()

print sequence, structure and MFE
print("{}\n{} [{:6.2f}]".format(seq, ss, mfe))

202 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

5.3.8 Fun with Soft Constraints

import RNA

seq1 = "CUCGUCGCCUUAAUCCAGUGCGGGCGCUAGACAUCUAGUUAUCGCCGCAA"

Turn-off dangles globally
RNA.cvar.dangles = 0

Data structure that will be passed to our MaximumMatching() callback with two␣
→˓components:
1. a 'dummy' fold_compound to evaluate loop energies w/o constraints, 2. a fresh set␣
→˓of energy parameters
mm_data = { 'dummy': RNA.fold_compound(seq1), 'params': RNA.param() }

Nearest Neighbor Parameter reversal functions
revert_NN = {

RNA.DECOMP_PAIR_HP: lambda i, j, k, l, f, p: - f.eval_hp_loop(i, j) - 100,
RNA.DECOMP_PAIR_IL: lambda i, j, k, l, f, p: - f.eval_int_loop(i, j, k, l) -

→˓ 100,
RNA.DECOMP_PAIR_ML: lambda i, j, k, l, f, p: - p.MLclosing - p.MLintern[0] -

→˓ (j - i - k + l - 2) * p.MLbase - 100,
RNA.DECOMP_ML_ML_STEM: lambda i, j, k, l, f, p: - p.MLintern[0] - (l - k - 1)␣

→˓* p.MLbase,
RNA.DECOMP_ML_STEM: lambda i, j, k, l, f, p: - p.MLintern[0] - (j - i - k +␣

→˓l) * p.MLbase,
RNA.DECOMP_ML_ML: lambda i, j, k, l, f, p: - (j - i - k + l) * p.MLbase,
RNA.DECOMP_ML_ML_ML: lambda i, j, k, l, f, p: 0,
RNA.DECOMP_ML_UP: lambda i, j, k, l, f, p: - (j - i + 1) * p.MLbase,
RNA.DECOMP_EXT_STEM: lambda i, j, k, l, f, p: - f.eval_ext_stem(k, l),
RNA.DECOMP_EXT_EXT: lambda i, j, k, l, f, p: 0,
RNA.DECOMP_EXT_STEM_EXT: lambda i, j, k, l, f, p: - f.eval_ext_stem(i, k),
RNA.DECOMP_EXT_EXT_STEM: lambda i, j, k, l, f, p: - f.eval_ext_stem(l, j),

}

Maximum Matching callback function (will be called by RNAlib in each decomposition␣
→˓step)
def MaximumMatching(i, j, k, l, d, data):

return revert_NN[d](i, j, k, l, data['dummy'], data['params'])

Create a 'fold_compound' for our sequence
fc = RNA.fold_compound(seq1)

Add maximum matching soft-constraints
fc.sc_add_f(MaximumMatching)
fc.sc_add_data(mm_data, None)

Call MFE algorithm
(s, mm) = fc.mfe()

print result
print("{}\n{} (MM: {:d})".format(seq1, s, int(-mm)))

5.3. Python Examples 203

ViennaRNA, Release 2.6.4

5.3.9 Parsing Alignments

Reading the first entry from a STOCKHOLM 1.0 formatted MSA file msa.stk may look like this:

num, names, aln, id, ss = RNA.file_msa_read("msa.stk")

Similarly, if the file contains more than one alignment, one can use the RNA.file_msa_read_record() function
to subsequently read each alignment separately:

with open("msa.stk") as f:
while True:

num, names, aln, id, ss = RNA.file_msa_read_record(f)
if num < 0:

break
elif num == 0:

print("empty alignment")
else:

print(names, aln)

After successfully reading the first record, the variable num contains the number of sequences in the alignment (the
actual return value of the C-function), while the variables names, aln, id, and ss are lists of the sequence names
and aligned sequences, as well as strings holding the alignment ID and the structure as stated in the SS_cons line,
respectively.

Note: The last two return values may be empty strings in case the alignment does not provide the required data.

5.4 Perl 5 Examples

5.4.1 MFE Prediction (flat interface)

use RNA;

The RNA sequence
my $seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";

compute minimum free energy (MFE) and corresponding structure
my ($ss, $mfe) = RNA::fold($seq);

print output
printf "%s\n%s [%6.2f]\n", $seq, $ss, $mfe;

5.4.2 MFE Prediction (object oriented interface)

#!/usr/bin/perl

use warnings;
use strict;

use RNA;

my $seq1 = "CGCAGGGAUACCCGCG";

(continues on next page)

204 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

(continued from previous page)

create new fold_compound object
my $fc = new RNA::fold_compound($seq1);

compute minimum free energy (mfe) and corresponding structure
my ($ss, $mfe) = $fc->mfe();

print output
printf "%s [%6.2f]\n", $ss, $mfe;

5.4.3 MFE Consensus Structure Prediction

use RNA;

The RNA sequence alignment
my @sequences = (

"CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU",
"CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU",
"---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU"

);

compute the consensus sequence
my $cons = RNA::consensus(\@sequences);

predict Minmum Free Energy and corresponding secondary structure
my ($ss, $mfe) = RNA::alifold(\@sequences);

print output
printf "%s\n%s [%6.2f]\n", $cons, $ss, $mfe;

5.4.4 MFE Prediction (deviating from default settings)

use RNA;

The RNA sequence
my $seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";

create a new model details structure
my $md = new RNA::md();

change temperature and dangle model
$md->{temperature} = 20.0; # 20 Deg Celcius
$md->{dangles} = 1; # Dangle Model 1

create a fold compound
my $fc = new RNA::fold_compound($seq, $md);

predict Minmum Free Energy and corresponding secondary structure
my ($ss, $mfe) = $fc->mfe();

print sequence, structure and MFE
printf "%s\n%s [%6.2f]\n", $seq, $ss, $mfe;

5.4. Perl 5 Examples 205

ViennaRNA, Release 2.6.4

5.4.5 Fun with Soft Constraints

use strict;
use warnings;
use Data::Dumper;
use RNA;

my $seq1 = "CUCGUCGCCUUAAUCCAGUGCGGGCGCUAGACAUCUAGUUAUCGCCGCAA";

Turn-off dangles globally
$RNA::dangles = 0;

Data structure that will be passed to our MaximumMatching() callback with two␣
→˓components:
1. a 'dummy' fold_compound to evaluate loop energies w/o constraints, 2. a fresh set␣
→˓of energy parameters
my %mm_data = ('dummy' => new RNA::fold_compound($seq1), 'params' => new␣
→˓RNA::param());

Nearest Neighbor Parameter reversal functions
my %revert_NN = (

RNA::DECOMP_PAIR_HP => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - $f->eval_
→˓hp_loop($i, $j) - 100;},
RNA::DECOMP_PAIR_IL => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - $f->eval_

→˓int_loop($i, $j, $k, $l) - 100},
RNA::DECOMP_PAIR_ML => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - $p->

→˓{MLclosing} - $p->{MLintern}[0] - ($j - $i - $k + $l - 2) * $p->{MLbase} - 100},
RNA::DECOMP_ML_ML_STEM => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - $p->

→˓{MLintern}[0] - ($l - $k - 1) * $p->{MLbase}},
RNA::DECOMP_ML_ML_ML => sub { my ($i, $j, $k, $l, $f, $p) = @_; return 0},
RNA::DECOMP_ML_STEM => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - $p->

→˓{MLintern}[0] - ($j - $i - $k + $l) * $p->{MLbase}},
RNA::DECOMP_ML_ML => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - ($j - $i -

→˓$k + $l) * $p->{MLbase}},
RNA::DECOMP_ML_UP => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - ($j - $i +␣

→˓1) * $p->{MLbase}},
RNA::DECOMP_EXT_STEM => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - $f->E_

→˓ext_loop($k, $l)},
RNA::DECOMP_EXT_EXT => sub { my ($i, $j, $k, $l, $f, $p) = @_; return 0},
RNA::DECOMP_EXT_STEM_EXT => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - $f->

→˓E_ext_loop($i, $k)},
RNA::DECOMP_EXT_EXT_STEM => sub { my ($i, $j, $k, $l, $f, $p) = @_; return : - $f-

→˓>E_ext_loop($l, $j)},
RNA::DECOMP_EXT_EXT_STEM1 => sub { my ($i, $j, $k, $l, $f, $p) = @_; return - $f-

→˓>E_ext_loop($l, $j - 1)},
);

Maximum Matching callback function (will be called by RNAlib in each decomposition␣
→˓step)
sub MaximumMatching {
my ($i, $j, $k, $l, $d, $data) = @_;
return $revert_NN{$d}->($i, $j, $k, $l, $data->{'dummy'}, $data->{'params'}) if␣

→˓defined $revert_NN{$d};
return 0;

}

Create a 'fold_compound' for our sequence
(continues on next page)

206 Chapter 5. Using RNAlib

ViennaRNA, Release 2.6.4

(continued from previous page)

my $fc = new RNA::fold_compound($seq1);

Add maximum matching soft-constraints
$fc->sc_add_f(\&MaximumMatching);
$fc->sc_add_data(\%mm_data, undef);

Call MFE algorithm
my ($s, $mm) = $fc->mfe();

print result
printf("%s\n%s (MM: %d)\n", $seq1, $s, - $mm);

5.4. Perl 5 Examples 207

ViennaRNA, Release 2.6.4

208 Chapter 5. Using RNAlib

CHAPTER

SIX

I/O FORMATS

Below, you’ll find a listing of different sections that introduce the most common notations of sequence and structure
data, specifications of bioinformatics sequence and structure file formats, and various output file formats produced
by our library.

6.1 RNA Structures

Here, we describe the different notations and representations of RNA secondary structures used throughout our
library and prediction tools.

6.1.1 Dot-Bracket Notation

The Dot-Bracket notation as introduced already in the early times of the ViennaRNA Package denotes base pairs
by matching pairs of parenthesis () and unpaired nucleotides by dots ..

Note: This is the standard representation of a secondary structure in our library.

Based on that notation, more elaborate representations have been developed to include additional information, such
as the loop context a nucleotide belongs to and to annotated pseudo-knots.

Consider the following secondary structure in dot-bracket notation:

(((..((((...)))).)))

which, drawn as a secondary structure graph, looks like:

It is a stem-loop structure consisting of a an outer helix of 3 base pairs followed by an interior loop of size 3, a
second helix of length 4, and a hairpin loop of size 3.

209

ViennaRNA, Release 2.6.4

Pseudo Dot-Bracket Notation

Base pair probabilities are sometimes summarized in pseudo dot-bracket notation with the additional symbols ,,
|, {, }. Here, the usual (,), ., represent bases with a strong preference (more than 2/3) to pair upstream (with
a partner further 3’), pair down-stream, or do not pair, respectively. {, }, and , are just the weaker version of the
above and | represents a base that is mostly paired but has pairing partners both upstream and downstream. In this
case opening and closing brackets do not need to match.

Extended Dot-Bracket Notation

A more generalized version of the original Dot-Bracket notation may use additional pairs of brackets, such as
<>, {}, and [], and matching pairs of uppercase/lowercase letters. This allows for anotating pseudo-knots, since
different pairs of brackets are not required to be nested.

The follwing annotations of a simple structure with two crossing helices of size 4 are equivalent:

<<<<[[[[....>>>>]]]]
((((AAAA....))))aaaa
AAAA{{{{....aaaa}}}}

See also. . .
vrna_db_pack(), vrna_db_unpack(), vrna_db_flatten(), vrna_db_flatten_to(),
vrna_db_from_ptable(), vrna_db_from_plist(), vrna_db_to_element_string(),
vrna_db_pk_remove()

6.1.2 WUSS notation

The Washington University Secondary Structure (WUSS) notation is frequently used for consensus secondary
structures, e.g. in Stockholm 1.0 format

This notation allows for a fine-grained annotation of base pairs and unpaired nucleotides, including pseudo-knots.

See also. . .
WUSS notation in the infernal user guide at http://eddylab.org/infernal/Userguide.pdf

Below, you’ll find a list of secondary structure elements and their corresponding WUSS annotation.

• Base pairs
Nested base pairs are annotated by matching pairs of the symbols <>, (), {}, and []. Each of the matching
pairs of parenthesis have their special meaning, however, when used as input in our programs, e.g. structure
constraint, these details are usually ignored. Furthermore, base pairs that constitute as pseudo-knot are
denoted by letters from the latin alphabet and are, if not denoted otherwise, ignored entirely in our programs.

• Hairpin loops
Unpaired nucleotides that constitute the hairpin loop are indicated by underscores, _. Here is an example:

<<<<<_____>>>>>

• Bulges and interior loops
Residues that constitute a bulge or interior loop are denoted by dashes, -:

(((--<<_____>>-)))

210 Chapter 6. I/O Formats

http://eddylab.org/infernal/Userguide.pdf

ViennaRNA, Release 2.6.4

• Multibranch loops
Unpaired nucleotides in multibranch loops are indicated by commas ,:

(((,,<<_____>>,<<____>>)))

• External residues
Single stranded nucleotides in the exterior loop, i.e. not enclosed by any other pair are denoted by colons, ::

<<<____>>>:::

• Insertions
In cases where an alignment represents the consensus with a known structure, insertions relative to the known
structure are denoted by periods, .. Regions where local structural alignment was invoked, leaving regions
of both target and query sequence unaligned, are indicated by tildes, ~.

These symbols only appear in alignments of a known (query) structure annotation to a target sequence of
unknown structure.

• Pseudo-knots
The WUSS notation allows for annotation of pseudo-knots using pairs of upper-case/lower-case letters. Our
programs and library functions usually ignore pseudo-knots entirely treating them as unpaired nucleotides,
if not stated otherwise:

<<<_AAA___>>>aaa

See also. . .
vrna_db_from_WUSS()

6.1.3 Abstract Shapes

Abstract Shapes, introduced by Giegerich et al. [2004], collapse the secondary structure while retaining the nest-
edness of helices and hairpin loops.

The abstract shapes representation abstracts the structure from individual base pairs and their corresponding loca-
tion in the sequence, while retaining the inherent nestedness of helices and hairpin loops.

Below is a description of what is included in the abstract shapes abstraction for each respective level together with
an example structure:

CGUCUUAAACUCAUCACCGUGUGGAGCUGCGACCCUUCCCUAGAUUCGAAGACGAG
((((((...(((..(((...))))))...(((..((.....))..)))))))))..

Shape
Level

Description Result

1 Most accurate - all loops and all unpaired [_[_[]]_[_[]_]]_
2 Nesting pattern for all loop types and unpaired regions in external loop and

multiloop
[[_[]][_[]_]]

3 Nesting pattern for all loop types but no unpaired regions [[[]][[]]]
4 Helix nesting pattern in external loop and multiloop [[][[]]]
5 Most abstract - helix nesting pattern and no unpaired regions [[][]]

Note: Our implementations also provide the special Shape Level 0, which does not collapse any structural features
but simply convert base pairs and unpaired nucleotides into their corresponding set of symbols for abstract shapes.

6.1. RNA Structures 211

ViennaRNA, Release 2.6.4

See also. . .
vrna_abstract_shapes(), vrna_abstract_shapes_pt()

6.1.4 Tree Representations

Secondary structures can be readily represented as trees, where internal nodes represent base pairs, and leaves rep-
resent unpaired nucleotides. The dot-bracket structure string already is a tree represented by a string of parenthesis
(base pairs) and dots for the leaf nodes (unpaired nucleotides).

Alternatively, one may find representations with two types of node labels, P for paired and U for unpaired; a dot
is then replaced by (U), and each closed bracket is assigned an additional identifier P. We call this the expanded
notation. In Fontana et al. [1993] a condensed representation of the secondary structure is proposed, the so-called
homeomorphically irreducible tree (HIT) representation. Here a stack is represented as a single pair of matching
brackets labeled P and weighted by the number of base pairs. Correspondingly, a contiguous strain of unpaired
bases is shown as one pair of matching brackets labeled U and weighted by its length. Generally any string consisting
of matching brackets and identifiers is equivalent to a plane tree with as many different types of nodes as there are
identifiers.

Shapiro [1988] proposed a coarse grained representation which does not retain the full information of the secondary
structure. He represents the different structure elements by single matching brackets and labels them as

• H (hairpin loop),

• I (interior loop),

• B (bulge),

• M (multi-loop), and

• S (stack).

We extend his alphabet by an extra letter for external elements E. Again these identifiers may be followed by a weight
corresponding to the number of unpaired bases or base pairs in the structure element. All tree representations
(except for the dot-bracket form) can be encapsulated into a virtual root (labeled R).

The following example illustrates the different linear tree representations used by the package:

Consider the secondary structure represented by the dot-bracket string (full tree):

.((..(((...)))..((..)))).

which is the most convenient condensed notation used by our programs and library functions.

Then, the following tree representations are equivalent:

• Expanded tree:

((U)(((U)(U)((((U)(U)(U)P)P)P)(U)(U)(((U)(U)P)P)P)P)(U)R)

• HIT representation ([Fontana et al., 1993]):

((U1)((U2)((U3)P3)(U2)((U2)P2)P2)(U1)R)

• Coarse Grained Tree Representation ([Shapiro, 1988]):

– Short (with root node R, without stem nodes S):

((H)((H)M)R)

– Full (with root node R`):

212 Chapter 6. I/O Formats

ViennaRNA, Release 2.6.4

(((((H)S)((H)S)M)S)R)

– Extended (with root node R, with external nodes E):

((((((H)S)((H)S)M)S)E)R)

– Weighted (with root node R, with external nodes E):

((((((H3)S3)((H2)S2)M4)S2)E2)R)

The Expanded tree is rather clumsy and mostly included for the sake of completeness. The different versions of
Coarse Grained Tree Representations are variatios of Shapiro’s linear tree notation.

For the output of aligned structures from string editing, different representations are needed, where we put the label
on both sides. The above examples for tree representations would then look like:

a) (UU)(P(P(P(P(UU)(UU)(P(P(P(UU)(UU)(UU)P)P)P)(UU)(UU)(P(P(UU)(U...
b) (UU)(P2(P2(U2U2)(P2(U3U3)P3)(U2U2)(P2(U2U2)P2)P2)(UU)P2)(UU)
c) (B(M(HH)(HH)M)B)

(S(B(S(M(S(HH)S)(S(HH)S)M)S)B)S)
(E(S(B(S(M(S(HH)S)(S(HH)S)M)S)B)S)E)

d) (R(E2(S2(B1(S2(M4(S3(H3)S3)((H2)S2)M4)S2)B1)S2)E2)R)

Aligned structures additionally contain the gap character _.

See also. . .
vrna_db_to_tree_string(), vrna_tree_string_unweight(), vrna_tree_string_to_db()

6.2 Multiple Sequence Alignments (MSA)

6.2.1 ClustalW format

The ClustalW format is a relatively simple text file containing a single multiple sequence alignment of DNA, RNA,
or protein sequences. It was first used as an output format for the clustalw programs, but nowadays it may also be
generated by various other sequence alignment tools. The specification is straight forward:

• The first line starts with the words:

CLUSTAL W

or:

CLUSTALW

• After the above header there is at least one empty line

• Finally, one or more blocks of sequence data are following, where each block is separated by at least one
empty line.

Each line in a blocks of sequence data consists of the sequence name followed by the sequence symbols, separated
by at least one whitespace character. Usually, the length of a sequence in one block does not exceed 60 sym-
bols. Optionally, an additional whitespace separated cumulative residue count may follow the sequence symbols.
Optionally, a block may be followed by a line depicting the degree of conservation of the respective alignment
columns.

6.2. Multiple Sequence Alignments (MSA) 213

ViennaRNA, Release 2.6.4

Note: Sequence names and the sequences must not contain whitespace characters! Allowed gap symbols are the
hyphen (-), and dot (.).

Warning: Please note that many programs that output this format tend to truncate the sequence names to a
limited number of characters, for instance the first 15 characters. This can destroy the uniqueness of identifiers
in your MSA.

Here is an example alignment in ClustalW format:

CLUSTAL W (1.83) multiple sequence alignment

AL031296.1/85969-86120 ␣
→˓CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGUAACAAUACUUAC
AANU01225121.1/438-603 ␣
→˓CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGUGACAAUACUUAC
AAWR02037329.1/29294-29150 ---CUCGACACCACU---
→˓GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAU

AL031296.1/85969-86120 UCUCGUUGGUGAUAAGGAACAGCU
AANU01225121.1/438-603 UCUCGUUGGUGAUAAGGAACAGCU
AAWR02037329.1/29294-29150 GCUAAUUAGUUGUGAGGACCAACU

6.2.2 Stockholm 1.0 format

Here is an example alignment in Stockholm 1.0 format:

STOCKHOLM 1.0

#=GF AC RF01293
#=GF ID ACA59
#=GF DE Small nucleolar RNA ACA59
#=GF AU Wilkinson A
#=GF SE Predicted; WAR; Wilkinson A
#=GF SS Predicted; WAR; Wilkinson A
#=GF GA 43.00
#=GF TC 44.90
#=GF NC 40.30
#=GF TP Gene; snRNA; snoRNA; HACA-box;
#=GF BM cmbuild -F CM SEED
#=GF CB cmcalibrate --mpi CM
#=GF SM cmsearch --cpu 4 --verbose --nohmmonly -E 1000 -Z 549862.597050 CM SEQDB
#=GF DR snoRNABase; ACA59;
#=GF DR SO; 0001263; ncRNA_gene;
#=GF DR GO; 0006396; RNA processing;
#=GF DR GO; 0005730; nucleolus;
#=GF RN [1]
#=GF RM 15199136
#=GF RT Human box H/ACA pseudouridylation guide RNA machinery.
#=GF RA Kiss AM, Jady BE, Bertrand E, Kiss T
#=GF RL Mol Cell Biol. 2004;24:5797-5807.
#=GF WK Small_nucleolar_RNA
#=GF SQ 3

(continues on next page)

214 Chapter 6. I/O Formats

ViennaRNA, Release 2.6.4

(continued from previous page)

AL031296.1/85969-86120 ␣
→˓CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGUAACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
AANU01225121.1/438-603 ␣
→˓CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGUGACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
AAWR02037329.1/29294-29150 ---CUCGACACCACU---
→˓GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAUGCUAAUUAGUUGUGAGGACCAACU
#=GC SS_cons -----((((,<<<<<<<<<___________>>>>>>>>>,,,,<<<<<<<______>>>
→˓>>>>,,,,,))))::::::::::::
#=GC RF ␣
→˓CUGCcccaCAaCacuuguGCCUCaGUUACcCauagguGuAGUGaGgGuggcAaUACccaCcCucgUUgGuggUaAGGAaCAgCU
//

See also. . .
WUSS notation for legal characters and their interpretation in the consensus secondary structure line SS_cons.

6.2.3 FASTA (Pearson) format

Note: Sequence names must not contain whitespace characters. Otherwise, the parts after the first whitespace
will be dropped. The only allowed gap character is the hyphen (-).

Here is an example alignment in FASTA format:

>AL031296.1/85969-86120
CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGUAACAAUACUUAC
UCUCGUUGGUGAUAAGGAACAGCU
>AANU01225121.1/438-603
CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGUGACAAUACUUAC
UCUCGUUGGUGAUAAGGAACAGCU
>AAWR02037329.1/29294-29150
---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAU
GCUAAUUAGUUGUGAGGACCAACU

6.2.4 MAF format

The multiple alignment format (MAF) is usually used to store multiple alignments on DNA level between entire
genomes. It consists of independent blocks of aligned sequences which are annotated by their genomic location.
Consequently, an MAF formatted MSA file may contain multiple records. MAF files start with a line:

##maf

which is optionally extended by whitespace delimited key=value pairs. Lines starting with the character (#) are
considered comments and usually ignored.

A MAF block starts with character (a) at the beginning of a line, optionally followed by whitespace delimited
key=value pairs. The next lines start with character (s) and contain sequence information of the form:

s src start size strand srcSize sequence

where:

6.2. Multiple Sequence Alignments (MSA) 215

ViennaRNA, Release 2.6.4

• src is the name of the sequence source

• start is the start of the aligned region within the source (0-based)

• size is the length of the aligned region without gap characters

• strand is either (+) or (-), depicting the location of the aligned region relative to the source

• srcSize is the size of the entire sequence source, e.g. the full chromosome

• sequence is the aligned sequence including gaps depicted by the hyphen (-)

Here is an example alignment in MAF format (bluntly taken from the UCSC Genome browser website):

##maf version=1 scoring=tba.v8
tba.v8 (((human chimp) baboon) (mouse rat))
multiz.v7
maf_project.v5 _tba_right.maf3 mouse _tba_C
single_cov2.v4 single_cov2 /dev/stdin

a score=23262.0
s hg16.chr7 27578828 38 + 158545518 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
s panTro1.chr6 28741140 38 + 161576975 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
s baboon 116834 38 + 4622798 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG
s mm4.chr6 53215344 38 + 151104725 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
s rn3.chr4 81344243 40 + 187371129 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG

a score=5062.0
s hg16.chr7 27699739 6 + 158545518 TAAAGA
s panTro1.chr6 28862317 6 + 161576975 TAAAGA
s baboon 241163 6 + 4622798 TAAAGA
s mm4.chr6 53303881 6 + 151104725 TAAAGA
s rn3.chr4 81444246 6 + 187371129 taagga

a score=6636.0
s hg16.chr7 27707221 13 + 158545518 gcagctgaaaaca
s panTro1.chr6 28869787 13 + 161576975 gcagctgaaaaca
s baboon 249182 13 + 4622798 gcagctgaaaaca
s mm4.chr6 53310102 13 + 151104725 ACAGCTGAAAATA

6.3 Command Files

The RNAlib and many programs of the ViennaRNA Package can parse and apply data from so-called command
files. These commands may refer to structure constraints or even extensions of the RNA folding grammar (such as
Unstructured Domains).

Commands are given as a line of whitespace delimited data fields. The syntax we use extends the constraint
definitions used in the mfold or UNAfold software, where each line begins with a command character followed by
a set of positions.

However, we introduce several new commands, and allow for an optional loop type context specifier in form of a
sequence of characters, and an orientation flag that enables one to force a nucleotide to pair upstream, or down-
stream.

216 Chapter 6. I/O Formats

https://genome.ucsc.edu/FAQ/FAQformat.html#format5
http://mfold.rna.albany.edu/?q=mfold
http://mfold.rna.albany.edu/?q=DINAMelt/software

ViennaRNA, Release 2.6.4

6.3.1 Constraint commands

The following set of commands is recognized:

• F . . . Force

• P . . . Prohibit

• C . . . Conflicts/Context dependency

• A . . . Allow (for non-canonical pairs)

• E . . . Soft constraints for unpaired position(s), or base pair(s)

6.3.2 RNA folding grammar exensions

• UD . . . Add ligand binding using the Unstructured Domains feature

6.3.3 Specification of the loop type context

The optional loop type context specifier [LOOP] may be a combination of the following:

• E . . . Exterior loop

• H . . . Hairpin loop

• I . . . Internal/Interior loop

• M . . . Multibranch loop

• A . . . All loops

For structure constraints, we additionally allow one to address base pairs enclosed by a particular kind of loop,
which results in the specifier [WHERE] which consists of [LOOP] plus the following character:

• i . . . enclosed pair of an Interior loop

• m . . . enclosed pair of a Multibranch loop

If no [LOOP] or [WHERE] flags are set, all contexts are considered (equivalent to A).

6.3.4 Controlling the orientation of base pairing

For particular nucleotides that are forced to pair, the following [ORIENTATION] flags may be used:

• U . . . Upstream

• D . . . Downstream

If no [ORIENTATION] flag is set, both directions are considered.

6.3.5 Sequence coordinates

Sequence positions of nucleotides/base pairs are 1-based and consist of three positions 𝑖, 𝑗, and 𝑘. Alternativly,
four positions may be provided as a pair of two position ranges [𝑖 : 𝑗], and [𝑘 : 𝑙] using the - sign as delimiter
within each range, i.e. i-j, and k-l.

6.3. Command Files 217

ViennaRNA, Release 2.6.4

6.3.6 Valid constraint commands

Below are resulting general cases that are considered valid constraints:

• “Forcing a range of nucleotide positions to be paired”:

F i 0 k [WHERE] [ORIENTATION]

Description:

Enforces the set of 𝑘 consecutive nucleotides starting at position 𝑖 to be paired. The optional loop type
specifier [WHERE] allows to force them to appear as closing/enclosed pairs of certain types of loops.

• “Forcing a set of consecutive base pairs to form”::

F i j k [WHERE]

Description:

Enforces the base pairs (𝑖, 𝑗), . . . , (𝑖+(𝑘−1), 𝑗−(𝑘−1)) to form. The optional loop type specifier [WHERE]
allows to specify in which loop context the base pair must appear.

• “Prohibiting a range of nucleotide positions to be paired”:

P i 0 k [WHERE]

Description:

Prohibit a set of 𝑘 consecutive nucleotides to participate in base pairing, i.e. make these positions unpaired.
The optional loop type specifier [WHERE] allows to force the nucleotides to appear within the loop of specific
types.

• “Probibiting a set of consecutive base pairs to form”:

P i j k [WHERE]

Description:

Probibit the base pairs (𝑖, 𝑗), . . . , (𝑖+(𝑘−1), 𝑗−(𝑘−1)) to form. The optional loop type specifier [WHERE]
allows to specify the type of loop they are disallowed to be the closing or an enclosed pair of.

• “Prohibiting two ranges of nucleotides to pair with each other”:

P i-j k-l [WHERE]

Description:

Prohibit any nucleotide 𝑝 ∈ [𝑖 : 𝑗] to pair with any other nucleotide 𝑞 ∈ [𝑘 : 𝑙]. The optional loop type
specifier [WHERE] allows to specify the type of loop they are disallowed to be the closing or an enclosed pair
of.

• “Enforce a loop context for a range of nucleotide positions”:

C i 0 k [WHERE]

Description:

This command enforces nucleotides to be unpaired similar to prohibiting nucleotides to be paired, as de-
scribed above. It too marks the corresponding nucleotides to be unpaired, however, the [WHERE] flag can be
used to enforce specfic loop types the nucleotides must appear in.

• “Remove pairs that conflict with a set of consecutive base pairs”:

C i j k

218 Chapter 6. I/O Formats

ViennaRNA, Release 2.6.4

Description:

Remove all base pairs that conflict with a set of consecutive base pairs (𝑖, 𝑗), . . . , (𝑖+ (𝑘− 1), 𝑗 − (𝑘− 1)).
Two base pairs (𝑖, 𝑗) and (𝑝, 𝑞) conflict with each other if 𝑖 < 𝑝 < 𝑗 < 𝑞, or 𝑝 < 𝑖 < 𝑞 < 𝑗.

• “Allow a set of consecutive (non-canonical) base pairs to form”:

A i j k [WHERE]

Description:

This command enables the formation of the consecutive base pairs (𝑖, 𝑗), . . . , (𝑖+ (𝑘− 1), 𝑗 − (𝑘− 1)), no
matter if they are canonical, or non-canonical. In contrast to the above F and W commands, which remove
conflicting base pairs, the A command does not. Therefore, it may be used to allow non-canoncial base pair
interactions. Since the RNAlib does not contain free energy contributions 𝐸𝑖𝑗 for non-canonical base pairs
(𝑖, 𝑗), they are scored as the maximum of similar, known contributions. In terms of a Nussinov like scoring
function the free energy of non-canonical base pairs is therefore estimated as

𝐸𝑖𝑗 = min

[︂
max

(𝑖,𝑘)∈{𝐺𝐶,𝐶𝐺,𝐴𝑈,𝑈𝐴,𝐺𝑈,𝑈𝐺}
𝐸𝑖𝑘, max

(𝑘,𝑗)∈{𝐺𝐶,𝐶𝐺,𝐴𝑈,𝑈𝐴,𝐺𝑈,𝑈𝐺}
𝐸𝑘𝑗

]︂
.

The optional loop type specifier [WHERE] allows to specify in which loop context the base pair may appear.

• “Apply pseudo free energy to a range of unpaired nucleotide positions”:

E i 0 k e

Description:

Use this command to apply a pseudo free energy of 𝑒 to the set of 𝑘 consecutive nucleotides, starting at posi-
tion 𝑖. The pseudo free energy is applied only if these nucleotides are considered unpaired in the recursions,
or evaluations, and is expected to be given in units of kcal · mol−1.

• “Apply pseudo free energy to a set of consecutive base pairs”:

E i j k e

Description:

Use this command to apply a pseudo free energy of 𝑒 to the set of base pairs (𝑖, 𝑗), . . . , (𝑖+(𝑘−1), 𝑗−(𝑘−1)).
Energies are expected to be given in units of kcal · mol−1.

6.3.7 Valid domain extensions commands

• “Add ligand binding to unpaired motif (a.k.a. unstructured domains)”:

UD m e [LOOP]

Description:

Add ligand binding to unpaired sequence motif 𝑚 (given in IUPAC format, capital letters) with binding
energy 𝑒 in particular loop type(s).

Example:

UD AAA -5.0 A

The above example applies a binding free energy of −5 kcal · mol−1 for a motif AAA that may be present in
all loop types.

6.3. Command Files 219

ViennaRNA, Release 2.6.4

6.4 Energy Parameters

6.4.1 Modified Bases

The functions vrna_sc_mod(), vrna_sc_mod_json() and alike implement an energy correction framework to
account for modified bases in the secondary structure predictions. To supply these functions with the energy
parameters and general specifications of the base modification, the following JSON data format may be used:

JSON data must consist of a header section modified_bases This header is an object with the mandatory keys:

• name specifying a name of the modified base

• unmodified that consists of a single upper-case letter of the unmodified version of this base,

• the one_letter_code key to specify which letter is used for the modified bases in the subsequent energy
parameters, and

• an array of pairing_partners`

The latter must be uppercase characters. An optional sources key may contain an array of related publications,
e.g. those the parameters have been derived from.

Next to the header may follow additional keys to specify the actual energy contributions of the modified base in
various loop contexts. All energy contributions must be specified in free energies ∆𝐺 in units of kcal · mol−1. To
allow for rescaling of the free energies at temperatures that differ from the default (37∘𝐶), enthalpy parameters ∆𝐻
may be specified as well. Those, however are optional. The keys for free energy (at 37∘𝐶) and enthalpy parameters
have the suffixes _energies and _enthalpies, respectively.

The parser and underlying framework currently supports the following loop contexts:

• base pair stacks (via the stacking key prefix).

This key must point to an object with one key value pair for each stacking interaction data is provided for.
Here, the key consists of four upper-case characters denoting the interacting bases, where the the first two
represent one strand in 5’ to 3’ direction and the last two the opposite strand in 3’ to 5’ direction. The values
are energies in 𝑘𝑐𝑎𝑙 ·𝑚𝑜𝑙−1.

• terminal mismatches (via the mismatch key prefix).

This key points to an object with key value pairs for each mismatch energy parameter that is available. Keys
are 4 characters long nucleotide one-letter codes as used in base pair stacks above. The second and fourth
character denote the two unpaired mismatching bases, while the other two represent the closing base pair.

• dangling ends (via the dangle5 and dangle3 key prefixes).

The object behind these keys, again, consists of key value pairs for each dangling end energy parameter.
Keys are 3 characters long where the first two represent the two nucleotides that form the base pair, and the
third is the unpaired base that either stacks on the 3’ or 5’ end of the enclosed part of the base pair.

• terminal pairs (via the terminal key prefix).

Terminal base pairs, such as AU or GU, sometimes receive an additional energy penalty. The object behind
this key may list energy parameters to apply whenever particular base pairs occur at the end of a helix.
Each of those parameters is specified as key value pair, where the key consists of two upper-case characters
denoting the terminal base pair.

Below is a JSON template specifying most of the possible input parameters. Actual energy parameter files can be
found in the source code tarball within the misc/ subdirectory.

{
"modified_base" : {
"name" : "My modification (M)",
"sources" : [
{
"authors" : "Author 1, Author 2",

(continues on next page)

220 Chapter 6. I/O Formats

ViennaRNA, Release 2.6.4

(continued from previous page)

"title" : "UV-melting of modified oligos",
"journal" : "Some journal",
"year" : 2022,
"doi" : "10.0000/000000"

}
],
"unmodified" : "G",
"pairing_partners" : [
"U","A"

],
"one_letter_code" : "M",
"fallback" : "G",
"stacking_energies" : {
"MAUU" : -1.2,
"AGMC" : -2.73

},
"stacking_enthalpies" : {
"MAUU" : -11.1,
"AGMC" : -9.73

},
"terminal_energies" : {
"MU" : 0.5,
"UM" : 0.5

},
"terminal_enthalpies" : {
"MU" : 2.0,
"UM" : 2.0

},
"mismatch_energies" : {
"CMGM" : -1.11,
"AGUM" : -0.73

},
"mismatch_enthalpies" : {
"CMGM" : -11.11,
"AGUM" : -7.73

},
"dangle5_energies" : {
"UAM" : -1.01

},
"dangle5_enthalpies" : {
"UAM" : -6.01

},
"dangle3_energies" : {
"CGM" : -2.1,
"GCM" : -1.3

}
}

}

An actual example of real-world data may look like

{
"modified_base" : {
"name" : "Pseudouridine",
"sources" : [
{

(continues on next page)

6.4. Energy Parameters 221

ViennaRNA, Release 2.6.4

(continued from previous page)

"authors": "Graham A. Hudson, Richard J. Bloomingdale, and Brent M. Znosko",
"title" : "Thermodynamic contribution and nearest-neighbor parameters of␣

→˓pseudouridine-adenosine base pairs in oligoribonucleotides",
"journal" : "RNA 19:1474-1482",
"year" : 2013,
"doi" : "10.1261/rna.039610.113"

}
],
"unmodified" : "U",
"pairing_partners" : [
"A"

],
"one_letter_code" : "P",
"fallback" : "U",
"stacking_energies" : {
"APUA" : -2.8,
"CPGA" : -2.77,
"GPCA" : -3.29,
"UPAA" : -1.62,
"PAAU" : -2.10,
"PCAG" : -2.49,
"PGAC" : -2.2,
"PUAA" : -2.74

},
"stacking_enthalpies" : {
"APUA" : -22.08,
"CPGA" : -16.23,
"GPCA" : -24.07,
"UPAA" : -20.81,
"PAAU" : -12.47,
"PCAG" : -17.29,
"PGAC" : -11.19,
"PUAA" : -26.94

},
"terminal_energies" : {
"PA" : 0.31,
"AP" : 0.31

},
"terminal_enthalpies" : {
"PA" : -2.04,
"AP" : -2.04

},
"duplexes" : {
"CGAPACGGCUAUGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -9.93,
"dG37_p" : -10.12

},
"CGCPACGGCGAUGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -10.96,
"dG37_p" : -11.17

},
"CGGPACGGCCAUGC" : {

(continues on next page)

222 Chapter 6. I/O Formats

ViennaRNA, Release 2.6.4

(continued from previous page)

"length1" : 7,
"length2" : 7,
"dG37" : -11.71,
"dG37_p" : -11.53

},
"CGUPACGGCAAUGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -9.10,
"dG37_p" : -8.83

},
"CGAPCCGGCUAGGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -11.92,
"dG37_p" : -11.53

},
"CGCPCCGGCGAGGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -12.93,
"dG37_p" : -12.57

},
"CGGPCCGGCCAGGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -12.76,
"dG37_p" : -12.94

},
"CGUPCCGGCAAGGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -9.76,
"dG37_p" : -10.24

},
"CGAPGCGGCUACGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -11.45,
"dG37_p" : -11.40

},
"CGCPGCGGCGACGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -12.35,
"dG37_p" : -12.45

},
"CGGPGCGGCCACGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -12.59,
"dG37_p" : -12.81

},
"CGUPGCGGCAACGC" : {
"length1" : 7,
"length2" : 7,

(continues on next page)

6.4. Energy Parameters 223

ViennaRNA, Release 2.6.4

(continued from previous page)

"dG37" : -10.34,
"dG37_p" : -10.11

},
"CGAPUCGGCUAAGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -10.42,
"dG37_p" : -10.86

},
"CGCPUCGGCGAAGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -12.06,
"dG37_p" : -11.91

},
"CGGPUCGGCCAAGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -12.51,
"dG37_p" : -12.27

},
"CGUPUCGGCAAAGC" : {
"length1" : 7,
"length2" : 7,
"dG37" : -9.51,
"dG37_p" : -9.58

},
"GCGCAPCGCGUA" : {
"length1" : 6,
"length2" : 6,
"dG37" : -9.90,
"dG37_p" : -9.71

},
"GCGCCPCGCGGA" : {
"length1" : 6,
"length2" : 6,
"dG37" : -10.63,
"dG37_p" : -10.84

},
"GCGCGPCGCGCA" : {
"length1" : 6,
"length2" : 6,
"dG37" : -10.43,
"dG37_p" : -10.46

},
"GCGCUPCGCGAA" : {
"length1" : 6,
"length2" : 6,
"dG37" : -8.55,
"dG37_p" : -8.50

},
"PAGCGCAUCGCG" : {
"length1" : 6,
"length2" : 6,
"dG37" : -8.93,
"dG37_p" : -8.99

(continues on next page)

224 Chapter 6. I/O Formats

ViennaRNA, Release 2.6.4

(continued from previous page)

},
"PCGCGCAGCGCG" : {
"length1" : 6,
"length2" : 6,
"dG37" : -9.56,
"dG37_p" : -9.66

},
"PGGCGCACCGCG" : {
"length1" : 6,
"length2" : 6,
"dG37" : -10.30,
"dG37_p" : -10.27

},
"PUGCGCAACGCG" : {
"length1" : 6,
"length2" : 6,
"dG37" : -9.77,
"dG37_p" : -9.65

}
}

}
}

6.4. Energy Parameters 225

ViennaRNA, Release 2.6.4

226 Chapter 6. I/O Formats

CHAPTER

SEVEN

CONCEPTS AND ALGORITHMS

Our library is grouped into several modules, each addressing different aspects of RNA secondary structure related
problems. This is an overview of the concepts and algorithms for which implementations can be found in this
library.

Almost all of them rely on the physics based Nearest Neighbor Model for RNA secondary structure prediction.

7.1 Free Energy Evaluation

Secondary structures are decomposed into individual loops to eventually evaluate their stability in terms of free
energy. Here, we demonstrate how this is done and which parts of the RNAlib API are dedicated to free energy
evaluation.

7.1.1 Energy Evaluation for Individual Loops

To assess the free energy contribution of a particular loop 𝐿 within a secondary structure, two variants are provided

• The bare free energy 𝐸𝐿 (usually in units of deka-calories, i.e. multiples of 10cal · mol−1, and

• The Boltzmann weight 𝑞 = 𝑒𝑥𝑝(−𝛽𝐸𝐿) of the free energy 𝐸𝐿 (with 𝛽 = 1
𝑅𝑇 , gas constant 𝑅 and tempera-

ture 𝑇)

The latter is usually required for partition function computations.

Table of Contents

• General

• Exterior Loops

• Hairpin Loops

• Internal Loops

• Multibranch Loops

227

ViennaRNA, Release 2.6.4

General

Functions to evaluate the free energy of particular types of loops.

Functions

int vrna_eval_loop_pt(vrna_fold_compound_t *fc, int i, const short *pt)
#include <ViennaRNA/eval.h> Calculate energy of a loop.

SWIG Wrapper Notes:
This function is attached as method eval_loop_pt() to objects of type fold_compound. See,
e.g. RNA.fold_compound.eval_loop_pt() in the Python API .

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• i – position of covering base pair

• pt – the pair table of the secondary structure

Returns
free energy of the loop in 10cal/mol

int vrna_eval_loop_pt_v(vrna_fold_compound_t *fc, int i, const short *pt, int verbosity_level)
#include <ViennaRNA/eval.h> Calculate energy of a loop.

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• i – position of covering base pair

• pt – the pair table of the secondary structure

• verbosity_level – The level of verbosity of this function

Returns
free energy of the loop in 10cal/mol

Exterior Loops

Functions to evaluate the free energy contributions for exterior (external) loops.

Boltzmann weight (partition function) interface

typedef struct vrna_mx_pf_aux_el_s *vrna_mx_pf_aux_el_t
#include <ViennaRNA/loops/external.h> Auxiliary helper arrays for fast exterior loop computations.

See also:
vrna_exp_E_ext_fast_init(), vrna_exp_E_ext_fast_rotate(), vrna_exp_E_ext_fast_free(),
vrna_exp_E_ext_fast()

228 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

FLT_OR_DBL vrna_exp_E_ext_stem(unsigned int type, int n5d, int n3d, vrna_exp_param_t *p)
#include <ViennaRNA/loops/external.h> Evaluate a stem branching off the exterior loop (Boltzmann
factor version)

Given a base pair (𝑖, 𝑗) encoded by type, compute the energy contribution including dangling-
end/terminal-mismatch contributions. Instead of returning the energy contribution per-se, this function
returns the corresponding Boltzmann factor. If either of the adjacent nucleotides (𝑖 − 1) and (𝑗 + 1)
must not contribute stacking energy, the corresponding encoding must be −1.

See also:
vrna_E_ext_stem()

Parameters
• type – The base pair encoding

• n5d – The encoded nucleotide directly adjacent at the 5’ side of the base pair (may be
-1)

• n3d – The encoded nucleotide directly adjacent at the 3’ side of the base pair (may be
-1)

• p – The pre-computed energy parameters (Boltzmann factor version)

Returns
The Boltzmann weighted energy contribution of the introduced exterior-loop stem

vrna_mx_pf_aux_el_t vrna_exp_E_ext_fast_init(vrna_fold_compound_t *fc)
#include <ViennaRNA/loops/external.h>

void vrna_exp_E_ext_fast_rotate(vrna_mx_pf_aux_el_t aux_mx)
#include <ViennaRNA/loops/external.h>

void vrna_exp_E_ext_fast_free(vrna_mx_pf_aux_el_t aux_mx)
#include <ViennaRNA/loops/external.h>

FLT_OR_DBL vrna_exp_E_ext_fast(vrna_fold_compound_t *fc, int i, int j, vrna_mx_pf_aux_el_t
aux_mx)

#include <ViennaRNA/loops/external.h>

void vrna_exp_E_ext_fast_update(vrna_fold_compound_t *fc, int j, vrna_mx_pf_aux_el_t aux_mx)
#include <ViennaRNA/loops/external.h>

Basic free energy interface

int vrna_E_ext_stem(unsigned int type, int n5d, int n3d, vrna_param_t *p)
#include <ViennaRNA/loops/external.h> Evaluate a stem branching off the exterior loop.

Given a base pair (𝑖, 𝑗) encoded by type, compute the energy contribution including dangling-
end/terminal-mismatch contributions. Instead of returning the energy contribution per-se, this function
returns the corresponding Boltzmann factor. If either of the adjacent nucleotides (𝑖 − 1) and (𝑗 + 1)
must not contribute stacking energy, the corresponding encoding must be −1.

See also:
vrna_E_exp_stem()

Parameters
• type – The base pair encoding

7.1. Free Energy Evaluation 229

ViennaRNA, Release 2.6.4

• n5d – The encoded nucleotide directly adjacent at the 5’ side of the base pair (may be
-1)

• n3d – The encoded nucleotide directly adjacent at the 3’ side of the base pair (may be
-1)

• p – The pre-computed energy parameters

Returns
The energy contribution of the introduced exterior-loop stem

int vrna_eval_ext_stem(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/external.h> Evaluate the free energy of a base pair in the exterior loop.

Evalue the free energy of a base pair connecting two nucleotides in the exterior loop and take hard
constraints into account.

Typically, this is simply dangling end contributions of the adjacent nucleotides, potentially a terminal
A-U mismatch penalty, and maybe some generic soft constraint contribution for that decomposition.

Note: For dangles == 1 || 3 this function also evaluates the three additional pairs (i + 1, j), (i, j - 1),
and (i + 1, j - 1) and returns the minimum for all four possibilities in total.

Parameters
• fc – Fold compound to work on (defines the model and parameters)

• i – 5’ position of the base pair

• j – 3’ position of the base pair

Returns
Free energy contribution that arises when this pair is formed in the exterior loop

int vrna_E_ext_loop_5(vrna_fold_compound_t *fc)
#include <ViennaRNA/loops/external.h>

int vrna_E_ext_loop_3(vrna_fold_compound_t *fc, int i)
#include <ViennaRNA/loops/external.h>

Hairpin Loops

Functions to evaluate the free energy contributions for hairpin loops.

Basic free energy interface

int vrna_E_hp_loop(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/hairpin.h> Evaluate the free energy of a hairpin loop and consider hard
constraints if they apply.

This function evaluates the free energy of a hairpin loop

In case the base pair is not allowed due to a constraint conflict, this function returns INF.

Note: This function is polymorphic! The provided vrna_fold_compound_t may be of type
VRNA_FC_TYPE_SINGLE or VRNA_FC_TYPE_COMPARATIVE

230 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Parameters
• fc – The vrna_fold_compound_t that stores all relevant model settings

• i – The 5’ nucleotide of the base pair (3’ to evaluate the pair as exterior hairpin loop)

• j – The 3’ nucleotide of the base pair (5’ to evaluate the pair as exterior hairpin loop)

Returns
The free energy of the hairpin loop in 10cal/mol

int vrna_E_ext_hp_loop(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/hairpin.h> Evaluate the free energy of an exterior hairpin loop and con-
sider possible hard constraints.

Note: This function is polymorphic! The provided vrna_fold_compound_t may be of type
VRNA_FC_TYPE_SINGLE or VRNA_FC_TYPE_COMPARATIVE

int vrna_eval_ext_hp_loop(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/hairpin.h> Evaluate free energy of an exterior hairpin loop.

int vrna_eval_hp_loop(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/hairpin.h> Evaluate free energy of a hairpin loop.

SWIG Wrapper Notes:
This function is attached as method eval_hp_loop() to objects of type fold_compound. See,
e.g. RNA.fold_compound.eval_hp_loop() in the Python API .

Note: This function is polymorphic! The provided vrna_fold_compound_t may be of type
VRNA_FC_TYPE_SINGLE or VRNA_FC_TYPE_COMPARATIVE

Parameters
• fc – The vrna_fold_compound_t for the particular energy evaluation

• i – 5’-position of the base pair

• j – 3’-position of the base pair

Returns
Free energy of the hairpin loop closed by (𝑖, 𝑗) in deka-kal/mol

static int E_Hairpin(int size, int type, int si1, int sj1, const char *string, vrna_param_t *P)
#include <ViennaRNA/loops/hairpin.h> Compute the Energy of a hairpin-loop.

To evaluate the free energy of a hairpin-loop, several parameters have to be known. A general hairpin-
loop has this structure: where X-Y marks the closing pair [e.g. a (G,C) pair]. The length of this loop
is 6 as there are six unpaired nucleotides (a1-a6) enclosed by (X,Y). The 5’ mismatching nucleotide is
a1 while the 3’ mismatch is a6. The nucleotide sequence of this loop is “a1.a2.a3.a4.a5.a6”

See also:
scale_parameters(), vrna_param_t

Note: The parameter sequence should contain the sequence of the loop in capital letters of the nucleic
acid alphabet if the loop size is below 7. This is useful for unusually stable tri-, tetra- and hexa-loops
which are treated differently (based on experimental data) if they are tabulated.

7.1. Free Energy Evaluation 231

ViennaRNA, Release 2.6.4

Warning:
Not (really) thread safe! A threadsafe implementation will replace this function in a future release!

Energy evaluation may change due to updates in global variable “tetra_loop”

Parameters
• size – The size of the loop (number of unpaired nucleotides)

• type – The pair type of the base pair closing the hairpin

• si1 – The 5’-mismatching nucleotide

• sj1 – The 3’-mismatching nucleotide

• string – The sequence of the loop (May be NULL, otherwise mst be at least 𝑠𝑖𝑧𝑒 + 2
long)

• P – The datastructure containing scaled energy parameters

Returns
The Free energy of the Hairpin-loop in dcal/mol

Boltzmann weight (partition function) interface

static FLT_OR_DBL exp_E_Hairpin(int u, int type, short si1, short sj1, const char *string,
vrna_exp_param_t *P)

#include <ViennaRNA/loops/hairpin.h> Compute Boltzmann weight 𝑒−Δ𝐺/𝑘𝑇 of a hairpin loop.

See also:
get_scaled_pf_parameters(), vrna_exp_param_t, E_Hairpin()

Note: multiply by scale[u+2]

Warning:
Not (really) thread safe! A threadsafe implementation will replace this function in a future release!

Energy evaluation may change due to updates in global variable “tetra_loop”

Parameters
• u – The size of the loop (number of unpaired nucleotides)

• type – The pair type of the base pair closing the hairpin

• si1 – The 5’-mismatching nucleotide

• sj1 – The 3’-mismatching nucleotide

• string – The sequence of the loop (May be NULL, otherwise mst be at least 𝑠𝑖𝑧𝑒 + 2
long)

• P – The datastructure containing scaled Boltzmann weights of the energy parameters

Returns
The Boltzmann weight of the Hairpin-loop

232 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

FLT_OR_DBL vrna_exp_E_hp_loop(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/hairpin.h> High-Level function for hairpin loop energy evaluation (par-
tition function variant)

See also:
vrna_E_hp_loop() for it’s free energy counterpart

Note: This function is polymorphic! The provided vrna_fold_compound_t may be of type
VRNA_FC_TYPE_SINGLE or VRNA_FC_TYPE_COMPARATIVE

Internal Loops

Functions to evaluate the free energy contributions for internal (interior) loops.

Basic free energy interface

int vrna_E_int_loop(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/internal.h>

int vrna_eval_int_loop(vrna_fold_compound_t *fc, int i, int j, int k, int l)
#include <ViennaRNA/loops/internal.h> Evaluate the free energy contribution of an interior loop with
delimiting base pairs (𝑖, 𝑗) and (𝑘, 𝑙).

SWIG Wrapper Notes:
This function is attached as method eval_int_loop() to objects of type fold_compound. See,
e.g. RNA.fold_compound.eval_int_loop() in the Python API .

Note: This function is polymorphic, i.e. it accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE as well as VRNA_FC_TYPE_COMPARATIVE

int vrna_E_ext_int_loop(vrna_fold_compound_t *fc, int i, int j, int *ip, int *iq)
#include <ViennaRNA/loops/internal.h>

int vrna_E_stack(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/internal.h>

Boltzmann weight (partition function) interface

FLT_OR_DBL vrna_exp_E_int_loop(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/internal.h>

FLT_OR_DBL vrna_exp_E_interior_loop(vrna_fold_compound_t *fc, int i, int j, int k, int l)
#include <ViennaRNA/loops/internal.h>

7.1. Free Energy Evaluation 233

ViennaRNA, Release 2.6.4

Multibranch Loops

Functions to evaluate the free energy contributions for mutlibranch loops.

Boltzmann weight (partition function) interface

typedef struct vrna_mx_pf_aux_ml_s *vrna_mx_pf_aux_ml_t
#include <ViennaRNA/loops/multibranch.h> Auxiliary helper arrays for fast exterior loop computa-
tions.

See also:
vrna_exp_E_ml_fast_init(), vrna_exp_E_ml_fast_rotate(), vrna_exp_E_ml_fast_free(),
vrna_exp_E_ml_fast()

FLT_OR_DBL vrna_exp_E_mb_loop_fast(vrna_fold_compound_t *fc, int i, int j,
vrna_mx_pf_aux_ml_t aux_mx)

#include <ViennaRNA/loops/multibranch.h>

vrna_mx_pf_aux_ml_t vrna_exp_E_ml_fast_init(vrna_fold_compound_t *fc)
#include <ViennaRNA/loops/multibranch.h>

void vrna_exp_E_ml_fast_rotate(vrna_mx_pf_aux_ml_t aux_mx)
#include <ViennaRNA/loops/multibranch.h>

void vrna_exp_E_ml_fast_free(vrna_mx_pf_aux_ml_t aux_mx)
#include <ViennaRNA/loops/multibranch.h>

const FLT_OR_DBL *vrna_exp_E_ml_fast_qqm(vrna_mx_pf_aux_ml_t aux_mx)
#include <ViennaRNA/loops/multibranch.h>

const FLT_OR_DBL *vrna_exp_E_ml_fast_qqm1(vrna_mx_pf_aux_ml_t aux_mx)
#include <ViennaRNA/loops/multibranch.h>

FLT_OR_DBL vrna_exp_E_ml_fast(vrna_fold_compound_t *fc, int i, int j, vrna_mx_pf_aux_ml_t
aux_mx)

#include <ViennaRNA/loops/multibranch.h>

Basic free energy interface

int vrna_E_mb_loop_stack(vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/multibranch.h> Evaluate energy of a multi branch helices stacking onto
closing pair (i,j)

Computes total free energy for coaxial stacking of (i.j) with (i+1.k) or (k+1.j-1)

int vrna_E_mb_loop_fast(vrna_fold_compound_t *fc, int i, int j, int *dmli1, int *dmli2)
#include <ViennaRNA/loops/multibranch.h>

int E_ml_rightmost_stem(int i, int j, vrna_fold_compound_t *fc)
#include <ViennaRNA/loops/multibranch.h>

int vrna_E_ml_stems_fast(vrna_fold_compound_t *fc, int i, int j, int *fmi, int *dmli)
#include <ViennaRNA/loops/multibranch.h>

234 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.1.2 Energy Evaluation for Atomic Moves

Functions to evaluate the free energy change of a structure after application of (a set of) atomic moves

Here, atomic moves are not to be confused with moves of actual physical atoms. Instead, an atomic move is
considered the smallest conformational change a secondary structure can undergo to form another, distinguishable
structure. We currently support the following moves

• Opening (dissociation) of a single base pair

• Closing (formation) of a single base pair

• Shifting one pairing partner of an existing pair to a different location

Functions

float vrna_eval_move(vrna_fold_compound_t *fc, const char *structure, int m1, int m2)
#include <ViennaRNA/eval.h> Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

SWIG Wrapper Notes:
This function is attached as method eval_move() to objects of type fold_compound. See, e.g.
RNA.fold_compound.eval_move() in the Python API .

See also:
vrna_eval_move_pt()

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• structure – secondary structure in dot-bracket notation

• m1 – first coordinate of base pair

• m2 – second coordinate of base pair

Returns
energy change of the move in kcal/mol (INF / 100. upon any error)

int vrna_eval_move_pt(vrna_fold_compound_t *fc, short *pt, int m1, int m2)
#include <ViennaRNA/eval.h> Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

SWIG Wrapper Notes:
This function is attached as method eval_move_pt() to objects of type fold_compound. See,
e.g. RNA.fold_compound.eval_move_pt() in the Python API .

See also:
vrna_eval_move()

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

7.1. Free Energy Evaluation 235

ViennaRNA, Release 2.6.4

• pt – the pair table of the secondary structure

• m1 – first coordinate of base pair

• m2 – second coordinate of base pair

Returns
energy change of the move in 10cal/mol

int vrna_eval_move_pt_simple(const char *string, short *pt, int m1, int m2)
#include <ViennaRNA/eval.h>

int vrna_eval_move_shift_pt(vrna_fold_compound_t *fc, vrna_move_t *m, short *structure)
#include <ViennaRNA/eval.h>

7.1.3 Evaluation of Structures

Several different functions to evaluate the free energy of a full secondary structure under a particular set of param-
eters and the Nearest Neighbor Energy model are available in RNAlib.

For most of them, two different forms of representations for the secondary structure may be used:

• The Dot-Bracket string

• A pair table representation

Furthermore, the evaluation functions are divided into basic and simplified variants, where basic functions require
the use of a vrna_fold_compound_t data structure holding the sequence string, and model configuration (settings
and parameters).

The simplified functions, on the other hand, provide often used default model settings that may be called directly
with only sequence and structure data.

Finally, verbose variants exist for some functions that allow one to print the (individual) free energy contributions
to some FILE stream.

Basic Energy Evaluation Interface with Dot-Bracket Structure String

float vrna_eval_structure(vrna_fold_compound_t *fc, const char *structure)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given pair of structure and sequence (alignment). Model
details, energy parameters, and possibly soft constraints are used as provided via the parameter ‘fc’.
The vrna_fold_compound_t does not need to contain any DP matrices, but requires all most basic init
values as one would get from a call like this:

fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);

SWIG Wrapper Notes:
This function is attached as method eval_structure() to objects of type fold_compound. See,
e.g. RNA.fold_compound.eval_structure() in the Python API .

See also:
vrna_eval_structure_pt(), vrna_eval_structure_verbose(), vrna_eval_structure_pt_verbose(),
vrna_fold_compound(), vrna_fold_compound_comparative(), vrna_eval_covar_structure()

236 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Note: Accepts vrna_fold_compound_t of type VRNA_FC_TYPE_SINGLE and
VRNA_FC_TYPE_COMPARATIVE

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• structure – Secondary structure in dot-bracket notation

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_covar_structure(vrna_fold_compound_t *fc, const char *structure)
#include <ViennaRNA/eval.h> Calculate the pseudo energy derived by the covariance scores of a set
of aligned sequences.

Consensus structure prediction is driven by covariance scores of base pairs in rows of the provided
alignment. This function allows one to retrieve the total amount of this covariance pseudo energy
scores. The vrna_fold_compound_t does not need to contain any DP matrices, but requires all most
basic init values as one would get from a call like this:

fc = vrna_fold_compound_comparative(alignment, NULL, VRNA_OPTION_EVAL_ONLY);

SWIG Wrapper Notes:
This function is attached as method eval_covar_structure() to objects of type
fold_compound. See, e.g. RNA.fold_compound.eval_covar_structure() in the Python
API .

See also:
vrna_fold_compound_comparative(), vrna_eval_structure()

Note: Accepts vrna_fold_compound_t of type VRNA_FC_TYPE_COMPARATIVE only!

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• structure – Secondary (consensus) structure in dot-bracket notation

Returns
The covariance pseudo energy score of the input structure given the input sequence align-
ment in kcal/mol

float vrna_eval_structure_verbose(vrna_fold_compound_t *fc, const char *structure, FILE *file)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA and print contri-
butions on a per-loop base.

This function is a simplyfied version of vrna_eval_structure_v() that uses the default verbosity level.

SWIG Wrapper Notes:
This function is attached as method eval_structure_verbose() to objects of type
fold_compound. See, e.g. RNA.fold_compound.eval_structure_verbose() in the Python
API .

7.1. Free Energy Evaluation 237

ViennaRNA, Release 2.6.4

See also:
vrna_eval_structure_pt(), vrna_eval_structure_verbose(), vrna_eval_structure_pt_verbose(),

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• structure – Secondary structure in dot-bracket notation

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_structure_v(vrna_fold_compound_t *fc, const char *structure, int verbosity_level,
FILE *file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA and print contri-
butions on a per-loop base.

This function allows for detailed energy evaluation of a given sequence/structure pair. In contrast to
vrna_eval_structure() this function prints detailed energy contributions based on individual loops to
a file handle. If NULL is passed as file handle, this function defaults to print to stdout. Any positive
verbosity_level activates potential warning message of the energy evaluting functions, while values
≥ 1 allow for detailed control of what data is printed. A negative parameter verbosity_level turns
off printing all together.

Model details, energy parameters, and possibly soft constraints are used as provided via the parameter
‘fc’. The fold_compound does not need to contain any DP matrices, but all the most basic init values
as one would get from a call like this:

fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);

See also:
vrna_eval_structure_pt(), vrna_eval_structure_verbose(), vrna_eval_structure_pt_verbose(),

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• structure – Secondary structure in dot-bracket notation

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_structure_cstr(vrna_fold_compound_t *fc, const char *structure, int
verbosity_level, vrna_cstr_t output_stream)

#include <ViennaRNA/eval.h>

238 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Basic Energy Evaluation Interface with Structure Pair Table

int vrna_eval_structure_pt(vrna_fold_compound_t *fc, const short *pt)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is
provided in pair_table format as obtained from vrna_ptable(). Model details, energy parameters, and
possibly soft constraints are used as provided via the parameter ‘fc’. The fold_compound does not need
to contain any DP matrices, but all the most basic init values as one would get from a call like this:

fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);

SWIG Wrapper Notes:
This function is attached as method eval_structure_pt() to objects of type fold_compound.
See, e.g. RNA.fold_compound.eval_structure_pt() in the Python API .

See also:
vrna_ptable(), vrna_eval_structure(), vrna_eval_structure_pt_verbose()

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• pt – Secondary structure as pair_table

Returns
The free energy of the input structure given the input sequence in 10cal/mol

int vrna_eval_structure_pt_verbose(vrna_fold_compound_t *fc, const short *pt, FILE *file)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function is a simplyfied version of vrna_eval_structure_simple_v() that uses the default verbosity
level.

SWIG Wrapper Notes:
This function is attached as method eval_structure_pt_verbose() to objects of type
fold_compound. See, e.g. RNA.fold_compound.eval_structure_pt_verbose() in the
Python API .

See also:
vrna_eval_structure_pt_v(), vrna_ptable(), vrna_eval_structure_pt(), vrna_eval_structure_verbose()

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• pt – Secondary structure as pair_table

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in 10cal/mol

int vrna_eval_structure_pt_v(vrna_fold_compound_t *fc, const short *pt, int verbosity_level, FILE
*file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is
provided in pair_table format as obtained from vrna_ptable(). Model details, energy parameters, and

7.1. Free Energy Evaluation 239

ViennaRNA, Release 2.6.4

possibly soft constraints are used as provided via the parameter ‘fc’. The fold_compound does not need
to contain any DP matrices, but all the most basic init values as one would get from a call like this:

fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);

In contrast to vrna_eval_structure_pt() this function prints detailed energy contributions based on in-
dividual loops to a file handle. If NULL is passed as file handle, this function defaults to print to
stdout. Any positive verbosity_level activates potential warning message of the energy evaluting
functions, while values ≥ 1 allow for detailed control of what data is printed. A negative parameter
verbosity_level turns off printing all together.

See also:
vrna_ptable(), vrna_eval_structure_pt(), vrna_eval_structure_verbose()

Parameters
• fc – A vrna_fold_compound_t containing the energy parameters and model details

• pt – Secondary structure as pair_table

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in 10cal/mol

Simplified Energy Evaluation with Sequence and Dot-Bracket Strings

float vrna_eval_structure_simple(const char *string, const char *structure)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair. In contrast to
vrna_eval_structure() this function assumes default model details and default energy parameters in
order to evaluate the free energy of the secondary structure. Therefore, it serves as a simple interface
function for energy evaluation for situations where no changes on the energy model are required.

SWIG Wrapper Notes:
In the target scripting language, this function serves as a wrapper for
vrna_eval_structure_simple_v() and, thus, allows for two additional, optional arguments,
the verbosity level and a file handle which default to VRNA_VERBOSITY_QUIET and NULL,
respectively.. See, e.g. RNA.eval_structure_simple() in the Python API .

See also:
vrna_eval_structure(), vrna_eval_structure_pt(), vrna_eval_structure_verbose(),
vrna_eval_structure_pt_verbose(),

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

Returns
The free energy of the input structure given the input sequence in kcal/mol

240 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

float vrna_eval_circ_structure(const char *string, const char *structure)
#include <ViennaRNA/eval.h> Evaluate the free energy of a sequence/structure pair where the se-
quence is circular.

SWIG Wrapper Notes:
In the target scripting language, this function serves as a wrapper for vrna_eval_circ_structure_v()
and, thus, allows for two additional, optional arguments, the verbosity level and a file han-
dle which default to VRNA_VERBOSITY_QUIET and NULL, respectively.. See, e.g. RNA.
eval_circ_structure() in the Python API .

See also:
vrna_eval_structure_simple(), vrna_eval_gquad_structure(), vrna_eval_circ_consensus_structure(),
vrna_eval_circ_structure_v(), vrna_eval_structure()

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

Returns
The free energy of the structure given the circular input sequence in kcal/mol

float vrna_eval_gquad_structure(const char *string, const char *structure)
#include <ViennaRNA/eval.h> Evaluate the free energy of a sequence/structure pair where the structure
may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
++..++...++.++

SWIG Wrapper Notes:
In the target scripting language, this function serves as a wrapper for
vrna_eval_gquad_structure_v() and, thus, allows for two additional, optional arguments,
the verbosity level and a file handle which default to VRNA_VERBOSITY_QUIET and NULL,
respectively.. See, e.g. RNA.eval_gquad_structure() in the Python API .

See also:
vrna_eval_structure_simple(), vrna_eval_circ_structure(), vrna_eval_gquad_consensus_structure(),
vrna_eval_gquad_structure_v(), vrna_eval_structure()

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

Returns
The free energy of the structure including contributions of G-quadruplexes in kcal/mol

float vrna_eval_circ_gquad_structure(const char *string, const char *structure)
#include <ViennaRNA/eval.h> Evaluate the free energy of a sequence/structure pair where the se-
quence is circular and the structure may contain G-Quadruplexes.

7.1. Free Energy Evaluation 241

ViennaRNA, Release 2.6.4

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
++..++...++.++

SWIG Wrapper Notes:
In the target scripting language, this function serves as a wrapper for
vrna_eval_circ_gquad_structure_v() and, thus, allows for two additional, optional argu-
ments, the verbosity level and a file handle which default to VRNA_VERBOSITY_QUIET and
NULL, respectively.. See, e.g. RNA.eval_circ_gquad_structure() in the Python API .

See also:
vrna_eval_structure_simple(), vrna_eval_circ_gquad_consensus_structure(),
vrna_eval_circ_gquad_structure_v(), vrna_eval_structure()

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

Returns
The free energy of the structure including contributions of G-quadruplexes in kcal/mol

float vrna_eval_structure_simple_verbose(const char *string, const char *structure, FILE *file)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA and print contri-
butions per loop.

This function is a simplyfied version of vrna_eval_structure_simple_v() that uses the default verbosity
level.

See also:
vrna_eval_structure_simple_v(), vrna_eval_structure_verbose(), vrna_eval_structure_pt(),
vrna_eval_structure_verbose(), vrna_eval_structure_pt_verbose()

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_structure_simple_v(const char *string, const char *structure, int verbosity_level,
FILE *file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA and print contri-
butions per loop.

This function allows for detailed energy evaluation of a given sequence/structure pair. In contrast to
vrna_eval_structure() this function prints detailed energy contributions based on individual loops to
a file handle. If NULL is passed as file handle, this function defaults to print to stdout. Any positive
verbosity_level activates potential warning message of the energy evaluting functions, while values
≥ 1 allow for detailed control of what data is printed. A negative parameter verbosity_level turns
off printing all together.

242 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

In contrast to vrna_eval_structure_verbose() this function assumes default model details and default
energy parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as
a simple interface function for energy evaluation for situations where no changes on the energy model
are required.

SWIG Wrapper Notes:
This function is available through an overloaded version of vrna_eval_structure_simple(). The
last two arguments for this function are optional and default to VRNA_VERBOSITY_QUIET and
NULL, respectively. See, e.g. RNA.eval_structure_simple() in the Python API .

See also:
vrna_eval_structure_verbose(), vrna_eval_structure_pt(), vrna_eval_structure_pt_verbose(),

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_circ_structure_v(const char *string, const char *structure, int verbosity_level, FILE
*file)

#include <ViennaRNA/eval.h> Evaluate free energy of a sequence/structure pair, assume sequence to
be circular and print contributions per loop.

This function is the same as vrna_eval_structure_simple_v() but assumes the input sequence to be
circularized.

SWIG Wrapper Notes:
This function is available through an overloaded version of vrna_eval_circ_structure(). The last
two arguments for this function are optional and default to VRNA_VERBOSITY_QUIET and NULL,
respectively. See, e.g. RNA.eval_circ_structure() in the Python API .

See also:
vrna_eval_structure_simple_v(), vrna_eval_circ_structure(), vrna_eval_structure_verbose()

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_gquad_structure_v(const char *string, const char *structure, int verbosity_level,
FILE *file)

#include <ViennaRNA/eval.h> Evaluate free energy of a sequence/structure pair, allow for G-
Quadruplexes in the structure and print contributions per loop.

7.1. Free Energy Evaluation 243

ViennaRNA, Release 2.6.4

This function is the same as vrna_eval_structure_simple_v() but allows for annotated G-Quadruplexes
in the dot-bracket structure input.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
++..++...++.++

SWIG Wrapper Notes:
This function is available through an overloaded version of vrna_eval_gquad_structure(). The
last two arguments for this function are optional and default to VRNA_VERBOSITY_QUIET and
NULL, respectively. See, e.g. RNA.eval_gquad_structure() in the Python API .

See also:
vrna_eval_structure_simple_v(), vrna_eval_gquad_structure(), vrna_eval_structure_verbose()

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_circ_gquad_structure_v(const char *string, const char *structure, int
verbosity_level, FILE *file)

#include <ViennaRNA/eval.h> Evaluate free energy of a sequence/structure pair, assume sequence to
be circular, allow for G-Quadruplexes in the structure, and print contributions per loop.

This function is the same as vrna_eval_structure_simple_v() but assumes the input sequence to be
circular and allows for annotated G-Quadruplexes in the dot-bracket structure input.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
++..++...++.++

SWIG Wrapper Notes:
This function is available through an overloaded version of vrna_eval_circ_gquad_structure().
The last two arguments for this function are optional and default to VRNA_VERBOSITY_QUIET
and NULL, respectively. See, e.g. RNA.eval_circ_gquad_structure() in the Python API .

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

244 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Returns
The free energy of the input structure given the input sequence in kcal/mol

Simplified Energy Evaluation with Sequence Alignments and Consensus Structure Dot-
Bracket String

float vrna_eval_consensus_structure_simple(const char **alignment, const char *structure)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA sequence align-
ment.

This function allows for energy evaluation for a given multiple sequence alignment and consensus
structure pair. In contrast to vrna_eval_structure() this function assumes default model details and
default energy parameters in order to evaluate the free energy of the secondary structure. Therefore,
it serves as a simple interface function for energy evaluation for situations where no changes on the
energy model are required.

SWIG Wrapper Notes:
This function is available through an overloadeded version of vrna_eval_structure_simple(). Sim-
ply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure
as second argument. See, e.g. RNA.eval_structure_simple() in the Python API .

See also:
vrna_eval_covar_structure(), vrna_eval_structure(), vrna_eval_structure_pt(),
vrna_eval_structure_verbose(), vrna_eval_structure_pt_verbose()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
• alignment – RNA sequence alignment in uppercase letters and hyphen (‘-’) to denote

gaps

• structure – Consensus Secondary structure in dot-bracket notation

Returns
The free energy of the consensus structure given the input alignment in kcal/mol

float vrna_eval_circ_consensus_structure(const char **alignment, const char *structure)
#include <ViennaRNA/eval.h> Evaluate the free energy of a multiple sequence alignment/consensus
structure pair where the sequences are circular.

SWIG Wrapper Notes:
This function is available through an overloadeded version of vrna_eval_circ_structure(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure
as second argument. See, e.g. RNA.eval_circ_structure() in the Python API .

See also:
vrna_eval_covar_structure(), vrna_eval_consensus_structure_simple(),
vrna_eval_gquad_consensus_structure(), vrna_eval_circ_structure(),
vrna_eval_circ_consensus_structure_v(), vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

7.1. Free Energy Evaluation 245

ViennaRNA, Release 2.6.4

Parameters
• alignment – RNA sequence alignment in uppercase letters

• structure – Consensus secondary structure in dot-bracket notation

Returns
The free energy of the consensus structure given the circular input sequence in kcal/mol

float vrna_eval_gquad_consensus_structure(const char **alignment, const char *structure)
#include <ViennaRNA/eval.h> Evaluate the free energy of a multiple sequence alignment/consensus
structure pair where the structure may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
++..++...++.++

SWIG Wrapper Notes:
This function is available through an overloadeded version of vrna_eval_gquad_structure(). Sim-
ply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure
as second argument. See, e.g. RNA.eval_gquad_structure() in the Python API .

See also:
vrna_eval_covar_structure(), vrna_eval_consensus_structure_simple(),
vrna_eval_circ_consensus_structure(), vrna_eval_gquad_structure(),
vrna_eval_gquad_consensus_structure_v(), vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
• alignment – RNA sequence alignment in uppercase letters

• structure – Consensus secondary structure in dot-bracket notation

Returns
The free energy of the consensus structure including contributions of G-quadruplexes in
kcal/mol

float vrna_eval_circ_gquad_consensus_structure(const char **alignment, const char *structure)
#include <ViennaRNA/eval.h> Evaluate the free energy of a multiple sequence alignment/consensus
structure pair where the sequence is circular and the structure may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
++..++...++.++

246 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is available through an overloadeded version of vrna_eval_circ_gquad_structure().
Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus
structure as second argument. See, e.g. RNA.eval_circ_gquad_structure() in the Python
API .

See also:
vrna_eval_covar_structure(), vrna_eval_consensus_structure_simple(),
vrna_eval_circ_consensus_structure(), vrna_eval_gquad_structure(),
vrna_eval_circ_gquad_consensus_structure_v(), vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
• alignment – RNA sequence alignment in uppercase letters

• structure – Consensus secondary structure in dot-bracket notation

Returns
The free energy of the consensus structure including contributions of G-quadruplexes in
kcal/mol

float vrna_eval_consensus_structure_simple_verbose(const char **alignment, const char
*structure, FILE *file)

#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an RNA sequence
alignment and print contributions per loop.

This function is a simplyfied version of vrna_eval_consensus_structure_simple_v() that uses the default
verbosity level.

See also:
vrna_eval_consensus_structure_simple_v(), vrna_eval_structure_verbose(),
vrna_eval_structure_pt(), vrna_eval_structure_pt_verbose()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
• alignment – RNA sequence alignment in uppercase letters. Gaps are denoted by

hyphens (‘-’)

• structure – Consensus secondary structure in dot-bracket notation

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the conensus structure given the aligned input sequences in kcal/mol

float vrna_eval_consensus_structure_simple_v(const char **alignment, const char *structure, int
verbosity_level, FILE *file)

#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an RNA sequence
alignment and print contributions per loop.

7.1. Free Energy Evaluation 247

ViennaRNA, Release 2.6.4

This function allows for detailed energy evaluation of a given sequence alignment/consensus structure
pair. In contrast to vrna_eval_consensus_structure_simple() this function prints detailed energy con-
tributions based on individual loops to a file handle. If NULL is passed as file handle, this function
defaults to print to stdout. Any positive verbosity_level activates potential warning message of
the energy evaluting functions, while values ≥ 1 allow for detailed control of what data is printed. A
negative parameter verbosity_level turns off printing all together.

SWIG Wrapper Notes:
This function is available through an overloaded version of vrna_eval_structure_simple(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET
and NULL, respectively. See, e.g. RNA.eval_structure_simple() in the Python API .

See also:
vrna_eval_consensus_structure(), vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
• alignment – RNA sequence alignment in uppercase letters. Gaps are denoted by

hyphens (‘-’)

• structure – Consensus secondary structure in dot-bracket notation

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the consensus structure given the sequence alignment in kcal/mol

float vrna_eval_circ_consensus_structure_v(const char **alignment, const char *structure, int
verbosity_level, FILE *file)

#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an alignment of
circular RNA sequences and print contributions per loop.

This function is identical with vrna_eval_consensus_structure_simple_v() but assumed the aligned
sequences to be circular.

SWIG Wrapper Notes:
This function is available through an overloaded version of vrna_eval_circ_structure(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET
and NULL, respectively. See, e.g. RNA.eval_circ_structure() in the Python API .

See also:
vrna_eval_consensus_structure_simple_v(), vrna_eval_circ_consensus_structure(),
vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters

248 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• alignment – RNA sequence alignment in uppercase letters. Gaps are denoted by
hyphens (‘-’)

• structure – Consensus secondary structure in dot-bracket notation

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the consensus structure given the sequence alignment in kcal/mol

float vrna_eval_gquad_consensus_structure_v(const char **alignment, const char *structure, int
verbosity_level, FILE *file)

#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an RNA sequence
alignment, allow for annotated G-Quadruplexes in the structure and print contributions per loop.

This function is identical with vrna_eval_consensus_structure_simple_v() but allows for annotated G-
Quadruplexes in the consensus structure.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
++..++...++.++

SWIG Wrapper Notes:
This function is available through an overloaded version of vrna_eval_gquad_structure(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET
and NULL, respectively. See, e.g. RNA.eval_gquad_structure() in the Python API .

See also:
vrna_eval_consensus_structure_simple_v(), vrna_eval_gquad_consensus_structure(),
vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
• alignment – RNA sequence alignment in uppercase letters. Gaps are denoted by

hyphens (‘-’)

• structure – Consensus secondary structure in dot-bracket notation

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the consensus structure given the sequence alignment in kcal/mol

float vrna_eval_circ_gquad_consensus_structure_v(const char **alignment, const char
*structure, int verbosity_level, FILE *file)

#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an alignment of
circular RNA sequences, allow for annotated G-Quadruplexes in the structure and print contributions
per loop.

7.1. Free Energy Evaluation 249

ViennaRNA, Release 2.6.4

This function is identical with vrna_eval_consensus_structure_simple_v() but assumes the sequences
in the alignment to be circular and allows for annotated G-Quadruplexes in the consensus structure.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
++..++...++.++

SWIG Wrapper Notes:
This function is available through an overloaded version of vrna_eval_circ_gquad_structure().
Simply pass a sequence alignment as list of strings (including gaps) as first, and
the consensus structure as second argument. The last two arguments are optional
and default to VRNA_VERBOSITY_QUIET and NULL, respectively. See, e.g. RNA.
eval_circ_gquad_structure() in the Python API .

See also:
vrna_eval_consensus_structure_simple_v(), vrna_eval_circ_gquad_consensus_structure(),
vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
• alignment – RNA sequence alignment in uppercase letters. Gaps are denoted by

hyphens (‘-’)

• structure – Consensus secondary structure in dot-bracket notation

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the consensus structure given the sequence alignment in kcal/mol

Simplified Energy Evaluation with Sequence String and Structure Pair Table

int vrna_eval_structure_pt_simple(const char *string, const short *pt)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

In contrast to vrna_eval_structure_pt() this function assumes default model details and default energy
parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as a
simple interface function for energy evaluation for situations where no changes on the energy model
are required.

SWIG Wrapper Notes:
In the target scripting language, this function serves as a wrapper for vrna_eval_structure_pt_v()
and, thus, allows for two additional, optional arguments, the verbosity level and a file han-
dle which default to VRNA_VERBOSITY_QUIET and NULL, respectively. See, e.g. RNA.
eval_structure_pt_simple() in the Python API .

See also:
vrna_ptable(), vrna_eval_structure_simple(), vrna_eval_structure_pt()

250 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Parameters
• string – RNA sequence in uppercase letters

• pt – Secondary structure as pair_table

Returns
The free energy of the input structure given the input sequence in 10cal/mol

int vrna_eval_structure_pt_simple_verbose(const char *string, const short *pt, FILE *file)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function is a simplyfied version of vrna_eval_structure_pt_simple_v() that uses the default ver-
bosity level.

See also:
vrna_eval_structure_pt_simple_v(), vrna_ptable(), vrna_eval_structure_pt_verbose(),
vrna_eval_structure_simple()

Parameters
• string – RNA sequence in uppercase letters

• pt – Secondary structure as pair_table

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in 10cal/mol

int vrna_eval_structure_pt_simple_v(const char *string, const short *pt, int verbosity_level, FILE
*file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is
provided in pair_table format as obtained from vrna_ptable(). Model details, energy parameters, and
possibly soft constraints are used as provided via the parameter ‘fc’. The fold_compound does not need
to contain any DP matrices, but all the most basic init values as one would get from a call like this:

fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);

In contrast to vrna_eval_structure_pt_verbose() this function assumes default model details and default
energy parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as
a simple interface function for energy evaluation for situations where no changes on the energy model
are required.

See also:
vrna_ptable(), vrna_eval_structure_pt_v(), vrna_eval_structure_simple()

Parameters
• string – RNA sequence in uppercase letters

• pt – Secondary structure as pair_table

• verbosity_level – The level of verbosity of this function

• file – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in 10cal/mol

7.1. Free Energy Evaluation 251

ViennaRNA, Release 2.6.4

Simplified Energy Evaluation with Sequence Alignment and Consensus Structure Pair Table

int vrna_eval_consensus_structure_pt_simple(const char **alignment, const short *pt)
#include <ViennaRNA/eval.h> Evaluate the Free Energy of a Consensus Secondary Structure given a
Sequence Alignment.

SWIG Wrapper Notes:
This function is available through an overloadeded version of vrna_eval_structure_pt_simple().
Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus
structure as second argument. See, e.g. RNA.eval_structure_pt_simple() in the Python
API .

See also:
vrna_eval_consensus_structure_simple(), vrna_eval_structure_pt(), vrna_eval_structure(),
vrna_eval_covar_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
• alignment – RNA sequence alignment in uppercase letters. Gaps are denoted by

hyphens (‘-’)

• pt – Secondary structure in pair table format

Returns
Free energy of the consensus structure in 10cal/mol

int vrna_eval_consensus_structure_pt_simple_verbose(const char **alignment, const short *pt,
FILE *file)

#include <ViennaRNA/eval.h>

int vrna_eval_consensus_structure_pt_simple_v(const char **alignment, const short *pt, int
verbosity_level, FILE *file)

#include <ViennaRNA/eval.h>

SWIG Wrapper Notes:
This function is available through an overloaded version of vrna_eval_structure_pt_simple().
Simply pass a sequence alignment as list of strings (including gaps) as first, and
the consensus structure as second argument. The last two arguments are optional
and default to VRNA_VERBOSITY_QUIET and NULL, respectively. See, e.g. RNA.
eval_structure_pt_simple() in the Python API .

Defines

VRNA_VERBOSITY_QUIET

#include <ViennaRNA/eval.h> Quiet level verbosity setting.

VRNA_VERBOSITY_DEFAULT

#include <ViennaRNA/eval.h> Default level verbosity setting.

252 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.1.4 Energy Parameters

For secondary structure free energy evaluation we usually utilize the set of thermodynamic Nearest Neighbor
energy parameters also used in other software, such as UNAfold and RNAstructure.

Salt Corrections

All relevant functions to compute salt correction at a given salt concentration and temperature.

The corrections for loop and stack are taken from Einert and Netz [2011].

All corrections returned are in units of dcal · mol−1.

Functions

double vrna_salt_loop(int L, double salt, double T, double backbonelen)
#include <ViennaRNA/params/salt.h> Get salt correction for a loop at a given salt concentration and
temperature.

Parameters
• L – backbone number in loop

• salt – salt concentration (M)

• T – absolute temperature (K)

• backbonelen – Backbone Length, phosphate-to-phosphate distance (typically 6 for
RNA, 6.76 for DNA)

Returns
Salt correction for loop in dcal/mol

int vrna_salt_loop_int(int L, double salt, double T, double backbonelen)
#include <ViennaRNA/params/salt.h> Get salt correction for a loop at a given salt concentration and
temperature.

This functions is same as vrna_salt_loop but returns rounded salt correction in integer

See also:
vrna_salt_loop

Parameters
• L – backbone number in loop

• salt – salt concentration (M)

• T – absolute temperature (K)

• backbonelen – Backbone Length, phosphate-to-phosphate distance (typically 6 for
RNA, 6.76 for DNA)

Returns
Rounded salt correction for loop in dcal/mol

7.1. Free Energy Evaluation 253

ViennaRNA, Release 2.6.4

int vrna_salt_stack(double salt, double T, double hrise)
#include <ViennaRNA/params/salt.h> Get salt correction for a stack at a given salt concentration and
temperature.

Parameters
• salt – salt concentration (M)

• T – absolute temperature (K)

• hrise – Helical Rise (typically 2.8 for RNA, 3.4 for DNA)

Returns
Rounded salt correction for stack in dcal/mol

void vrna_salt_ml(double saltLoop[], int lower, int upper, int *m, int *b)
#include <ViennaRNA/params/salt.h> Fit linear function to loop salt correction.

For a given range of loop size (backbone number), we perform a linear fitting on loop salt correction

Loop correction ≈ 𝑚 · 𝐿 + 𝑏.

See also:
vrna_salt_loop()

Parameters
• saltLoop – List of loop salt correction of size from 1

• lower – Define the size lower bound for fitting

• upper – Define the size upper bound for fitting

• m – pointer to store the parameter m in fitting result

• b – pointer to store the parameter b in fitting result

int vrna_salt_duplex_init(vrna_md_t *md)
#include <ViennaRNA/params/salt.h> Get salt correction for duplex initialization at a given salt con-
centration.

Parameters
• md – Model details data structure that specfifies salt concentration in buffer (M)

Returns
Rounded correction for duplex initialization in dcal/mol

Loading / Saving Energy Parameter Sets

Read and Write energy parameter sets from and to files or strings

254 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Defines

VRNA_PARAMETER_FORMAT_DEFAULT

#include <ViennaRNA/params/io.h> Default Energy Parameter File format.

See also:
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save()

Enums

enum parset
Values:

enumerator UNKNOWN

enumerator QUIT

enumerator S

enumerator S_H

enumerator HP

enumerator HP_H

enumerator B

enumerator B_H

enumerator IL

enumerator IL_H

enumerator MMH

enumerator MMH_H

enumerator MMI

enumerator MMI_H

enumerator MMI1N

enumerator MMI1N_H

7.1. Free Energy Evaluation 255

ViennaRNA, Release 2.6.4

enumerator MMI23

enumerator MMI23_H

enumerator MMM

enumerator MMM_H

enumerator MME

enumerator MME_H

enumerator D5

enumerator D5_H

enumerator D3

enumerator D3_H

enumerator INT11

enumerator INT11_H

enumerator INT21

enumerator INT21_H

enumerator INT22

enumerator INT22_H

enumerator ML

enumerator TL

enumerator TRI

enumerator HEX

enumerator NIN

enumerator MISC

256 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Functions

int vrna_params_load(const char fname[], unsigned int options)
#include <ViennaRNA/params/io.h> Load energy parameters from a file.

SWIG Wrapper Notes:
This function is available as overloaded function params_load(fname=””, op-
tions=VRNA_PARAMETER_FORMAT_DEFAULT). Here, the empty filename string indicates to
load default RNA parameters, i.e. this is equivalent to calling vrna_params_load_defaults(). See,
e.g. RNA.fold_compound.params_load() in the Python API .

See also:
vrna_params_load_from_string(), vrna_params_save(), vrna_params_load_defaults(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),
vrna_params_load_DNA_Mathews1999()

Parameters
• fname – The path to the file containing the energy parameters

• options – File format bit-mask (usually VRNA_PARAMETER_FORMAT_DEFAULT)

Returns
Non-zero on success, 0 on failure

int vrna_params_save(const char fname[], unsigned int options)
#include <ViennaRNA/params/io.h> Save energy parameters to a file.

SWIG Wrapper Notes:
This function is available as overloaded function params_save(fname, op-
tions=VRNA_PARAMETER_FORMAT_DEFAULT). See, e.g. RNA.params_save() in the
Python API .

See also:
vrna_params_load()

Parameters
• fname – A filename (path) for the file where the current energy parameters will be

written to

• options – File format bit-mask (usually VRNA_PARAMETER_FORMAT_DEFAULT)

Returns
Non-zero on success, 0 on failure

int vrna_params_load_from_string(const char *string, const char *name, unsigned int options)
#include <ViennaRNA/params/io.h> Load energy paramters from string.

The string must follow the default energy parameter file convention! The optional name argument
allows one to specify a name for the parameter set which is stored internally.

7.1. Free Energy Evaluation 257

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is available as overloaded function params_load_from_string(string,
name=””, options=VRNA_PARAMETER_FORMAT_DEFAULT). See, e.g. RNA.
params_load_from_string() in the Python API .

See also:
vrna_params_load(), vrna_params_save(), vrna_params_load_defaults(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),
vrna_params_load_DNA_Mathews1999()

Parameters
• string – A 0-terminated string containing energy parameters

• name – A name for the parameter set in string (Maybe NULL)

• options – File format bit-mask (usually VRNA_PARAMETER_FORMAT_DEFAULT)

Returns
Non-zero on success, 0 on failure

int vrna_params_load_defaults(void)
#include <ViennaRNA/params/io.h> Load default RNA energy parameter set.

This is a convenience function to load the Turner 2004 RNA free energy parameters. It’s the same as
calling vrna_params_load_RNA_Turner2004()

SWIG Wrapper Notes:
This function is available as overloaded function params_load(). See, e.g. RNA.
params_load() in the Python API .

See also:
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),
vrna_params_load_DNA_Mathews1999()

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_Turner2004(void)
#include <ViennaRNA/params/io.h> Load Turner 2004 RNA energy parameter set.

SWIG Wrapper Notes:
This function is available as function params_load_RNA_Turner2004(). See, e.g. RNA.
params_load_RNA_Turner2004() in the Python API .

See also:
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_defaults(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),
vrna_params_load_DNA_Mathews1999()

258 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of RNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_Turner1999(void)
#include <ViennaRNA/params/io.h> Load Turner 1999 RNA energy parameter set.

SWIG Wrapper Notes:
This function is available as function params_load_RNA_Turner1999(). See, e.g. RNA.
params_load_RNA_Turner1999() in the Python API .

See also:
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_defaults(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),
vrna_params_load_DNA_Mathews1999()

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of RNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_Andronescu2007(void)
#include <ViennaRNA/params/io.h> Load Andronsecu 2007 RNA energy parameter set.

SWIG Wrapper Notes:
This function is available as function params_load_RNA_Andronescu2007(). See, e.g. RNA.
params_load_RNA_Andronescu2007() in the Python API .

See also:
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_defaults(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),
vrna_params_load_DNA_Mathews1999()

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of RNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_Langdon2018(void)
#include <ViennaRNA/params/io.h> Load Langdon 2018 RNA energy parameter set.

7.1. Free Energy Evaluation 259

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is available as function params_load_RNA_Langdon2018(). See, e.g. RNA.
params_load_RNA_Langdon2018() in the Python API .

See also:
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_defaults(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),
vrna_params_load_DNA_Mathews1999()

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of RNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_misc_special_hairpins(void)
#include <ViennaRNA/params/io.h> Load Misc Special Hairpin RNA energy parameter set.

SWIG Wrapper Notes:
This function is available as function params_load_RNA_misc_special_hairpins(). See,
e.g. RNA.params_load_RNA_misc_special_hairpins() in the Python API .

See also:
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_defaults(), vrna_params_load_DNA_Mathews2004(),
vrna_params_load_DNA_Mathews1999()

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of RNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_DNA_Mathews2004(void)
#include <ViennaRNA/params/io.h> Load Mathews 2004 DNA energy parameter set.

SWIG Wrapper Notes:
This function is available as function params_load_DNA_Mathews2004(). See, e.g. RNA.
params_load_DNA_Mathews2004() in the Python API .

See also:
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_defaults(),
vrna_params_load_DNA_Mathews1999()

260 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of DNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_DNA_Mathews1999(void)
#include <ViennaRNA/params/io.h> Load Mathews 1999 DNA energy parameter set.

SWIG Wrapper Notes:
This function is available as function params_load_DNA_Mathews1999(). See, e.g. RNA.
params_load_DNA_Mathews1999() in the Python API .

See also:
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),
vrna_params_load_defaults()

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of DNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

const char *last_parameter_file(void)
#include <ViennaRNA/params/io.h> Get the file name of the parameter file that was most recently
loaded.

Returns
The file name of the last parameter file, or NULL if parameters are still at defaults

void read_parameter_file(const char fname[])
#include <ViennaRNA/params/io.h> Read energy parameters from a file.

Deprecated:
Use vrna_params_load() instead!

Parameters
• fname – The path to the file containing the energy parameters

void write_parameter_file(const char fname[])
#include <ViennaRNA/params/io.h> Write energy parameters to a file.

Deprecated:
Use vrna_params_save() instead!

Parameters
• fname – A filename (path) for the file where the current energy parameters will be

written to

7.1. Free Energy Evaluation 261

ViennaRNA, Release 2.6.4

enum parset gettype(const char *ident)
#include <ViennaRNA/params/io.h>

char *settype(enum parset s)
#include <ViennaRNA/params/io.h>

Converting Energy Parameter Files

Converting energy parameter files into the latest format.

To preserve some backward compatibility the RNAlib also provides functions to convert energy parameter files
from the format used in version 1.4-1.8 into the new format used since version 2.0

Defines

VRNA_CONVERT_OUTPUT_ALL

#include <ViennaRNA/params/convert.h> Flag to indicate printing of a complete parameter set

VRNA_CONVERT_OUTPUT_HP

#include <ViennaRNA/params/convert.h> Flag to indicate printing of hairpin contributions

VRNA_CONVERT_OUTPUT_STACK

#include <ViennaRNA/params/convert.h> Flag to indicate printing of base pair stack contributions

VRNA_CONVERT_OUTPUT_MM_HP

#include <ViennaRNA/params/convert.h> Flag to indicate printing of hairpin mismatch contribution

VRNA_CONVERT_OUTPUT_MM_INT

#include <ViennaRNA/params/convert.h> Flag to indicate printing of interior loop mismatch contri-
bution

VRNA_CONVERT_OUTPUT_MM_INT_1N

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 1:n interior loop mismatch con-
tribution

VRNA_CONVERT_OUTPUT_MM_INT_23

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 2:3 interior loop mismatch con-
tribution

VRNA_CONVERT_OUTPUT_MM_MULTI

#include <ViennaRNA/params/convert.h> Flag to indicate printing of multi loop mismatch contribu-
tion

VRNA_CONVERT_OUTPUT_MM_EXT

#include <ViennaRNA/params/convert.h> Flag to indicate printing of exterior loop mismatch contri-
bution

VRNA_CONVERT_OUTPUT_DANGLE5

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 5’ dangle conctribution

262 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_CONVERT_OUTPUT_DANGLE3

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 3’ dangle contribution

VRNA_CONVERT_OUTPUT_INT_11

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 1:1 interior loop contribution

VRNA_CONVERT_OUTPUT_INT_21

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 2:1 interior loop contribution

VRNA_CONVERT_OUTPUT_INT_22

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 2:2 interior loop contribution

VRNA_CONVERT_OUTPUT_BULGE

#include <ViennaRNA/params/convert.h> Flag to indicate printing of bulge loop contribution

VRNA_CONVERT_OUTPUT_INT

#include <ViennaRNA/params/convert.h> Flag to indicate printing of interior loop contribution

VRNA_CONVERT_OUTPUT_ML

#include <ViennaRNA/params/convert.h> Flag to indicate printing of multi loop contribution

VRNA_CONVERT_OUTPUT_MISC

#include <ViennaRNA/params/convert.h> Flag to indicate printing of misc contributions (such as ter-
minalAU)

VRNA_CONVERT_OUTPUT_SPECIAL_HP

#include <ViennaRNA/params/convert.h> Flag to indicate printing of special hairpin contributions
(tri-, tetra-, hexa-loops)

VRNA_CONVERT_OUTPUT_VANILLA

#include <ViennaRNA/params/convert.h> Flag to indicate printing of given parameters only

Note: This option overrides all other output options, except VRNA_CONVERT_OUTPUT_DUMP !

VRNA_CONVERT_OUTPUT_NINIO

#include <ViennaRNA/params/convert.h> Flag to indicate printing of interior loop asymmetry contri-
bution

VRNA_CONVERT_OUTPUT_DUMP

#include <ViennaRNA/params/convert.h> Flag to indicate dumping the energy contributions from the
library instead of an input file

7.1. Free Energy Evaluation 263

ViennaRNA, Release 2.6.4

Functions

void convert_parameter_file(const char *iname, const char *oname, unsigned int options)
#include <ViennaRNA/params/convert.h> Convert/dump a Vienna 1.8.4 formatted energy parameter
file

The options argument allows one to control the different output modes.

Currently available options are: VRNA_CONVERT_OUTPUT_ALL,
VRNA_CONVERT_OUTPUT_HP, VRNA_CONVERT_OUTPUT_STACKVRNA_CONVERT_OUTPUT_MM_HP,
VRNA_CONVERT_OUTPUT_MM_INT , VRNA_CONVERT_OUTPUT_MM_INT_1NVRNA_CONVERT_OUTPUT_MM_INT_23,
VRNA_CONVERT_OUTPUT_MM_MULTI , VRNA_CONVERT_OUTPUT_MM_EXTVRNA_CONVERT_OUTPUT_DANGLE5,
VRNA_CONVERT_OUTPUT_DANGLE3, VRNA_CONVERT_OUTPUT_INT_11VRNA_CONVERT_OUTPUT_INT_21,
VRNA_CONVERT_OUTPUT_INT_22, VRNA_CONVERT_OUTPUT_BULGEVRNA_CONVERT_OUTPUT_INT ,
VRNA_CONVERT_OUTPUT_ML, VRNA_CONVERT_OUTPUT_MISCVRNA_CONVERT_OUTPUT_SPECIAL_HP,
VRNA_CONVERT_OUTPUT_VANILLA, VRNA_CONVERT_OUTPUT_NINIOVRNA_CONVERT_OUTPUT_DUMP

The defined options are fine for bitwise compare- and assignment-operations, e. g.: pass a collection
of options as a single value like this:

convert_parameter_file(ifile, ofile, option_1 | option_2 | option_n)

Parameters
• iname – The input file name (If NULL input is read from stdin)

• oname – The output file name (If NULL output is written to stdout)

• options – The options (as described above)

Available Parameter Sets

While the RNAlib already contains a compiled-in set of the latest Turner 2004 Free Energy Parameters, we defined
a file format that allows to change these parameters at runtime. The ViennaRNA Package already comes with a set
of parameter files containing

• Turner 1999 RNA parameters

• Mathews 1999 DNA parameters

• Andronescu 2007 RNA parameters

• Mathews 2004 DNA parameters

Energy Parameter API

264 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Defines

VRNA_GQUAD_MAX_STACK_SIZE

#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MIN_STACK_SIZE

#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MAX_LINKER_LENGTH

#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MIN_LINKER_LENGTH

#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MIN_BOX_SIZE

#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MAX_BOX_SIZE

#include <ViennaRNA/params/basic.h>

Typedefs

typedef struct vrna_param_s vrna_param_t
#include <ViennaRNA/params/basic.h> Typename for the free energy parameter data structure
vrna_params.

typedef struct vrna_exp_param_s vrna_exp_param_t
#include <ViennaRNA/params/basic.h> Typename for the Boltzmann factor data structure
vrna_exp_params.

typedef struct vrna_param_s paramT
#include <ViennaRNA/params/basic.h> Old typename of vrna_param_s.

Deprecated:
Use vrna_param_t instead!

typedef struct vrna_exp_param_s pf_paramT
#include <ViennaRNA/params/basic.h> Old typename of vrna_exp_param_s.

Deprecated:
Use vrna_exp_param_t instead!

7.1. Free Energy Evaluation 265

ViennaRNA, Release 2.6.4

Functions

vrna_param_t *vrna_params(vrna_md_t *md)
#include <ViennaRNA/params/basic.h> Get a data structure containing prescaled free energy param-
eters.

If a NULL pointer is passed for the model details parameter, the default model parameters are stored
within the requested vrna_param_t structure.

See also:
vrna_md_t, vrna_md_set_default(), vrna_exp_params()

Parameters
• md – A pointer to the model details to store inside the structure (Maybe NULL)

Returns
A pointer to the memory location where the requested parameters are stored

vrna_param_t *vrna_params_copy(vrna_param_t *par)
#include <ViennaRNA/params/basic.h> Get a copy of the provided free energy parameters.

If NULL is passed as parameter, a default set of energy parameters is created and returned.

See also:
vrna_params(), vrna_param_t

Parameters
• par – The free energy parameters that are to be copied (Maybe NULL)

Returns
A copy or a default set of the (provided) parameters

vrna_exp_param_t *vrna_exp_params(vrna_md_t *md)
#include <ViennaRNA/params/basic.h> Get a data structure containing prescaled free energy param-
eters already transformed to Boltzmann factors.

This function returns a data structure that contains all necessary precomputed energy contributions for
each type of loop.

In contrast to vrna_params(), the free energies within this data structure are stored as their Boltzmann
factors, i.e.

𝑒𝑥𝑝(−𝐸/𝑘𝑇)

where 𝐸 is the free energy.

If a NULL pointer is passed for the model details parameter, the default model parameters are stored
within the requested vrna_exp_param_t structure.

See also:
vrna_md_t, vrna_md_set_default(), vrna_params(), vrna_rescale_pf_params()

Parameters
• md – A pointer to the model details to store inside the structure (Maybe NULL)

266 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Returns
A pointer to the memory location where the requested parameters are stored

vrna_exp_param_t *vrna_exp_params_comparative(unsigned int n_seq, vrna_md_t *md)
#include <ViennaRNA/params/basic.h> Get a data structure containing prescaled free energy param-
eters already transformed to Boltzmann factors (alifold version)

If a NULL pointer is passed for the model details parameter, the default model parameters are stored
within the requested vrna_exp_param_t structure.

See also:
vrna_md_t, vrna_md_set_default(), vrna_exp_params(), vrna_params()

Parameters
• n_seq – The number of sequences in the alignment

• md – A pointer to the model details to store inside the structure (Maybe NULL)

Returns
A pointer to the memory location where the requested parameters are stored

vrna_exp_param_t *vrna_exp_params_copy(vrna_exp_param_t *par)
#include <ViennaRNA/params/basic.h> Get a copy of the provided free energy parameters (provided
as Boltzmann factors)

If NULL is passed as parameter, a default set of energy parameters is created and returned.

See also:
vrna_exp_params(), vrna_exp_param_t

Parameters
• par – The free energy parameters that are to be copied (Maybe NULL)

Returns
A copy or a default set of the (provided) parameters

void vrna_params_subst(vrna_fold_compound_t *fc, vrna_param_t *par)
#include <ViennaRNA/params/basic.h> Update/Reset energy parameters data structure within a
vrna_fold_compound_t.

Passing NULL as second argument leads to a reset of the energy parameters within fc to their default
values. Otherwise, the energy parameters provided will be copied over into fc.

SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded params_subst() method.

When no parameter is passed, the resulting action is the same as passing NULL as second pa-
rameter to vrna_params_subst(), i.e. resetting the parameters to the global defaults. See, e.g.
RNA.fold_compound.params_subst() in the Python API .

See also:
vrna_params_reset(), vrna_param_t, vrna_md_t, vrna_params()

Parameters
• fc – The vrna_fold_compound_t that is about to receive updated energy parameters

7.1. Free Energy Evaluation 267

ViennaRNA, Release 2.6.4

• par – The energy parameters used to substitute those within fc (Maybe NULL)

void vrna_exp_params_subst(vrna_fold_compound_t *fc, vrna_exp_param_t *params)
#include <ViennaRNA/params/basic.h> Update the energy parameters for subsequent partition func-
tion computations.

This function can be used to properly assign new energy parameters for partition function computations
to a vrna_fold_compound_t. For this purpose, the data of the provided pointer params will be copied
into fc and a recomputation of the partition function scaling factor is issued, if the pf_scale attribute
of params is less than 1.0.

Passing NULL as second argument leads to a reset of the energy parameters within fc to their default
values

SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded exp_params_subst() method.

When no parameter is passed, the resulting action is the same as passing NULL as second parameter
to vrna_exp_params_subst(), i.e. resetting the parameters to the global defaults. See, e.g. RNA.
fold_compound.exp_params_subst() in the Python API .

See also:
vrna_exp_params_reset(), vrna_exp_params_rescale(), vrna_exp_param_t, vrna_md_t,
vrna_exp_params()

Parameters
• fc – The fold compound data structure

• params – A pointer to the new energy parameters

void vrna_exp_params_rescale(vrna_fold_compound_t *fc, double *mfe)
#include <ViennaRNA/params/basic.h> Rescale Boltzmann factors for partition function computa-
tions.

This function may be used to (automatically) rescale the Boltzmann factors used in partition function
computations. Since partition functions over subsequences can easily become extremely large, the
RNAlib internally rescales them to avoid numerical over- and/or underflow. Therefore, a proper scaling
factor 𝑠 needs to be chosen that in turn is then used to normalize the corresponding partition functions
𝑞[𝑖, 𝑗] = 𝑞[𝑖, 𝑗]/𝑠(𝑗−𝑖+1).

This function provides two ways to automatically adjust the scaling factor.

a. Automatic guess

b. Automatic adjustment according to MFE

Passing NULL as second parameter activates the automatic guess mode. Here, the scaling factor is
recomputed according to a mean free energy of 184.3*length cal for random sequences.

On the other hand, if the MFE for a sequence is known, it can be used to recompute a more robust
scaling factor, since it represents the lowest free energy of the entire ensemble of structures, i.e. the
highest Boltzmann factor. To activate this second mode of automatic adjustment according to MFE, a
pointer to the MFE value needs to be passed as second argument. This value is then taken to compute
the scaling factor as 𝑠 = 𝑒𝑥𝑝((𝑠𝑓𝑎𝑐𝑡*𝑀𝐹𝐸)/𝑘𝑇/𝑙𝑒𝑛𝑔𝑡ℎ), where sfact is an additional scaling weight
located in the vrna_md_t data structure of exp_params in fc.

The computed scaling factor 𝑠 will be stored as pf_scale attribute of the exp_params data structure
in fc.

268 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded exp_params_rescale() method.

When no parameter is passed to this method, the resulting action is the same as passing NULL
as second parameter to vrna_exp_params_rescale(), i.e. default scaling of the partition function.
Passing an energy in kcal/mol, e.g. as retrieved by a previous call to the mfe() method, instructs
all subsequent calls to scale the partition function accordingly. See, e.g. RNA.fold_compound.
exp_params_rescale() in the Python API .

See also:
vrna_exp_params_subst(), vrna_md_t, vrna_exp_param_t, vrna_fold_compound_t

Note: This recomputation only takes place if the pf_scale attribute of the exp_params data structure
contained in fc has a value below 1.0.

Parameters
• fc – The fold compound data structure

• mfe – A pointer to the MFE (in kcal/mol) or NULL

void vrna_params_reset(vrna_fold_compound_t *fc, vrna_md_t *md)
#include <ViennaRNA/params/basic.h> Reset free energy parameters within a vrna_fold_compound_t
according to provided, or default model details.

This function allows one to rescale free energy parameters for subsequent structure prediction or eval-
uation according to a set of model details, e.g. temperature values. To do so, the caller provides either
a pointer to a set of model details to be used for rescaling, or NULL if global default setting should be
used.

SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded params_reset() method.

When no parameter is passed to this method, the resulting action is the same as passing NULL as
second parameter to vrna_params_reset(), i.e. global default model settings are used. Passing an
object of type vrna_md_s resets the fold compound according to the specifications stored within
the vrna_md_s object. See, e.g. RNA.fold_compound.params_reset() in the Python API .

See also:
vrna_exp_params_reset(), vrna_params_subs()

Parameters
• fc – The fold compound data structure

• md – A pointer to the new model details (or NULL for reset to defaults)

void vrna_exp_params_reset(vrna_fold_compound_t *fc, vrna_md_t *md)
#include <ViennaRNA/params/basic.h> Reset Boltzmann factors for partition function computations
within a vrna_fold_compound_t according to provided, or default model details.

This function allows one to rescale Boltzmann factors for subsequent partition function computations
according to a set of model details, e.g. temperature values. To do so, the caller provides either a
pointer to a set of model details to be used for rescaling, or NULL if global default setting should be
used.

7.1. Free Energy Evaluation 269

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded exp_params_reset() method.

When no parameter is passed to this method, the resulting action is the same as passing NULL
as second parameter to vrna_exp_params_reset(), i.e. global default model settings are used.
Passing an object of type vrna_md_s resets the fold compound according to the specifications
stored within the vrna_md_s object. See, e.g. RNA.fold_compound.exp_params_reset() in
the Python API .

See also:
vrna_params_reset(), vrna_exp_params_subst(), vrna_exp_params_rescale()

Parameters
• fc – The fold compound data structure

• md – A pointer to the new model details (or NULL for reset to defaults)

void vrna_params_prepare(vrna_fold_compound_t *fc, unsigned int options)
#include <ViennaRNA/params/basic.h>

vrna_param_t *get_parameter_copy(vrna_param_t *par)
#include <ViennaRNA/params/basic.h>

vrna_exp_param_t *get_scaled_pf_parameters(void)
#include <ViennaRNA/params/basic.h> get a data structure of type vrna_exp_param_t which contains
the Boltzmann weights of several energy parameters scaled according to the current temperature

Deprecated:
Use vrna_exp_params() instead!

Returns
The data structure containing Boltzmann weights for use in partition function calculations

vrna_exp_param_t *get_boltzmann_factors(double temperature, double betaScale, vrna_md_t md,
double pf_scale)

#include <ViennaRNA/params/basic.h> Get precomputed Boltzmann factors of the loop type depen-
dent energy contributions with independent thermodynamic temperature.

This function returns a data structure that contains all necessary precalculated Boltzmann factors for
each loop type contribution.

In contrast to get_scaled_pf_parameters(), this function enables setting of independent temperatures
for both, the individual energy contributions as well as the thermodynamic temperature used in
𝑒𝑥𝑝(−∆𝐺/𝑘𝑇)

Deprecated:
Use vrna_exp_params() instead!

See also:
get_scaled_pf_parameters(), get_boltzmann_factor_copy()

Parameters

270 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• temperature – The temperature in degrees Celcius used for (re-)scaling the energy
contributions

• betaScale – A scaling value that is used as a multiplication factor for the absolute
temperature of the system

• md – The model details to be used

• pf_scale – The scaling factor for the Boltzmann factors

Returns
A set of precomputed Boltzmann factors

vrna_exp_param_t *get_boltzmann_factor_copy(vrna_exp_param_t *parameters)
#include <ViennaRNA/params/basic.h> Get a copy of already precomputed Boltzmann factors.

Deprecated:
Use vrna_exp_params_copy() instead!

See also:
get_boltzmann_factors(), get_scaled_pf_parameters()

Parameters
• parameters – The input data structure that shall be copied

Returns
A copy of the provided Boltzmann factor data set

vrna_exp_param_t *get_scaled_alipf_parameters(unsigned int n_seq)
#include <ViennaRNA/params/basic.h> Get precomputed Boltzmann factors of the loop type depen-
dent energy contributions (alifold variant)

Deprecated:
Use vrna_exp_params_comparative() instead!

vrna_exp_param_t *get_boltzmann_factors_ali(unsigned int n_seq, double temperature, double
betaScale, vrna_md_t md, double pf_scale)

#include <ViennaRNA/params/basic.h> Get precomputed Boltzmann factors of the loop type depen-
dent energy contributions (alifold variant) with independent thermodynamic temperature.

Deprecated:
Use vrna_exp_params_comparative() instead!

vrna_param_t *scale_parameters(void)
#include <ViennaRNA/params/basic.h> Get precomputed energy contributions for all the known loop
types.

Deprecated:
Use vrna_params() instead!

Note: OpenMP: This function relies on several global model settings variables and thus is not to be
considered threadsafe. See get_scaled_parameters() for a completely threadsafe implementation.

7.1. Free Energy Evaluation 271

ViennaRNA, Release 2.6.4

Returns
A set of precomputed energy contributions

vrna_param_t *get_scaled_parameters(double temperature, vrna_md_t md)
#include <ViennaRNA/params/basic.h> Get precomputed energy contributions for all the known loop
types.

Call this function to retrieve precomputed energy contributions, i.e. scaled according to the temperature
passed. Furthermore, this function assumes a data structure that contains the model details as well, such
that subsequent folding recursions are able to retrieve the correct model settings

Deprecated:
Use vrna_params() instead!

See also:
vrna_md_t, set_model_details()

Parameters
• temperature – The temperature in degrees Celcius

• md – The model details

Returns
precomputed energy contributions and model settings

vrna_param_t *copy_parameters(void)
#include <ViennaRNA/params/basic.h>

vrna_param_t *set_parameters(vrna_param_t *dest)
#include <ViennaRNA/params/basic.h>

vrna_exp_param_t *scale_pf_parameters(void)
#include <ViennaRNA/params/basic.h>

vrna_exp_param_t *copy_pf_param(void)
#include <ViennaRNA/params/basic.h>

vrna_exp_param_t *set_pf_param(vrna_param_t *dest)
#include <ViennaRNA/params/basic.h>

struct vrna_param_s
#include <ViennaRNA/params/basic.h> The datastructure that contains temperature scaled energy pa-
rameters.

Public Members

int id

int stack[NBPAIRS + 1][NBPAIRS + 1]

int hairpin[31]

int bulge[MAXLOOP + 1]

272 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int internal_loop[MAXLOOP + 1]

int mismatchExt[NBPAIRS + 1][5][5]

int mismatchI[NBPAIRS + 1][5][5]

int mismatch1nI[NBPAIRS + 1][5][5]

int mismatch23I[NBPAIRS + 1][5][5]

int mismatchH[NBPAIRS + 1][5][5]

int mismatchM[NBPAIRS + 1][5][5]

int dangle5[NBPAIRS + 1][5]

int dangle3[NBPAIRS + 1][5]

int int11[NBPAIRS + 1][NBPAIRS + 1][5][5]

int int21[NBPAIRS + 1][NBPAIRS + 1][5][5][5]

int int22[NBPAIRS + 1][NBPAIRS + 1][5][5][5][5]

int ninio[5]

double lxc

int MLbase

int MLintern[NBPAIRS + 1]

int MLclosing

int TerminalAU

int DuplexInit

int Tetraloop_E[200]

char Tetraloops[1401]

int Triloop_E[40]

char Triloops[241]

7.1. Free Energy Evaluation 273

ViennaRNA, Release 2.6.4

int Hexaloop_E[40]

char Hexaloops[1801]

int TripleC

int MultipleCA

int MultipleCB

int gquad[VRNA_GQUAD_MAX_STACK_SIZE + 1][3 * VRNA_GQUAD_MAX_LINKER_LENGTH
+ 1]

int gquadLayerMismatch

int gquadLayerMismatchMax

double temperature
Temperature used for loop contribution scaling.

vrna_md_t model_details
Model details to be used in the recursions.

char param_file[256]
The filename the parameters were derived from, or empty string if they represent the default.

int SaltStack

int SaltLoop[MAXLOOP + 2]

double SaltLoopDbl[MAXLOOP + 2]

int SaltMLbase

int SaltMLintern

int SaltMLclosing

int SaltDPXInit

struct vrna_exp_param_s
#include <ViennaRNA/params/basic.h> The data structure that contains temperature scaled Boltz-
mann weights of the energy parameters.

274 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Public Members

int id
An identifier for the data structure.

Deprecated:
This attribute will be removed in version 3

double expstack[NBPAIRS + 1][NBPAIRS + 1]

double exphairpin[31]

double expbulge[MAXLOOP + 1]

double expinternal[MAXLOOP + 1]

double expmismatchExt[NBPAIRS + 1][5][5]

double expmismatchI[NBPAIRS + 1][5][5]

double expmismatch23I[NBPAIRS + 1][5][5]

double expmismatch1nI[NBPAIRS + 1][5][5]

double expmismatchH[NBPAIRS + 1][5][5]

double expmismatchM[NBPAIRS + 1][5][5]

double expdangle5[NBPAIRS + 1][5]

double expdangle3[NBPAIRS + 1][5]

double expint11[NBPAIRS + 1][NBPAIRS + 1][5][5]

double expint21[NBPAIRS + 1][NBPAIRS + 1][5][5][5]

double expint22[NBPAIRS + 1][NBPAIRS + 1][5][5][5][5]

double expninio[5][MAXLOOP + 1]

double lxc

double expMLbase

double expMLintern[NBPAIRS + 1]

7.1. Free Energy Evaluation 275

ViennaRNA, Release 2.6.4

double expMLclosing

double expTermAU

double expDuplexInit

double exptetra[40]

double exptri[40]

double exphex[40]

char Tetraloops[1401]

double expTriloop[40]

char Triloops[241]

char Hexaloops[1801]

double expTripleC

double expMultipleCA

double expMultipleCB

double expgquad[VRNA_GQUAD_MAX_STACK_SIZE + 1][3 *
VRNA_GQUAD_MAX_LINKER_LENGTH + 1]

double expgquadLayerMismatch

int gquadLayerMismatchMax

double kT

double pf_scale
Scaling factor to avoid over-/underflows.

double temperature
Temperature used for loop contribution scaling.

double alpha
Scaling factor for the thermodynamic temperature.

This allows for temperature scaling in Boltzmann factors independently from the energy contribu-
tions. The resulting Boltzmann factors are then computed by 𝑒−𝐸/(𝛼·𝐾·𝑇)

276 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

vrna_md_t model_details
Model details to be used in the recursions.

char param_file[256]
The filename the parameters were derived from, or empty string if they represent the default.

double expSaltStack

double expSaltLoop[MAXLOOP + 2]

double SaltLoopDbl[MAXLOOP + 2]

int SaltMLbase

int SaltMLintern

int SaltMLclosing

int SaltDPXInit

7.1.5 Deprecated Interface for Free Energy Evaluation

Using the functions below is discouraged as they have been marked deprecated and will be removed from the library
in the (near) future!

Defines

ON_SAME_STRAND(I, J, C)
#include <ViennaRNA/loops/internal.h>

Functions

float energy_of_structure(const char *string, const char *structure, int verbosity_level)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA using global model
detail settings.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:
Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

See also:
vrna_eval_structure()

7.1. Free Energy Evaluation 277

ViennaRNA, Release 2.6.4

Note: OpenMP: This function relies on several global model settings variables and thus is not to be
considered threadsafe. See energy_of_struct_par() for a completely threadsafe implementation.

Parameters
• string – RNA sequence

• structure – secondary structure in dot-bracket notation

• verbosity_level – a flag to turn verbose output on/off

Returns
the free energy of the input structure given the input sequence in kcal/mol

float energy_of_struct_par(const char *string, const char *structure, vrna_param_t *parameters, int
verbosity_level)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:
Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

See also:
vrna_eval_structure()

Parameters
• string – RNA sequence in uppercase letters

• structure – Secondary structure in dot-bracket notation

• parameters – A data structure containing the prescaled energy contributions and the
model details.

• verbosity_level – A flag to turn verbose output on/off

Returns
The free energy of the input structure given the input sequence in kcal/mol

float energy_of_circ_structure(const char *string, const char *structure, int verbosity_level)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded circular RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:
Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

See also:
vrna_eval_structure()

Note: OpenMP: This function relies on several global model settings variables and thus is not to be
considered threadsafe. See energy_of_circ_struct_par() for a completely threadsafe implementation.

278 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Parameters
• string – RNA sequence

• structure – Secondary structure in dot-bracket notation

• verbosity_level – A flag to turn verbose output on/off

Returns
The free energy of the input structure given the input sequence in kcal/mol

float energy_of_circ_struct_par(const char *string, const char *structure, vrna_param_t
*parameters, int verbosity_level)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded circular RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:
Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

See also:
vrna_eval_structure()

Parameters
• string – RNA sequence

• structure – Secondary structure in dot-bracket notation

• parameters – A data structure containing the prescaled energy contributions and the
model details.

• verbosity_level – A flag to turn verbose output on/off

Returns
The free energy of the input structure given the input sequence in kcal/mol

float energy_of_gquad_structure(const char *string, const char *structure, int verbosity_level)
#include <ViennaRNA/eval.h>

float energy_of_gquad_struct_par(const char *string, const char *structure, vrna_param_t
*parameters, int verbosity_level)

#include <ViennaRNA/eval.h>

int energy_of_structure_pt(const char *string, short *ptable, short *s, short *s1, int verbosity_level)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:
Use vrna_eval_structure_pt() or vrna_eval_structure_pt_verbose() instead!

See also:
vrna_eval_structure_pt()

Note: OpenMP: This function relies on several global model settings variables and thus is not to be
considered threadsafe. See energy_of_struct_pt_par() for a completely threadsafe implementation.

7.1. Free Energy Evaluation 279

ViennaRNA, Release 2.6.4

Parameters
• string – RNA sequence

• ptable – the pair table of the secondary structure

• s – encoded RNA sequence

• s1 – encoded RNA sequence

• verbosity_level – a flag to turn verbose output on/off

Returns
the free energy of the input structure given the input sequence in 10kcal/mol

int energy_of_struct_pt_par(const char *string, short *ptable, short *s, short *s1, vrna_param_t
*parameters, int verbosity_level)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:
Use vrna_eval_structure_pt() or vrna_eval_structure_pt_verbose() instead!

See also:
vrna_eval_structure_pt()

Parameters
• string – RNA sequence in uppercase letters

• ptable – The pair table of the secondary structure

• s – Encoded RNA sequence

• s1 – Encoded RNA sequence

• parameters – A data structure containing the prescaled energy contributions and the
model details.

• verbosity_level – A flag to turn verbose output on/off

Returns
The free energy of the input structure given the input sequence in 10kcal/mol

float energy_of_move(const char *string, const char *structure, int m1, int m2)
#include <ViennaRNA/eval.h> Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

Deprecated:
Use vrna_eval_move() instead!

See also:
vrna_eval_move()

Parameters
• string – RNA sequence

280 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• structure – secondary structure in dot-bracket notation

• m1 – first coordinate of base pair

• m2 – second coordinate of base pair

Returns
energy change of the move in kcal/mol

int energy_of_move_pt(short *pt, short *s, short *s1, int m1, int m2)
#include <ViennaRNA/eval.h> Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

Deprecated:
Use vrna_eval_move_pt() instead!

See also:
vrna_eval_move_pt()

Parameters
• pt – the pair table of the secondary structure

• s – encoded RNA sequence

• s1 – encoded RNA sequence

• m1 – first coordinate of base pair

• m2 – second coordinate of base pair

Returns
energy change of the move in 10cal/mol

int loop_energy(short *ptable, short *s, short *s1, int i)
#include <ViennaRNA/eval.h> Calculate energy of a loop.

Deprecated:
Use vrna_eval_loop_pt() instead!

See also:
vrna_eval_loop_pt()

Parameters
• ptable – the pair table of the secondary structure

• s – encoded RNA sequence

• s1 – encoded RNA sequence

• i – position of covering base pair

Returns
free energy of the loop in 10cal/mol

7.1. Free Energy Evaluation 281

ViennaRNA, Release 2.6.4

float energy_of_struct(const char *string, const char *structure)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA

Deprecated:
This function is deprecated and should not be used in future programs! Use energy_of_structure()
instead!

See also:
energy_of_structure, energy_of_circ_struct(), energy_of_struct_pt()

Note: This function is not entirely threadsafe! Depending on the state of the global variable eos_debug
it prints energy information to stdout or not. . .

Parameters
• string – RNA sequence

• structure – secondary structure in dot-bracket notation

Returns
the free energy of the input structure given the input sequence in kcal/mol

int energy_of_struct_pt(const char *string, short *ptable, short *s, short *s1)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA

Deprecated:
This function is deprecated and should not be used in future programs! Use en-
ergy_of_structure_pt() instead!

See also:
make_pair_table(), energy_of_structure()

Note: This function is not entirely threadsafe! Depending on the state of the global variable eos_debug
it prints energy information to stdout or not. . .

Parameters
• string – RNA sequence

• ptable – the pair table of the secondary structure

• s – encoded RNA sequence

• s1 – encoded RNA sequence

Returns
the free energy of the input structure given the input sequence in 10kcal/mol

float energy_of_circ_struct(const char *string, const char *structure)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded circular RNA

282 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Deprecated:
This function is deprecated and should not be used in future programs Use en-
ergy_of_circ_structure() instead!

See also:
energy_of_circ_structure(), energy_of_struct(), energy_of_struct_pt()

Note: This function is not entirely threadsafe! Depending on the state of the global variable eos_debug
it prints energy information to stdout or not. . .

Parameters
• string – RNA sequence

• structure – secondary structure in dot-bracket notation

Returns
the free energy of the input structure given the input sequence in kcal/mol

int E_Stem(int type, int si1, int sj1, int extLoop, vrna_param_t *P)
#include <ViennaRNA/loops/external.h> Compute the energy contribution of a stem branching off a
loop-region.

This function computes the energy contribution of a stem that branches off a loop region. This can be
the case in multiloops, when a stem branching off increases the degree of the loop but also immediately
interior base pairs of an exterior loop contribute free energy. To switch the behavior of the function
according to the evaluation of a multiloop- or exterior-loop-stem, you pass the flag ‘extLoop’. The
returned energy contribution consists of a TerminalAU penalty if the pair type is greater than 2, dangling
end contributions of mismatching nucleotides adjacent to the stem if only one of the si1, sj1 parameters
is greater than 0 and mismatch energies if both mismatching nucleotides are positive values. Thus, to
avoid incorporating dangling end or mismatch energies just pass a negative number, e.g. -1 to the
mismatch argument.

This is an illustration of how the energy contribution is assembled:

Here, (X,Y) is the base pair that closes the stem that branches off a loop region. The nucleotides si1 and
sj1 are the 5’- and 3’- mismatches, respectively. If the base pair type of (X,Y) is greater than 2 (i.e. an
A-U or G-U pair, the TerminalAU penalty will be included in the energy contribution returned. If si1
and sj1 are both nonnegative numbers, mismatch energies will also be included. If one of si1 or sj1 is a
negative value, only 5’ or 3’ dangling end contributions are taken into account. To prohibit any of these
mismatch contributions to be incorporated, just pass a negative number to both, si1 and sj1. In case
the argument extLoop is 0, the returned energy contribution also includes the internal-loop-penalty of
a multiloop stem with closing pair type.

Deprecated:
Please use one of the functions vrna_E_ext_stem() and E_MLstem() instead! Use the former for
cases where extLoop != 0 and the latter otherwise.

See also:
E_MLstem(), _ExtLoop()

Note: This function is threadsafe

Parameters

7.1. Free Energy Evaluation 283

ViennaRNA, Release 2.6.4

• type – The pair type of the first base pair un the stem

• si1 – The 5’-mismatching nucleotide

• sj1 – The 3’-mismatching nucleotide

• extLoop – A flag that indicates whether the contribution reflects the one of an exterior
loop or not

• P – The data structure containing scaled energy parameters

Returns
The Free energy of the branch off the loop in dcal/mol

int E_ExtLoop(int type, int si1, int sj1, vrna_param_t *P)
#include <ViennaRNA/loops/external.h>

FLT_OR_DBL exp_E_ExtLoop(int type, int si1, int sj1, vrna_exp_param_t *P)
#include <ViennaRNA/loops/external.h> This is the partition function variant of E_ExtLoop()

Deprecated:
Use vrna_exp_E_ext_stem() instead!

See also:
E_ExtLoop()

Returns
The Boltzmann weighted energy contribution of the introduced exterior-loop stem

FLT_OR_DBL exp_E_Stem(int type, int si1, int sj1, int extLoop, vrna_exp_param_t *P)
#include <ViennaRNA/loops/external.h> Compute the Boltzmann weighted energy contribution of a
stem branching off a loop-region

This is the partition function variant of E_Stem()

See also:
E_Stem()

Note: This function is threadsafe

Returns
The Boltzmann weighted energy contribution of the branch off the loop

static int E_IntLoop(int n1, int n2, int type, int type_2, int si1, int sj1, int sp1, int sq1, vrna_param_t *P)
#include <ViennaRNA/loops/internal.h> Compute the Energy of an interior-loop

This function computes the free energy ∆𝐺 of an interior-loop with the following structure: This
general structure depicts an interior-loop that is closed by the base pair (X,Y). The enclosed base pair
is (V,U) which leaves the unpaired bases a_1-a_n and b_1-b_n that constitute the loop. In this example,
the length of the interior-loop is (𝑛 + 𝑚) where n or m may be 0 resulting in a bulge-loop or base pair
stack. The mismatching nucleotides for the closing pair (X,Y) are:

5’-mismatch: a_1

3’-mismatch: b_m

and for the enclosed base pair (V,U):

5’-mismatch: b_1

284 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

3’-mismatch: a_n

See also:
scale_parameters(), vrna_param_t

Note:
Base pairs are always denoted in 5’->3’ direction. Thus the enclosed base pair must be ‘turned arround’
when evaluating the free energy of the interior-loop

This function is threadsafe

Parameters
• n1 – The size of the ‘left’-loop (number of unpaired nucleotides)

• n2 – The size of the ‘right’-loop (number of unpaired nucleotides)

• type – The pair type of the base pair closing the interior loop

• type_2 – The pair type of the enclosed base pair

• si1 – The 5’-mismatching nucleotide of the closing pair

• sj1 – The 3’-mismatching nucleotide of the closing pair

• sp1 – The 3’-mismatching nucleotide of the enclosed pair

• sq1 – The 5’-mismatching nucleotide of the enclosed pair

• P – The datastructure containing scaled energy parameters

Returns
The Free energy of the Interior-loop in dcal/mol

static FLT_OR_DBL exp_E_IntLoop(int u1, int u2, int type, int type2, short si1, short sj1, short sp1,
short sq1, vrna_exp_param_t *P)

#include <ViennaRNA/loops/internal.h> Compute Boltzmann weight of interior loop

multiply by scale[u1+u2+2] for scaling

See also:
get_scaled_pf_parameters(), vrna_exp_param_t, E_IntLoop()

Note: This function is threadsafe

Parameters
• u1 – The size of the ‘left’-loop (number of unpaired nucleotides)

• u2 – The size of the ‘right’-loop (number of unpaired nucleotides)

• type – The pair type of the base pair closing the interior loop

• type2 – The pair type of the enclosed base pair

• si1 – The 5’-mismatching nucleotide of the closing pair

• sj1 – The 3’-mismatching nucleotide of the closing pair

• sp1 – The 3’-mismatching nucleotide of the enclosed pair

7.1. Free Energy Evaluation 285

ViennaRNA, Release 2.6.4

• sq1 – The 5’-mismatching nucleotide of the enclosed pair

• P – The datastructure containing scaled Boltzmann weights of the energy parameters

Returns
The Boltzmann weight of the Interior-loop

static int E_IntLoop_Co(int type, int type_2, int i, int j, int p, int q, int cutpoint, short si1, short sj1, short
sp1, short sq1, int dangles, vrna_param_t *P)

#include <ViennaRNA/loops/internal.h>

static int ubf_eval_int_loop(int i, int j, int p, int q, int i1, int j1, int p1, int q1, short si, short sj, short sp,
short sq, unsigned char type, unsigned char type_2, int *rtype, int ij, int
cp, vrna_param_t *P, vrna_sc_t *sc)

#include <ViennaRNA/loops/internal.h>

static int ubf_eval_int_loop2(int i, int j, int p, int q, int i1, int j1, int p1, int q1, short si, short sj, short
sp, short sq, unsigned char type, unsigned char type_2, int *rtype, int ij,
unsigned int *sn, unsigned int *ss, vrna_param_t *P, vrna_sc_t *sc)

#include <ViennaRNA/loops/internal.h>

static int ubf_eval_ext_int_loop(int i, int j, int p, int q, int i1, int j1, int p1, int q1, short si, short sj,
short sp, short sq, unsigned char type, unsigned char type_2, int
length, vrna_param_t *P, vrna_sc_t *sc)

#include <ViennaRNA/loops/internal.h>

static int E_MLstem(int type, int si1, int sj1, vrna_param_t *P)
#include <ViennaRNA/loops/multibranch.h>

static FLT_OR_DBL exp_E_MLstem(int type, int si1, int sj1, vrna_exp_param_t *P)
#include <ViennaRNA/loops/multibranch.h>

Variables

int cut_point
first pos of second seq for cofolding

int eos_debug
verbose info from energy_of_struct

7.1.6 Loop Decomposition

Each base pair in a secondary structure closes a loop, thereby directly enclosing unpaired nucleotides, and/or further
base pairs. Our implementation distinguishes four basic types of loops:

• hairpin loops

• interior loops

• multibranch loops

• exterior loop

While the exterior loop is a special case without a closing pair, the other loops are determined by the number of
base pairs involved in the loop formation, i.e. hairpin loops are 1-loops, since only a single base pair delimits the
loop. interior loops are 2-loops due to their enclosing, and enclosed base pair. All loops where more than two base
pairs are involved, are termed multibranch loops.

286 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Any secondary structure can be decomposed into its loops. Each of the loops then can be scored in terms of free
energy, and the free energy of an entire secondary structure is simply the sum of free energies of its loops.

7.1.7 Fine-tuning of the Evaluation Model

See also. . .
Fine-tuning of the Implemented Models

7.1. Free Energy Evaluation 287

ViennaRNA, Release 2.6.4

7.2 The RNA Folding Grammar

The RNA folding grammar as implemented in RNAlib

7.2.1 Fine-tuning of the Implemented Models

Functions and data structures to fine-tune the implemented secondary structure evaluation model.

Defines

NBASES

#include <ViennaRNA/model.h>

VRNA_MODEL_DEFAULT_TEMPERATURE

#include <ViennaRNA/model.h>

See also:
vrna_md_t.temperature, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_PF_SCALE

#include <ViennaRNA/model.h> Default scaling factor for partition function computations.

See also:
vrna_exp_param_t.pf_scale, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_BETA_SCALE

#include <ViennaRNA/model.h> Default scaling factor for absolute thermodynamic temperature in
Boltzmann factors.

See also:
vrna_exp_param_t.alpha, vrna_md_t.betaScale, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_DANGLES

#include <ViennaRNA/model.h> Default dangling end model.

See also:
vrna_md_t.dangles, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_SPECIAL_HP

#include <ViennaRNA/model.h> Default model behavior for lookup of special tri-, tetra-, and hexa-
loops.

288 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_md_t.special_hp, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_NO_LP

#include <ViennaRNA/model.h> Default model behavior for so-called ‘lonely pairs’.

See also:
vrna_md_t.noLP, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_NO_GU

#include <ViennaRNA/model.h> Default model behavior for G-U base pairs.

See also:
vrna_md_t.noGU, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_NO_GU_CLOSURE

#include <ViennaRNA/model.h> Default model behavior for G-U base pairs closing a loop.

See also:
vrna_md_t.noGUclosure, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_CIRC

#include <ViennaRNA/model.h> Default model behavior to treat a molecule as a circular RNA (DNA)

See also:
vrna_md_t.circ, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_GQUAD

#include <ViennaRNA/model.h> Default model behavior regarding the treatment of G-Quadruplexes.

See also:
vrna_md_t.gquad, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_UNIQ_ML

#include <ViennaRNA/model.h> Default behavior of the model regarding unique multi-branch loop
decomposition.

See also:
vrna_md_t.uniq_ML, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_ENERGY_SET

#include <ViennaRNA/model.h> Default model behavior on which energy set to use.

7.2. The RNA Folding Grammar 289

ViennaRNA, Release 2.6.4

See also:
vrna_md_t.energy_set, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_BACKTRACK

#include <ViennaRNA/model.h> Default model behavior with regards to backtracking of structures.

See also:
vrna_md_t.backtrack, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_BACKTRACK_TYPE

#include <ViennaRNA/model.h> Default model behavior on what type of backtracking to perform.

See also:
vrna_md_t.backtrack_type, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_COMPUTE_BPP

#include <ViennaRNA/model.h> Default model behavior with regards to computing base pair proba-
bilities.

See also:
vrna_md_t.compute_bpp, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_MAX_BP_SPAN

#include <ViennaRNA/model.h> Default model behavior for the allowed maximum base pair span.

See also:
vrna_md_t.max_bp_span, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_WINDOW_SIZE

#include <ViennaRNA/model.h> Default model behavior for the sliding window approach.

See also:
vrna_md_t.window_size, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_LOG_ML

#include <ViennaRNA/model.h> Default model behavior on how to evaluate the energy contribution
of multi-branch loops.

See also:
vrna_md_t.logML, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_ALI_OLD_EN

#include <ViennaRNA/model.h> Default model behavior for consensus structure energy evaluation.

290 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_md_t.oldAliEn, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_ALI_RIBO

#include <ViennaRNA/model.h> Default model behavior for consensus structure co-variance contri-
bution assessment.

See also:
vrna_md_t.ribo, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_ALI_CV_FACT

#include <ViennaRNA/model.h> Default model behavior for weighting the co-variance score in con-
sensus structure prediction.

See also:
vrna_md_t.cv_fact, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_ALI_NC_FACT

#include <ViennaRNA/model.h> Default model behavior for weighting the nucleotide conservation?
in consensus structure prediction.

See also:
vrna_md_t.nc_fact, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_PF_SMOOTH

#include <ViennaRNA/model.h>

VRNA_MODEL_DEFAULT_SALT

#include <ViennaRNA/model.h> Default model salt concentration (M)

VRNA_MODEL_DEFAULT_SALT_MLLOWER

#include <ViennaRNA/model.h> Default model lower bound of multiloop size for salt correction fiting.

VRNA_MODEL_DEFAULT_SALT_MLUPPER

#include <ViennaRNA/model.h> Default model upper bound of multiloop size for salt correction fiting.

VRNA_MODEL_DEFAULT_SALT_DPXINIT

#include <ViennaRNA/model.h> Default model value to turn off user-provided salt correction for du-
plex initializtion.

VRNA_MODEL_SALT_DPXINIT_FACT_RNA

#include <ViennaRNA/model.h>

VRNA_MODEL_SALT_DPXINIT_FACT_DNA

#include <ViennaRNA/model.h>

7.2. The RNA Folding Grammar 291

ViennaRNA, Release 2.6.4

VRNA_MODEL_DEFAULT_SALT_DPXINIT_FACT

#include <ViennaRNA/model.h>

VRNA_MODEL_HELICAL_RISE_RNA

#include <ViennaRNA/model.h>

VRNA_MODEL_HELICAL_RISE_DNA

#include <ViennaRNA/model.h>

VRNA_MODEL_DEFAULT_HELICAL_RISE

#include <ViennaRNA/model.h> Default helical rise.

VRNA_MODEL_BACKBONE_LENGTH_RNA

#include <ViennaRNA/model.h>

VRNA_MODEL_BACKBONE_LENGTH_DNA

#include <ViennaRNA/model.h>

VRNA_MODEL_DEFAULT_BACKBONE_LENGTH

#include <ViennaRNA/model.h> Default backbone length.

MAXALPHA

#include <ViennaRNA/model.h> Maximal length of alphabet.

model_detailsT

#include <ViennaRNA/model.h>

Typedefs

typedef struct vrna_md_s vrna_md_t
#include <ViennaRNA/model.h> Typename for the model details data structure vrna_md_s.

Functions

void vrna_md_set_default(vrna_md_t *md)
#include <ViennaRNA/model.h> Apply default model details to a provided vrna_md_t data structure.

Use this function to initialize a vrna_md_t data structure with its default values

Parameters
• md – A pointer to the data structure that is about to be initialized

void vrna_md_update(vrna_md_t *md)
#include <ViennaRNA/model.h> Update the model details data structure.

This function should be called after changing the vrna_md_t.energy_set attribute since it re-initializes
base pairing related arrays within the vrna_md_t data structure. In particular, vrna_md_t.pair,
vrna_md_t.alias, and vrna_md_t.rtype are set to the values that correspond to the specified
vrna_md_t.energy_set option

292 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_md_t, vrna_md_t.energy_set, vrna_md_t.pair, vrna_md_t.rtype, vrna_md_t.alias,
vrna_md_set_default()

vrna_md_t *vrna_md_copy(vrna_md_t *md_to, const vrna_md_t *md_from)

#include <ViennaRNA/model.h> Copy/Clone a vrna_md_t model.

Use this function to clone a given model either inplace (target container md_to given) or create a copy
by cloning the source model and returning it (md_to == NULL).

Parameters
• md_to – The model to be overwritten (if non-NULL and md_to != md_from)

• md_from – The model to copy (if non-NULL)

Returns
A pointer to the copy model (or NULL if md_from == NULL)

char *vrna_md_option_string(vrna_md_t *md)
#include <ViennaRNA/model.h> Get a corresponding commandline parameter string of the options in
a vrna_md_t.

Note: This function is not threadsafe!

void vrna_md_set_nonstandards(vrna_md_t *md, const char *ns_bases)
#include <ViennaRNA/model.h>

void vrna_md_defaults_reset(vrna_md_t *md_p)
#include <ViennaRNA/model.h> Reset the global default model details to a specific set of parameters,
or their initial values.

This function resets the global default model details to their initial values, i.e. as specified by the
ViennaRNA Package release, upon passing NULL as argument. Alternatively it resets them according
to a set of provided parameters.

See also:
vrna_md_set_default(), vrna_md_t

Note: The global default parameters affect all function calls of RNAlib where model details are not
explicitly provided. Hence, any change of them is not considered threadsafe

Warning: This function first resets the global default settings to factory defaults, and only then
applies user provided settings (if any). User settings that do not meet specifications are skipped.

Parameters
• md_p – A set of model details to use as global default (if NULL is passed, factory

defaults are restored)

void vrna_md_defaults_temperature(double T)
#include <ViennaRNA/model.h> Set default temperature for energy evaluation of loops.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_TEMPERATURE

7.2. The RNA Folding Grammar 293

ViennaRNA, Release 2.6.4

Parameters
• T – Temperature in centigrade

double vrna_md_defaults_temperature_get(void)
#include <ViennaRNA/model.h> Get default temperature for energy evaluation of loops.

See also:
vrna_md_defaults_temperature(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_TEMPERATURE

Returns
The global default settings for temperature in centigrade

void vrna_md_defaults_betaScale(double b)
#include <ViennaRNA/model.h> Set default scaling factor of thermodynamic temperature in Boltz-
mann factors.

Bolzmann factors are then computed as 𝑒𝑥𝑝(−𝐸/(𝑏 · 𝑘𝑇)).

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_BETA_SCALE

Parameters
• b – The scaling factor, default is 1.0

double vrna_md_defaults_betaScale_get(void)
#include <ViennaRNA/model.h> Get default scaling factor of thermodynamic temperature in Boltz-
mann factors.

See also:
vrna_md_defaults_betaScale(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_BETA_SCALE

Returns
The global default thermodynamic temperature scaling factor

void vrna_md_defaults_pf_smooth(int s)
#include <ViennaRNA/model.h>

int vrna_md_defaults_pf_smooth_get(void)
#include <ViennaRNA/model.h>

void vrna_md_defaults_dangles(int d)
#include <ViennaRNA/model.h> Set default dangle model for structure prediction.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_DANGLES

Parameters
• d – The dangle model

294 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int vrna_md_defaults_dangles_get(void)
#include <ViennaRNA/model.h> Get default dangle model for structure prediction.

See also:
vrna_md_defaults_dangles(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_DANGLES

Returns
The global default settings for the dangle model

void vrna_md_defaults_special_hp(int flag)
#include <ViennaRNA/model.h> Set default behavior for lookup of tabulated free energies for special
hairpin loops, such as Tri-, Tetra-, or Hexa-loops.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_SPECIAL_HP

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_special_hp_get(void)
#include <ViennaRNA/model.h> Get default behavior for lookup of tabulated free energies for special
hairpin loops, such as Tri-, Tetra-, or Hexa-loops.

See also:
vrna_md_defaults_special_hp(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_SPECIAL_HP

Returns
The global default settings for the treatment of special hairpin loops

void vrna_md_defaults_noLP(int flag)
#include <ViennaRNA/model.h> Set default behavior for prediction of canonical secondary structures.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_NO_LP

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_noLP_get(void)
#include <ViennaRNA/model.h> Get default behavior for prediction of canonical secondary structures.

See also:
vrna_md_defaults_noLP(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_NO_LP

7.2. The RNA Folding Grammar 295

ViennaRNA, Release 2.6.4

Returns
The global default settings for predicting canonical secondary structures

void vrna_md_defaults_noGU(int flag)
#include <ViennaRNA/model.h> Set default behavior for treatment of G-U wobble pairs.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_NO_GU

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_noGU_get(void)
#include <ViennaRNA/model.h> Get default behavior for treatment of G-U wobble pairs.

See also:
vrna_md_defaults_noGU(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_NO_GU

Returns
The global default settings for treatment of G-U wobble pairs

void vrna_md_defaults_noGUclosure(int flag)
#include <ViennaRNA/model.h> Set default behavior for G-U pairs as closing pair for loops.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_NO_GU_CLOSURE

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_noGUclosure_get(void)
#include <ViennaRNA/model.h> Get default behavior for G-U pairs as closing pair for loops.

See also:
vrna_md_defaults_noGUclosure(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_NO_GU_CLOSURE

Returns
The global default settings for treatment of G-U pairs closing a loop

void vrna_md_defaults_logML(int flag)
#include <ViennaRNA/model.h> Set default behavior recomputing free energies of multi-branch loops
using a logarithmic model.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_LOG_ML

296 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_logML_get(void)
#include <ViennaRNA/model.h> Get default behavior recomputing free energies of multi-branch loops
using a logarithmic model.

See also:
vrna_md_defaults_logML(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_LOG_ML

Returns
The global default settings for logarithmic model in multi-branch loop free energy eval-
uation

void vrna_md_defaults_circ(int flag)
#include <ViennaRNA/model.h> Set default behavior whether input sequences are circularized.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_CIRC

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_circ_get(void)
#include <ViennaRNA/model.h> Get default behavior whether input sequences are circularized.

See also:
vrna_md_defaults_circ(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_CIRC

Returns
The global default settings for treating input sequences as circular

void vrna_md_defaults_gquad(int flag)
#include <ViennaRNA/model.h> Set default behavior for treatment of G-Quadruplexes.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_GQUAD

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_gquad_get(void)
#include <ViennaRNA/model.h> Get default behavior for treatment of G-Quadruplexes.

7.2. The RNA Folding Grammar 297

ViennaRNA, Release 2.6.4

See also:
vrna_md_defaults_gquad(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_GQUAD

Returns
The global default settings for treatment of G-Quadruplexes

void vrna_md_defaults_uniq_ML(int flag)
#include <ViennaRNA/model.h> Set default behavior for creating additional matrix for unique multi-
branch loop prediction.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_UNIQ_ML

Note: Activating this option usually results in higher memory consumption!

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_uniq_ML_get(void)
#include <ViennaRNA/model.h> Get default behavior for creating additional matrix for unique multi-
branch loop prediction.

See also:
vrna_md_defaults_uniq_ML(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_UNIQ_ML

Returns
The global default settings for creating additional matrices for unique multi-branch loop
prediction

void vrna_md_defaults_energy_set(int e)
#include <ViennaRNA/model.h> Set default energy set.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_ENERGY_SET

Parameters
• e – Energy set (0, 1, 2, 3)

int vrna_md_defaults_energy_set_get(void)
#include <ViennaRNA/model.h> Get default energy set.

See also:
vrna_md_defaults_energy_set(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_ENERGY_SET

298 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Returns
The global default settings for the energy set

void vrna_md_defaults_backtrack(int flag)
#include <ViennaRNA/model.h> Set default behavior for whether to backtrack secondary structures.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_BACKTRACK

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_backtrack_get(void)
#include <ViennaRNA/model.h> Get default behavior for whether to backtrack secondary structures.

See also:
vrna_md_defaults_backtrack(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_BACKTRACK

Returns
The global default settings for backtracking structures

void vrna_md_defaults_backtrack_type(char t)
#include <ViennaRNA/model.h> Set default backtrack type, i.e. which DP matrix is used.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_BACKTRACK_TYPE

Parameters
• t – The type (‘F’, ‘C’, or ‘M’)

char vrna_md_defaults_backtrack_type_get(void)
#include <ViennaRNA/model.h> Get default backtrack type, i.e. which DP matrix is used.

See also:
vrna_md_defaults_backtrack_type(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_BACKTRACK_TYPE

Returns
The global default settings that specify which DP matrix is used for backtracking

void vrna_md_defaults_compute_bpp(int flag)
#include <ViennaRNA/model.h> Set the default behavior for whether to compute base pair probabilities
after partition function computation.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_COMPUTE_BPP

7.2. The RNA Folding Grammar 299

ViennaRNA, Release 2.6.4

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_compute_bpp_get(void)
#include <ViennaRNA/model.h> Get the default behavior for whether to compute base pair probabili-
ties after partition function computation.

See also:
vrna_md_defaults_compute_bpp(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_COMPUTE_BPP

Returns
The global default settings that specify whether base pair probabilities are computed to-
gether with partition function

void vrna_md_defaults_max_bp_span(int span)
#include <ViennaRNA/model.h> Set default maximal base pair span.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_MAX_BP_SPAN

Parameters
• span – Maximal base pair span

int vrna_md_defaults_max_bp_span_get(void)
#include <ViennaRNA/model.h> Get default maximal base pair span.

See also:
vrna_md_defaults_max_bp_span(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_MAX_BP_SPAN

Returns
The global default settings for maximum base pair span

void vrna_md_defaults_min_loop_size(int size)
#include <ViennaRNA/model.h> Set default minimal loop size.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, TURN

Parameters
• size – Minimal size, i.e. number of unpaired nucleotides for a hairpin loop

int vrna_md_defaults_min_loop_size_get(void)
#include <ViennaRNA/model.h> Get default minimal loop size.

300 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_md_defaults_min_loop_size(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
TURN

Returns
The global default settings for minimal size of hairpin loops

void vrna_md_defaults_window_size(int size)
#include <ViennaRNA/model.h> Set default window size for sliding window structure prediction ap-
proaches.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_WINDOW_SIZE

Parameters
• size – The size of the sliding window

int vrna_md_defaults_window_size_get(void)
#include <ViennaRNA/model.h> Get default window size for sliding window structure prediction ap-
proaches.

See also:
vrna_md_defaults_window_size(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_WINDOW_SIZE

Returns
The global default settings for the size of the sliding window

void vrna_md_defaults_oldAliEn(int flag)
#include <ViennaRNA/model.h> Set default behavior for whether to use old energy model for compar-
ative structure prediction.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_ALI_OLD_EN

Note: This option is outdated. Activating the old energy model usually results in worse consensus
structure predictions.

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_oldAliEn_get(void)
#include <ViennaRNA/model.h> Get default behavior for whether to use old energy model for com-
parative structure prediction.

See also:
vrna_md_defaults_oldAliEn(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_ALI_OLD_EN

7.2. The RNA Folding Grammar 301

ViennaRNA, Release 2.6.4

Returns
The global default settings for using old energy model for comparative structure predic-
tion

void vrna_md_defaults_ribo(int flag)
#include <ViennaRNA/model.h> Set default behavior for whether to use Ribosum Scoring in compar-
ative structure prediction.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_ALI_RIBO

Parameters
• flag – On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_ribo_get(void)
#include <ViennaRNA/model.h> Get default behavior for whether to use Ribosum Scoring in compar-
ative structure prediction.

See also:
vrna_md_defaults_ribo(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_ALI_RIBO

Returns
The global default settings for using Ribosum scoring in comparative structure prediction

void vrna_md_defaults_cv_fact(double factor)
#include <ViennaRNA/model.h> Set the default co-variance scaling factor used in comparative struc-
ture prediction.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_ALI_CV_FACT

Parameters
• factor – The co-variance factor

double vrna_md_defaults_cv_fact_get(void)
#include <ViennaRNA/model.h> Get the default co-variance scaling factor used in comparative struc-
ture prediction.

See also:
vrna_md_defaults_cv_fact(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_ALI_CV_FACT

Returns
The global default settings for the co-variance factor

302 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void vrna_md_defaults_nc_fact(double factor)
#include <ViennaRNA/model.h>

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_ALI_NC_FACT

Parameters
• factor –

double vrna_md_defaults_nc_fact_get(void)
#include <ViennaRNA/model.h>

See also:
vrna_md_defaults_nc_fact(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_ALI_NC_FACT

Returns

void vrna_md_defaults_sfact(double factor)
#include <ViennaRNA/model.h> Set the default scaling factor used to avoid under-/overflows in parti-
tion function computation.

See also:
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t

Parameters
• factor – The scaling factor (default: 1.07)

double vrna_md_defaults_sfact_get(void)
#include <ViennaRNA/model.h> Get the default scaling factor used to avoid under-/overflows in par-
tition function computation.

See also:
vrna_md_defaults_sfact(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t

Returns
The global default settings of the scaling factor

void vrna_md_defaults_salt(double salt)
#include <ViennaRNA/model.h> Set the default salt concentration.

Parameters
• salt – The sodium concentration in M (default: 1.021)

double vrna_md_defaults_salt_get(void)
#include <ViennaRNA/model.h> Get the default salt concentration.

Returns
The default salt concentration

7.2. The RNA Folding Grammar 303

ViennaRNA, Release 2.6.4

void vrna_md_defaults_saltMLLower(int lower)
#include <ViennaRNA/model.h> Set the default multiloop size lower bound for loop salt correciton
linear fitting.

Parameters
• lower – Size lower bound (number of backbone in loop)

int vrna_md_defaults_saltMLLower_get(void)
#include <ViennaRNA/model.h> Get the default multiloop size lower bound for loop salt correciton
linear fitting.

Returns
The default lower bound

void vrna_md_defaults_saltMLUpper(int upper)
#include <ViennaRNA/model.h> Set the default multiloop size upper bound for loop salt correciton
linear fitting.

Parameters
• upper – Size Upper bound (number of backbone in loop)

int vrna_md_defaults_saltMLUpper_get(void)
#include <ViennaRNA/model.h> Get the default multiloop size upper bound for loop salt correciton
linear fitting.

Returns
The default upper bound

void vrna_md_defaults_saltDPXInit(int value)
#include <ViennaRNA/model.h> Set user-provided salt correciton for duplex initialization If value is
99999 the default value from fitting is used.

Parameters
• value – The value of salt correction for duplex initialization (in dcal/mol)

int vrna_md_defaults_saltDPXInit_get(void)
#include <ViennaRNA/model.h> Get user-provided salt correciton for duplex initialization If value is
99999 the default value from fitting is used.

Returns
The user-provided salt correction for duplex initialization

void vrna_md_defaults_saltDPXInitFact(float value)
#include <ViennaRNA/model.h>

float vrna_md_defaults_saltDPXInitFact_get(void)
#include <ViennaRNA/model.h>

void vrna_md_defaults_helical_rise(float value)
#include <ViennaRNA/model.h>

float vrna_md_defaults_helical_rise_get(void)
#include <ViennaRNA/model.h>

void vrna_md_defaults_backbone_length(float value)
#include <ViennaRNA/model.h>

float vrna_md_defaults_backbone_length_get(void)
#include <ViennaRNA/model.h>

304 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void set_model_details(vrna_md_t *md)
#include <ViennaRNA/model.h> Set default model details.

Use this function if you wish to initialize a vrna_md_t data structure with its default values, i.e. the
global model settings as provided by the deprecated global variables.

Deprecated:
This function will vanish as soon as backward compatibility of RNAlib is dropped (expected in
version 3). Use vrna_md_set_default() instead!

Parameters
• md – A pointer to the data structure that is about to be initialized

char *option_string(void)
#include <ViennaRNA/model.h>

Variables

double temperature
Rescale energy parameters to a temperature in degC.

Default is 37C. You have to call the update_. . . _params() functions after changing this parameter.

Deprecated:
Use vrna_md_defaults_temperature(), and vrna_md_defaults_temperature_get() to change, and
read the global default temperature settings

See also:
vrna_md_defaults_temperature(), vrna_md_defaults_temperature_get(), vrna_md_defaults_reset()

double pf_scale
A scaling factor used by pf_fold() to avoid overflows.

Should be set to approximately 𝑒𝑥𝑝((−𝐹/𝑘𝑇)/𝑙𝑒𝑛𝑔𝑡ℎ), where 𝐹 is an estimate for the ensemble free
energy, for example the minimum free energy. You must call update_pf_params() after changing this
parameter.

If pf_scale is -1 (the default) , an estimate will be provided automatically when computing partition
functions, e.g. pf_fold() The automatic estimate is usually insufficient for sequences more than a few
hundred bases long.

int dangles
Switch the energy model for dangling end contributions (0, 1, 2, 3)

If set to 0 no stabilizing energies are assigned to bases adjacent to helices in free ends and multiloops
(so called dangling ends). Normally (dangles = 1) dangling end energies are assigned only to unpaired
bases and a base cannot participate simultaneously in two dangling ends. In the partition function
algorithm pf_fold() these checks are neglected. If dangles is set to 2, all folding routines will follow this
convention. This treatment of dangling ends gives more favorable energies to helices directly adjacent
to one another, which can be beneficial since such helices often do engage in stabilizing interactions
through co-axial stacking.

If dangles = 3 co-axial stacking is explicitly included for adjacent helices in multiloops. The option
affects only mfe folding and energy evaluation (fold() and energy_of_structure()), as well as suboptimal

7.2. The RNA Folding Grammar 305

ViennaRNA, Release 2.6.4

folding (subopt()) via re-evaluation of energies. Co-axial stacking with one intervening mismatch is
not considered so far.

Default is 2 in most algorithms, partition function algorithms can only handle 0 and 2

int tetra_loop
Include special stabilizing energies for some tri-, tetra- and hexa-loops;.

default is 1.

int noLonelyPairs
Global switch to avoid/allow helices of length 1.

Disallow all pairs which can only occur as lonely pairs (i.e. as helix of length 1). This avoids lonely
base pairs in the predicted structures in most cases.

int noGU
Global switch to forbid/allow GU base pairs at all.

int no_closingGU
GU allowed only inside stacks if set to 1.

int circ
backward compatibility variable.. this does not effect anything

int gquad
Allow G-quadruplex formation.

int uniq_ML
do ML decomposition uniquely (for subopt)

int energy_set
0 = BP; 1=any with GC; 2=any with AU-parameter

If set to 1 or 2: fold sequences from an artificial alphabet ABCD. . . , where A pairs B, C pairs D, etc.
using either GC (1) or AU parameters (2); default is 0, you probably don’t want to change it.

int do_backtrack
do backtracking, i.e. compute secondary structures or base pair probabilities

If 0, do not calculate pair probabilities in pf_fold(); this is about twice as fast. Default is 1.

char backtrack_type
A backtrack array marker for inverse_fold()

If set to ‘C’: force (1,N) to be paired, ‘M’ fold as if the sequence were inside a multiloop. Otherwise
(‘F’) the usual mfe structure is computed.

char *nonstandards
contains allowed non standard base pairs

Lists additional base pairs that will be allowed to form in addition to GC, CG, AU, UA, GU and UG.
Nonstandard base pairs are given a stacking energy of 0.

306 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int max_bp_span
Maximum allowed base pair span.

A value of -1 indicates no restriction for distant base pairs.

int oldAliEn
use old alifold energies (with gaps)

int ribo
use ribosum matrices

double cv_fact

double nc_fact

int logML
if nonzero use logarithmic ML energy in energy_of_struct

double salt
salt concentration

int saltDPXInit
Salt correction for duplex initialization.

float helical_rise

float backbone_length

struct vrna_md_s
#include <ViennaRNA/model.h> The data structure that contains the complete model details used
throughout the calculations.

For convenience reasons, we provide the type name vrna_md_t to address this data structure without
the use of the struct keyword

SWIG Wrapper Notes:

This data structure is wrapped as an object md with multiple related functions attached as methods.

A new set of default parameters can be obtained by calling the constructure of md:
• md() — Initialize with default settings

The resulting object has a list of attached methods which directly correspond to functions that
mainly operate on the corresponding C data structure:

• reset() - vrna_md_set_default()
• set_from_globals() - set_model_details()
• option_string() - vrna_md_option_string()

Note, that default parameters can be modified by directly setting any of the following global vari-
ables. Internally, getting/setting default parameters using their global variable representative trans-
lates into calls of the following functions, therefore these wrappers for these functions do not exist
in the scripting language interface(s):

7.2. The RNA Folding Grammar 307

ViennaRNA, Release 2.6.4

global variable C getter C setter
temperature vrna_md_defaults_temperature_get() vrna_md_defaults_temperature()
dangles vrna_md_defaults_dangles_get() vrna_md_defaults_dangles()
betaScale vrna_md_defaults_betaScale_get() vrna_md_defaults_betaScale()
tetra_loop this is an alias of special_hp

special_hp vrna_md_defaults_special_hp_get() vrna_md_defaults_special_hp()
noLonelyPairs this is an alias of noLP

noLP vrna_md_defaults_noLP_get() vrna_md_defaults_noLP()
noGU vrna_md_defaults_noGU_get() vrna_md_defaults_noGU()
no_closingGU this is an alias of noGUclosure

noGUclosure vrna_md_defaults_noGUclosure_get() vrna_md_defaults_noGUclosure()
logML vrna_md_defaults_logML_get() vrna_md_defaults_logML()
circ vrna_md_defaults_circ_get() vrna_md_defaults_circ()
gquad vrna_md_defaults_gquad_get() vrna_md_defaults_gquad()
uniq_ML vrna_md_defaults_uniq_ML_get() vrna_md_defaults_uniq_ML()
energy_set vrna_md_defaults_energy_set_get() vrna_md_defaults_energy_set()
backtrack vrna_md_defaults_backtrack_get() vrna_md_defaults_backtrack()
backtrack_type vrna_md_defaults_backtrack_type_get() vrna_md_defaults_backtrack_type()
do_backtrack this is an alias of compute_bpp

compute_bpp vrna_md_defaults_compute_bpp_get() vrna_md_defaults_compute_bpp()
max_bp_span vrna_md_defaults_max_bp_span_get() vrna_md_defaults_max_bp_span()
min_loop_size vrna_md_defaults_min_loop_size_get() vrna_md_defaults_min_loop_size()
window_size vrna_md_defaults_window_size_get() vrna_md_defaults_window_size()
oldAliEn vrna_md_defaults_oldAliEn_get() vrna_md_defaults_oldAliEn()
ribo vrna_md_defaults_ribo_get() vrna_md_defaults_ribo()
cv_fact vrna_md_defaults_cv_fact_get() vrna_md_defaults_cv_fact()
nc_fact vrna_md_defaults_nc_fact_get() vrna_md_defaults_nc_fact()
sfact vrna_md_defaults_sfact_get() vrna_md_defaults_sfact()

See also:
vrna_md_set_default(), set_model_details(), vrna_md_update(), vrna_md_t

Public Members

double temperature
The temperature used to scale the thermodynamic parameters.

double betaScale
A scaling factor for the thermodynamic temperature of the Boltzmann factors.

int pf_smooth
A flat specifying whether energies in Boltzmann factors need to be smoothed.

int dangles
Specifies the dangle model used in any energy evaluation (0,1,2 or 3)

If set to 0 no stabilizing energies are assigned to bases adjacent to helices in free ends and multi-
loops (so called dangling ends). Normally (dangles = 1) dangling end energies are assigned only

308 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

to unpaired bases and a base cannot participate simultaneously in two dangling ends. In the parti-
tion function algorithm vrna_pf() these checks are neglected. To provide comparability between
free energy minimization and partition function algorithms, the default setting is 2. This treatment
of dangling ends gives more favorable energies to helices directly adjacent to one another, which
can be beneficial since such helices often do engage in stabilizing interactions through co-axial
stacking.

If set to 3 co-axial stacking is explicitly included for adjacent helices in multiloops. The option
affects only mfe folding and energy evaluation (vrna_mfe() and vrna_eval_structure()), as well
as suboptimal folding (vrna_subopt()) via re-evaluation of energies. Co-axial stacking with one
intervening mismatch is not considered so far. Note, that some function do not implement all
dangle model but only a subset of (0,1,2,3). In particular, partition function algorithms can only
handle 0 and 2. Read the documentation of the particular recurrences or energy evaluation function
for information about the provided dangle model.

int special_hp
Include special hairpin contributions for tri, tetra and hexaloops.

int noLP
Only consider canonical structures, i.e. no ‘lonely’ base pairs.

int noGU
Do not allow GU pairs.

int noGUclosure
Do not allow loops to be closed by GU pair.

int logML
Use logarithmic scaling for multiloops.

int circ
Assume RNA to be circular instead of linear.

int gquad
Include G-quadruplexes in structure prediction.

int uniq_ML
Flag to ensure unique multi-branch loop decomposition during folding.

int energy_set
Specifies the energy set that defines set of compatible base pairs.

int backtrack
Specifies whether or not secondary structures should be backtraced.

char backtrack_type
Specifies in which matrix to backtrack.

int compute_bpp
Specifies whether or not backward recursions for base pair probability (bpp) computation will be
performed.

7.2. The RNA Folding Grammar 309

ViennaRNA, Release 2.6.4

char nonstandards[64]
contains allowed non standard bases

int max_bp_span
maximum allowed base pair span

int min_loop_size
Minimum size of hairpin loops.

The default value for this field is TURN, however, it may be 0 in cofolding context.

int window_size
Size of the sliding window for locally optimal structure prediction.

int oldAliEn
Use old alifold energy model.

int ribo
Use ribosum scoring table in alifold energy model.

double cv_fact
Co-variance scaling factor for consensus structure prediction.

double nc_fact
Scaling factor to weight co-variance contributions of non-canonical pairs.

double sfact
Scaling factor for partition function scaling.

int rtype[8]
Reverse base pair type array.

short alias[MAXALPHA + 1]
alias of an integer nucleotide representation

int pair[MAXALPHA + 1][MAXALPHA + 1]
Integer representation of a base pair.

float pair_dist[7][7]
Base pair dissimilarity, a.k.a. distance matrix.

double salt
Salt (monovalent) concentration (M) in buffer.

int saltMLLower
Lower bound of multiloop size to use in loop salt correction linear fitting.

int saltMLUpper
Upper bound of multiloop size to use in loop salt correction linear fitting.

310 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int saltDPXInit
User-provided salt correction for duplex initialization (in dcal/mol). If set to 99999 the default salt
correction is used. If set to 0 there is no salt correction for duplex initialization.

float saltDPXInitFact

float helical_rise

float backbone_length

7.2.2 Unstructured Domains

Add and modify unstructured domains to the RNA folding grammar.

This module provides the tools to add and modify unstructured domains to the production rules of the RNA folding
grammar. Usually this functionality is utilized for incorporating ligand binding to unpaired stretches of an RNA.

Warning: Although the additional production rule(s) for unstructured domains as descibed in Unstructured
Domains are always treated as segments possibly bound to one or more ligands, the current implementation
requires that at least one ligand is bound. The default implementation already takes care of the required changes,
however, upon using callback functions other than the default ones, one has to take care of this fact. Please also
note, that this behavior might change in one of the next releases, such that the decomposition schemes as shown
above comply with the actual implementation.

A default implementation allows one to readily use this feature by simply adding sequence motifs and correspond-
ing binding free energies with the function vrna_ud_add_motif() (see also Ligands Binding to Unstructured
Domains).

The grammar extension is realized using a callback function that

• evaluates the binding free energy of a ligand to its target sequence segment (white boxes in the figures above),
or

• returns the free energy of an unpaired stretch possibly bound by a ligand, stored in the additional UDP matrix.

The callback is passed the segment positions, the loop context, and which of the two above mentioned evaluations
are required. A second callback implements the pre-processing step that prepares the U DP matrix by evaluating
all possible cases of the additional production rule. Both callbacks have a default implementation in RNAlib, but
may be over-written by a user-implementation, making it fully user-customizable.

For equilibrium probability computations, two additional callbacks exist. One to store/add and one to retrieve the
probability of unstructured domains at particular positions. Our implementation already takes care of computing
the probabilities, but users of the unstructured domain feature are required to provide a mechanism to efficiently
store/add the corresponding values into some external data structure.

7.2. The RNA Folding Grammar 311

ViennaRNA, Release 2.6.4

Defines

VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpiared stretch in
the exterior loop.

VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpaired stretch in
a hairpin loop.

VRNA_UNSTRUCTURED_DOMAIN_INT_LOOP

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpiared stretch in
an interior loop.

VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpiared stretch in
a multibranch loop.

VRNA_UNSTRUCTURED_DOMAIN_MOTIF

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand binding without additional
unbound nucleotides (motif-only)

VRNA_UNSTRUCTURED_DOMAIN_ALL_LOOPS

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpiared stretch in
any loop (convenience macro)

Typedefs

typedef struct vrna_unstructured_domain_s vrna_ud_t
#include <ViennaRNA/unstructured_domains.h> Typename for the ligand binding extension data
structure vrna_unstructured_domain_s.

typedef int (*vrna_ud_f)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type, void *data)
#include <ViennaRNA/unstructured_domains.h> Callback to retrieve binding free energy of a ligand
bound to an unpaired sequence segment.

Notes on Callback Functions:
This function will be called to determine the additional energy contribution of a specific unstruc-
tured domain, e.g. the binding free energy of some ligand.

Param fc
The current vrna_fold_compound_t

Param i
The start of the unstructured domain (5’ end)

Param j
The end of the unstructured domain (3’ end)

Param loop_type
The loop context of the unstructured domain

312 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Param data
Auxiliary data

Return
The auxiliary energy contribution in deka-cal/mol

typedef FLT_OR_DBL (*vrna_ud_exp_f)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type,
void *data)

#include <ViennaRNA/unstructured_domains.h> Callback to retrieve Boltzmann factor of the binding
free energy of a ligand bound to an unpaired sequence segment.

Notes on Callback Functions:
This function will be called to determine the additional energy contribution of a specific unstruc-
tured domain, e.g. the binding free energy of some ligand (Partition function variant, i.e. the
Boltzmann factors instead of actual free energies).

Param fc
The current vrna_fold_compound_t

Param i
The start of the unstructured domain (5’ end)

Param j
The end of the unstructured domain (3’ end)

Param loop_type
The loop context of the unstructured domain

Param data
Auxiliary data

Return
The auxiliary energy contribution as Boltzmann factor

typedef void (*vrna_ud_production_f)(vrna_fold_compound_t *fc, void *data)
#include <ViennaRNA/unstructured_domains.h> Callback for pre-processing the production rule of
the ligand binding to unpaired stretches feature.

Notes on Callback Functions:
The production rule for the unstructured domain grammar extension

typedef void (*vrna_ud_exp_production_f)(vrna_fold_compound_t *fc, void *data)
#include <ViennaRNA/unstructured_domains.h> Callback for pre-processing the production rule of
the ligand binding to unpaired stretches feature (partition function variant)

Notes on Callback Functions:
The production rule for the unstructured domain grammar extension (Partition function variant)

typedef void (*vrna_ud_add_probs_f)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type,
FLT_OR_DBL exp_energy, void *data)

#include <ViennaRNA/unstructured_domains.h> Callback to store/add equilibrium probability for a
ligand bound to an unpaired sequence segment.

7.2. The RNA Folding Grammar 313

ViennaRNA, Release 2.6.4

Notes on Callback Functions:
A callback function to store equilibrium probabilities for the unstructured domain feature

typedef FLT_OR_DBL (*vrna_ud_get_probs_f)(vrna_fold_compound_t *fc, int i, int j, unsigned int
loop_type, int motif, void *data)

#include <ViennaRNA/unstructured_domains.h> Callback to retrieve equilibrium probability for a lig-
and bound to an unpaired sequence segment.

Notes on Callback Functions:
A callback function to retrieve equilibrium probabilities for the unstructured domain feature

Functions

vrna_ud_motif_t *vrna_ud_motifs_centroid(vrna_fold_compound_t *fc, const char *structure)
#include <ViennaRNA/unstructured_domains.h> Detect unstructured domains in centroid structure.

Given a centroid structure and a set of unstructured domains compute the list of unstructured domain
motifs present in the centroid. Since we do not explicitly annotate unstructured domain motifs in dot-
bracket strings, this function can be used to check for the presence and location of unstructured domain
motifs under the assumption that the dot-bracket string is the centroid structure of the equiibrium en-
semble.

See also:
vrna_centroid()

Parameters
• fc – The fold_compound data structure with pre-computed equilibrium probabilities

and model settings

• structure – The centroid structure in dot-bracket notation

Returns
A list of unstructured domain motifs (possibly NULL). The last element terminates the
list with start=0, number=-1

vrna_ud_motif_t *vrna_ud_motifs_MEA(vrna_fold_compound_t *fc, const char *structure, vrna_ep_t
*probability_list)

#include <ViennaRNA/unstructured_domains.h> Detect unstructured domains in MEA structure.

Given an MEA structure and a set of unstructured domains compute the list of unstructured domain
motifs present in the MEA structure. Since we do not explicitly annotate unstructured domain motifs
in dot-bracket strings, this function can be used to check for the presence and location of unstructured
domain motifs under the assumption that the dot-bracket string is the MEA structure of the equiibrium
ensemble.

See also:
MEA()

Parameters
• fc – The fold_compound data structure with pre-computed equilibrium probabilities

and model settings

• structure – The MEA structure in dot-bracket notation

314 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• probability_list – The list of probabilities to extract the MEA structure from

Returns
A list of unstructured domain motifs (possibly NULL). The last element terminates the
list with start=0, number=-1

vrna_ud_motif_t *vrna_ud_motifs_MFE(vrna_fold_compound_t *fc, const char *structure)
#include <ViennaRNA/unstructured_domains.h> Detect unstructured domains in MFE structure.

Given an MFE structure and a set of unstructured domains compute the list of unstructured domain
motifs present in the MFE structure. Since we do not explicitly annotate unstructured domain motifs
in dot-bracket strings, this function can be used to check for the presence and location of unstructured
domain motifs under the assumption that the dot-bracket string is the MFE structure of the equiibrium
ensemble.

See also:
vrna_mfe()

Parameters
• fc – The fold_compound data structure with model settings

• structure – The MFE structure in dot-bracket notation

Returns
A list of unstructured domain motifs (possibly NULL). The last element terminates the
list with start=0, number=-1

void vrna_ud_add_motif(vrna_fold_compound_t *fc, const char *motif, double motif_en, const char
*motif_name, unsigned int loop_type)

#include <ViennaRNA/unstructured_domains.h> Add an unstructured domain motif, e.g. for ligand
binding.

This function adds a ligand binding motif and the associated binding free energy to the vrna_ud_t at-
tribute of a vrna_fold_compound_t. The motif data will then be used in subsequent secondary structure
predictions. Multiple calls to this function with different motifs append all additional data to a list of lig-
ands, which all will be evaluated. Ligand motif data can be removed from the vrna_fold_compound_t
again using the vrna_ud_remove() function. The loop type parameter allows one to limit the ligand
binding to particular loop type, such as the exterior loop, hairpin loops, interior loops, or multibranch
loops.

See also:
VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP, VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP,
VRNA_UNSTRUCTURED_DOMAIN_INT_LOOP, VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP,
VRNA_UNSTRUCTURED_DOMAIN_ALL_LOOPS, vrna_ud_remove()

Parameters
• fc – The vrna_fold_compound_t data structure the ligand motif should be bound to

• motif – The sequence motif the ligand binds to

• motif_en – The binding free energy of the ligand in kcal/mol

• motif_name – The name/id of the motif (may be NULL)

• loop_type – The loop type the ligand binds to

7.2. The RNA Folding Grammar 315

ViennaRNA, Release 2.6.4

void vrna_ud_remove(vrna_fold_compound_t *fc)
#include <ViennaRNA/unstructured_domains.h> Remove ligand binding to unpaired stretches.

This function removes all ligand motifs that were bound to a vrna_fold_compound_t using the
vrna_ud_add_motif() function.

SWIG Wrapper Notes:
This function is attached as method ud_remove() to objects of type fold_compound. See, e.g.
RNA.fold_compound.ud_remove() in the Python API .

Parameters
• fc – The vrna_fold_compound_t data structure the ligand motif data should be re-

moved from

void vrna_ud_set_data(vrna_fold_compound_t *fc, void *data, vrna_auxdata_free_f free_cb)
#include <ViennaRNA/unstructured_domains.h> Attach an auxiliary data structure.

This function binds an arbitrary, auxiliary data structure for user-implemented ligand binding. The op-
tional callback free_cb will be passed the bound data structure whenever the vrna_fold_compound_t
is removed from memory to avoid memory leaks.

SWIG Wrapper Notes:
This function is attached as method ud_set_data() to objects of type fold_compound. See,
e.g. RNA.fold_compound.ud_set_data() in the Python API .

See also:
vrna_ud_set_prod_rule_cb(), vrna_ud_set_exp_prod_rule_cb(), vrna_ud_remove()

Parameters
• fc – The vrna_fold_compound_t data structure the auxiliary data structure should be

bound to

• data – A pointer to the auxiliary data structure

• free_cb – A pointer to a callback function that free’s memory occupied by data

void vrna_ud_set_prod_rule_cb(vrna_fold_compound_t *fc, vrna_ud_production_f pre_cb,
vrna_ud_f e_cb)

#include <ViennaRNA/unstructured_domains.h> Attach production rule callbacks for free energies
computations.

Use this function to bind a user-implemented grammar extension for unstructured domains.

The callback e_cb needs to evaluate the free energy contribution 𝑓(𝑖, 𝑗) of the unpaired segment [𝑖, 𝑗].
It will be executed in each of the regular secondary structure production rules. Whenever the call-
back is passed the VRNA_UNSTRUCTURED_DOMAIN_MOTIF flag via its loop_type parameter
the contribution of any ligand that consecutively binds from position 𝑖 to 𝑗 (the white box) is re-
quested. Otherwise, the callback usually performs a lookup in the precomputed B matrices. Which B
matrix is addressed will be indicated by the flags VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP,
VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP VRNA_UNSTRUCTURED_DOMAIN_INT_LOOP,
and VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP. As their names already imply, they specify ex-
terior loops (F production rule), hairpin loops and interior loops (C production rule), and multibranch
loops (M and M1 production rule).

316 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

The pre_cb callback will be executed as a pre-processing step right before the regular secondary struc-
ture rules. Usually one would use this callback to fill the dynamic programming matrices U and prepa-
rations of the auxiliary data structure vrna_unstructured_domain_s.data

SWIG Wrapper Notes:
This function is attached as method ud_set_prod_rule_cb() to objects of type
fold_compound. See, e.g. RNA.fold_compound.ud_set_prod_rule_cb() in the Python
API .

Parameters
• fc – The vrna_fold_compound_t data structure the callback will be bound to

• pre_cb – A pointer to a callback function for the B production rule

• e_cb – A pointer to a callback function for free energy evaluation

void vrna_ud_set_exp_prod_rule_cb(vrna_fold_compound_t *fc, vrna_ud_exp_production_f
pre_cb, vrna_ud_exp_f exp_e_cb)

#include <ViennaRNA/unstructured_domains.h> Attach production rule for partition function.

This function is the partition function companion of vrna_ud_set_prod_rule_cb().

Use it to bind callbacks to (i) fill the U production rule dynamic programming matrices and/or prepare
the vrna_unstructured_domain_s.data, and (ii) provide a callback to retrieve partition functions for
subsegments [𝑖, 𝑗].

SWIG Wrapper Notes:
This function is attached as method ud_set_exp_prod_rule_cb() to objects of type
fold_compound. See, e.g. RNA.fold_compound.ud_set_exp_prod_rule_cb() in the
Python API .

See also:
vrna_ud_set_prod_rule_cb()

Parameters
• fc – The vrna_fold_compound_t data structure the callback will be bound to

• pre_cb – A pointer to a callback function for the B production rule

• exp_e_cb – A pointer to a callback function that retrieves the partition function for a
segment [𝑖, 𝑗] that may be bound by one or more ligands.

7.2. The RNA Folding Grammar 317

ViennaRNA, Release 2.6.4

struct vrna_unstructured_domain_s
#include <ViennaRNA/unstructured_domains.h> Data structure to store all functionality for ligand
binding.

Public Members

int uniq_motif_count
The unique number of motifs of different lengths.

unsigned int *uniq_motif_size
An array storing a unique list of motif lengths.

int motif_count
Total number of distinguished motifs.

char **motif
Motif sequences.

char **motif_name
Motif identifier/name.

unsigned int *motif_size
Motif lengths.

double *motif_en
Ligand binding free energy contribution.

unsigned int *motif_type
Type of motif, i.e. loop type the ligand binds to.

vrna_ud_production_f prod_cb
Callback to ligand binding production rule, i.e. create/fill DP free energy matrices.

This callback will be executed right before the actual secondary structure decompositions, and,
therefore, any implementation must not interleave with the regular DP matrices.

vrna_ud_exp_production_f exp_prod_cb
Callback to ligand binding production rule, i.e. create/fill DP partition function matrices.

vrna_ud_f energy_cb
Callback to evaluate free energy of ligand binding to a particular unpaired stretch.

vrna_ud_exp_f exp_energy_cb
Callback to evaluate Boltzmann factor of ligand binding to a particular unpaired stretch.

void *data
Auxiliary data structure passed to energy evaluation callbacks.

318 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

vrna_auxdata_free_f free_data
Callback to free auxiliary data structure.

vrna_ud_add_probs_f probs_add
Callback to store/add outside partition function.

vrna_ud_get_probs_f probs_get
Callback to retrieve outside partition function.

7.2.3 Structured Domains

Add and modify structured domains to the RNA folding grammar.

This module provides the tools to add and modify structured domains to the production rules of the RNA folding
grammar.

Usually this functionality is utilized for incorporating self-enclosed structural modules that exhibit a more or less
complex base pairing pattern.

7.2.4 Secondary Structure Constraints

Secondary structure constraints provide an easy control of which structures the prediction algorithms actually
include into their solution space and how these structures are evaluated.

Hard Constraints

This module covers all functionality for hard constraints in secondary structure prediction.

Defines

VRNA_CONSTRAINT_DB

#include <ViennaRNA/constraints/hard.h> Flag for vrna_constraints_add() to indicate that constraint
is passed in pseudo dot-bracket notation.

See also:
vrna_constraints_add(), vrna_message_constraint_options(), vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_ENFORCE_BP

#include <ViennaRNA/constraints/hard.h> Switch for dot-bracket structure constraint to enforce base
pairs.

This flag should be used to really enforce base pairs given in dot-bracket constraint rather than just
weakly-enforcing them.

7.2. The RNA Folding Grammar 319

ViennaRNA, Release 2.6.4

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_PIPE

#include <ViennaRNA/constraints/hard.h> Flag that is used to indicate the pipe ‘|’ sign in pseudo
dot-bracket notation of hard constraints.

Use this definition to indicate the pipe sign ‘|’ (paired with another base)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_DOT

#include <ViennaRNA/constraints/hard.h> dot ‘.’ switch for structure constraints (no constraint at all)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_X

#include <ViennaRNA/constraints/hard.h> ‘x’ switch for structure constraint (base must not pair)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_RND_BRACK

#include <ViennaRNA/constraints/hard.h> round brackets ‘(‘,’)’ switch for structure constraint (base
i pairs base j)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_INTRAMOL

#include <ViennaRNA/constraints/hard.h> Flag that is used to indicate the character ‘l’ in pseudo dot-
bracket notation of hard constraints.

Use this definition to indicate the usage of ‘l’ character (intramolecular pairs only)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

320 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_CONSTRAINT_DB_INTERMOL

#include <ViennaRNA/constraints/hard.h> Flag that is used to indicate the character ‘e’ in pseudo
dot-bracket notation of hard constraints.

Use this definition to indicate the usage of ‘e’ character (intermolecular pairs only)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_GQUAD

#include <ViennaRNA/constraints/hard.h> ‘+’ switch for structure constraint (base is involved in a
gquad)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

Warning: This flag is for future purposes only! No implementation recognizes it yet.

VRNA_CONSTRAINT_DB_WUSS

#include <ViennaRNA/constraints/hard.h> Flag to indicate Washington University Secondary Struc-
ture (WUSS) notation of the hard constraint string.

This secondary structure notation for RNAs is usually used as consensus secondary structure (SS_cons)
entry in Stockholm formatted files

VRNA_CONSTRAINT_DB_DEFAULT

#include <ViennaRNA/constraints/hard.h> Switch for dot-bracket structure constraint with default
symbols.

This flag conveniently combines all possible symbols in dot-bracket notation for hard constraints and
VRNA_CONSTRAINT_DB

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

VRNA_CONSTRAINT_CONTEXT_EXT_LOOP

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair in the exterior loop.

VRNA_CONSTRAINT_CONTEXT_HP_LOOP

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair encloses hairpin loop.

VRNA_CONSTRAINT_CONTEXT_INT_LOOP

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair encloses an interior loop.

7.2. The RNA Folding Grammar 321

ViennaRNA, Release 2.6.4

VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair encloses a multi branch
loop.

VRNA_CONSTRAINT_CONTEXT_MB_LOOP

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair is enclosed in an interior
loop.

VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair is enclosed in a multi
branch loop.

VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS

#include <ViennaRNA/constraints/hard.h> Constraint context flag indicating any loop context.

Typedefs

typedef struct vrna_hc_s vrna_hc_t
#include <ViennaRNA/constraints/hard.h> Typename for the hard constraints data structure
vrna_hc_s.

typedef struct vrna_hc_up_s vrna_hc_up_t
#include <ViennaRNA/constraints/hard.h> Typename for the single nucleotide hard constraint data
structure vrna_hc_up_s.

typedef unsigned char (*vrna_hc_eval_f)(int i, int j, int k, int l, unsigned char d, void *data)
#include <ViennaRNA/constraints/hard.h> Callback to evaluate whether or not a particular decompo-
sition step is contributing to the solution space.

This is the prototype for callback functions used by the folding recursions to evaluate generic hard
constraints. The first four parameters passed indicate the delimiting nucleotide positions of the decom-
position, and the parameter denotes the decomposition step. The last parameter data is the auxiliary
data structure associated to the hard constraints via vrna_hc_add_data(), or NULL if no auxiliary data
was added.

Notes on Callback Functions:
This callback enables one to over-rule default hard constraints in secondary structure decomposi-
tions.

See also:
VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML,
VRNA_DECOMP_ML_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML,
VRNA_DECOMP_ML_UP, VRNA_DECOMP_ML_ML_STEM, VRNA_DECOMP_ML_COAXIAL,
VRNA_DECOMP_EXT_EXT , VRNA_DECOMP_EXT_UP, VRNA_DECOMP_EXT_STEM,
VRNA_DECOMP_EXT_EXT_EXT , VRNA_DECOMP_EXT_STEM_EXT ,
VRNA_DECOMP_EXT_EXT_STEM, VRNA_DECOMP_EXT_EXT_STEM1, vrna_hc_add_f(),
vrna_hc_add_data()

Param i
Left (5’) delimiter position of substructure

322 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Param j
Right (3’) delimiter position of substructure

Param k
Left delimiter of decomposition

Param l
Right delimiter of decomposition

Param d
Decomposition step indicator

Param data
Auxiliary data

Return
A non-zero value if the decomposition is valid, 0 otherwise

Functions

void vrna_constraints_add(vrna_fold_compound_t *fc, const char *constraint, unsigned int options)
#include <ViennaRNA/constraints/basic.h> Add constraints to a vrna_fold_compound_t data struc-
ture.

Use this function to add/update the hard/soft constraints The function allows for passing a string
‘constraint’ that can either be a filename that points to a constraints definition file or it may be
a pseudo dot-bracket notation indicating hard constraints. For the latter, the user has to pass the
VRNA_CONSTRAINT_DB option. Also, the user has to specify, which characters are allowed to be
interpreted as constraints by passing the corresponding options via the third parameter.

The following is an example for adding hard constraints given in pseudo dot-bracket notation. Here,
fc is the vrna_fold_compound_t object, structure is a char array with the hard constraint in dot-
bracket notation, and enforceConstraints is a flag indicating whether or not constraints for base
pairs should be enforced instead of just doing a removal of base pair that conflict with the constraint.

unsigned int constraint_options = VRNA_CONSTRAINT_DB_DEFAULT;

if (enforceConstraints)
constraint_options |= VRNA_CONSTRAINT_DB_ENFORCE_BP;

if (canonicalBPonly)
constraint_options |= VRNA_CONSTRAINT_DB_CANONICAL_BP;

vrna_constraints_add(fc, (const char *)cstruc, constraint_options);

In constrat to the above, constraints may also be read from file:

vrna_constraints_add(fc, constraints_file, VRNA_OPTION_DEFAULT);

See also:
vrna_hc_add_from_db(), vrna_hc_add_up(), vrna_hc_add_up_batch()
vrna_hc_add_bp_unspecific(), vrna_hc_add_bp(), vrna_hc_init(), vrna_sc_set_up(),
vrna_sc_set_bp(), vrna_sc_add_SHAPE_deigan(), vrna_sc_add_SHAPE_zarringhalam(),
vrna_hc_free(), vrna_sc_free(), VRNA_CONSTRAINT_DB, VRNA_CONSTRAINT_DB_DEFAULT ,
VRNA_CONSTRAINT_DB_PIPE, VRNA_CONSTRAINT_DB_DOT , VRNA_CONSTRAINT_DB_X,
VRNA_CONSTRAINT_DB_ANG_BRACK, VRNA_CONSTRAINT_DB_RND_BRACK ,
VRNA_CONSTRAINT_DB_INTRAMOL, VRNA_CONSTRAINT_DB_INTERMOL,
VRNA_CONSTRAINT_DB_GQUAD

7.2. The RNA Folding Grammar 323

ViennaRNA, Release 2.6.4

Parameters
• fc – The fold compound

• constraint – A string with either the filename of the constraint definitions or a pseudo
dot-bracket notation of the hard constraint. May be NULL.

• options – The option flags

void vrna_hc_init(vrna_fold_compound_t *fc)
#include <ViennaRNA/constraints/hard.h> Initialize/Reset hard constraints to default values.

This function resets the hard constraints to their default values, i.e. all positions may be unpaired in
all contexts, and base pairs are allowed in all contexts, if they resemble canonical pairs. Previously set
hard constraints will be removed before initialization.

SWIG Wrapper Notes:
This function is attached as method hc_init() to objects of type fold_compound. See, e.g.
RNA.fold_compound.hc_init() in the Python API .

See also:
vrna_hc_add_bp(), vrna_hc_add_bp_nonspecific(), vrna_hc_add_up()

Parameters
• fc – The fold compound

void vrna_hc_add_up(vrna_fold_compound_t *fc, int i, unsigned char option)
#include <ViennaRNA/constraints/hard.h> Make a certain nucleotide unpaired.

See also:
vrna_hc_add_bp(), vrna_hc_add_bp_nonspecific(), vrna_hc_init(),
VRNA_CONSTRAINT_CONTEXT_EXT_LOOP, VRNA_CONSTRAINT_CONTEXT_HP_LOOP,
VRNA_CONSTRAINT_CONTEXT_INT_LOOP, VRNA_CONSTRAINT_CONTEXT_MB_LOOP,
VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS

Parameters
• fc – The vrna_fold_compound_t the hard constraints are associated with

• i – The position that needs to stay unpaired (1-based)

• option – The options flag indicating how/where to store the hard constraints

int vrna_hc_add_up_batch(vrna_fold_compound_t *fc, vrna_hc_up_t *constraints)
#include <ViennaRNA/constraints/hard.h> Apply a list of hard constraints for single nucleotides.

Parameters
• fc – The vrna_fold_compound_t the hard constraints are associated with

• constraints – The list off constraints to apply, last entry must have position attribute
set to 0

int vrna_hc_add_bp(vrna_fold_compound_t *fc, int i, int j, unsigned char option)
#include <ViennaRNA/constraints/hard.h> Favorize/Enforce a certain base pair (i,j)

324 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_hc_add_bp_nonspecific(), vrna_hc_add_up(), vrna_hc_init(),
VRNA_CONSTRAINT_CONTEXT_EXT_LOOP, VRNA_CONSTRAINT_CONTEXT_HP_LOOP,
VRNA_CONSTRAINT_CONTEXT_INT_LOOP, VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC,
VRNA_CONSTRAINT_CONTEXT_MB_LOOP, VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC,
VRNA_CONSTRAINT_CONTEXT_ENFORCE, VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS

Parameters
• fc – The vrna_fold_compound_t the hard constraints are associated with

• i – The 5’ located nucleotide position of the base pair (1-based)

• j – The 3’ located nucleotide position of the base pair (1-based)

• option – The options flag indicating how/where to store the hard constraints

void vrna_hc_add_bp_nonspecific(vrna_fold_compound_t *fc, int i, int d, unsigned char option)
#include <ViennaRNA/constraints/hard.h> Enforce a nucleotide to be paired (upstream/downstream)

See also:
vrna_hc_add_bp(), vrna_hc_add_up(), vrna_hc_init(), VRNA_CONSTRAINT_CONTEXT_EXT_LOOP,
VRNA_CONSTRAINT_CONTEXT_HP_LOOP, VRNA_CONSTRAINT_CONTEXT_INT_LOOP,
VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC, VRNA_CONSTRAINT_CONTEXT_MB_LOOP,
VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC, VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS

Parameters
• fc – The vrna_fold_compound_t the hard constraints are associated with

• i – The position that needs to stay unpaired (1-based)

• d – The direction of base pairing (𝑑 < 0: pairs upstream, 𝑑 > 0: pairs downstream,
𝑑 == 0: no direction)

• option – The options flag indicating in which loop type context the pairs may appear

void vrna_hc_free(vrna_hc_t *hc)
#include <ViennaRNA/constraints/hard.h> Free the memory allocated by a vrna_hc_t data structure.

Use this function to free all memory that was allocated for a data structure of type vrna_hc_t .

See also:
get_hard_constraints(), vrna_hc_t

int vrna_hc_add_from_db(vrna_fold_compound_t *fc, const char *constraint, unsigned int options)
#include <ViennaRNA/constraints/hard.h> Add hard constraints from pseudo dot-bracket notation.

This function allows one to apply hard constraints from a pseudo dot-bracket notation.
The options parameter controls, which characters are recognized by the parser. Use the
VRNA_CONSTRAINT_DB_DEFAULT convenience macro, if you want to allow all known characters

SWIG Wrapper Notes:
This function is attached as method hc_add_from_db() to objects of type fold_compound. See,
e.g. RNA.fold_compound.hc_add_from_db() in the Python API .

7.2. The RNA Folding Grammar 325

ViennaRNA, Release 2.6.4

See also:
VRNA_CONSTRAINT_DB_PIPE, VRNA_CONSTRAINT_DB_DOT , VRNA_CONSTRAINT_DB_X,
VRNA_CONSTRAINT_DB_ANG_BRACK, VRNA_CONSTRAINT_DB_RND_BRACK ,
VRNA_CONSTRAINT_DB_INTRAMOL, VRNA_CONSTRAINT_DB_INTERMOL,
VRNA_CONSTRAINT_DB_GQUAD

Parameters
• fc – The fold compound

• constraint – A pseudo dot-bracket notation of the hard constraint.

• options – The option flags

struct vrna_hc_s
#include <ViennaRNA/constraints/hard.h> The hard constraints data structure.

The content of this data structure determines the decomposition pattern used in the folding recursions.
Attribute ‘matrix’ is used as source for the branching pattern of the decompositions during all folding
recursions. Any entry in matrix[i,j] consists of the 6 LSB that allows one to distinguish the following
types of base pairs:

• in the exterior loop (VRNA_CONSTRAINT_CONTEXT_EXT_LOOP)

• enclosing a hairpin (VRNA_CONSTRAINT_CONTEXT_HP_LOOP)

• enclosing an interior loop (VRNA_CONSTRAINT_CONTEXT_INT_LOOP)

• enclosed by an exterior loop (VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC)

• enclosing a multi branch loop (VRNA_CONSTRAINT_CONTEXT_MB_LOOP)

• enclosed by a multi branch loop (VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC)

The four linear arrays ‘up_xxx’ provide the number of available unpaired nucleotides (including posi-
tion i) 3’ of each position in the sequence.

See also:
vrna_hc_init(), vrna_hc_free(), VRNA_CONSTRAINT_CONTEXT_EXT_LOOP,
VRNA_CONSTRAINT_CONTEXT_HP_LOOP, VRNA_CONSTRAINT_CONTEXT_INT_LOOP,
VRNA_CONSTRAINT_CONTEXT_MB_LOOP, VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC

Public Members

vrna_hc_type_e type

unsigned int n

unsigned char state

unsigned char *mx

unsigned char **matrix_local

union vrna_hc_s.[anonymous] [anonymous]

326 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int *up_ext
A linear array that holds the number of allowed unpaired nucleotides in an exterior loop.

int *up_hp
A linear array that holds the number of allowed unpaired nucleotides in a hairpin loop.

int *up_int
A linear array that holds the number of allowed unpaired nucleotides in an interior loop.

int *up_ml
A linear array that holds the number of allowed unpaired nucleotides in a multi branched loop.

vrna_hc_eval_f f
A function pointer that returns whether or not a certain decomposition may be evaluated.

void *data
A pointer to some structure where the user may store necessary data to evaluate its generic hard
constraint function.

vrna_auxdata_free_f free_data
A pointer to a function to free memory occupied by auxiliary data.

The function this pointer is pointing to will be called upon destruction of the vrna_hc_s, and
provided with the vrna_hc_s.data pointer that may hold auxiliary data. Hence, to avoid leaking
memory, the user may use this pointer to free memory occupied by auxiliary data.

vrna_hc_depot_t *depot

struct vrna_hc_up_s
#include <ViennaRNA/constraints/hard.h> A single hard constraint for a single nucleotide.

Public Members

int position
The sequence position (1-based)

int strand

unsigned char options
The hard constraint option

7.2. The RNA Folding Grammar 327

ViennaRNA, Release 2.6.4

Soft Constraints

Functions and data structures for secondary structure soft constraints.

Soft-constraints are used to change position specific contributions in the recursions by adding bonuses/penalties in
form of pseudo free energies to certain loop configurations.

Typedefs

typedef struct vrna_sc_s vrna_sc_t
#include <ViennaRNA/constraints/soft.h> Typename for the soft constraints data structure vrna_sc_s.

typedef int (*vrna_sc_f)(int i, int j, int k, int l, unsigned char d, void *data)
#include <ViennaRNA/constraints/soft.h> Callback to retrieve pseudo energy contribution for soft con-
straint feature.

This is the prototype for callback functions used by the folding recursions to evaluate generic soft
constraints. The first four parameters passed indicate the delimiting nucleotide positions of the decom-
position, and the parameter denotes the decomposition step. The last parameter data is the auxiliary
data structure associated to the hard constraints via vrna_sc_add_data(), or NULL if no auxiliary data
was added.

Notes on Callback Functions:
This callback enables one to add (pseudo-)energy contributions to individual decompositions of
the secondary structure.

See also:
VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML,
VRNA_DECOMP_ML_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML,
VRNA_DECOMP_ML_UP, VRNA_DECOMP_ML_ML_STEM, VRNA_DECOMP_ML_COAXIAL,
VRNA_DECOMP_EXT_EXT , VRNA_DECOMP_EXT_UP, VRNA_DECOMP_EXT_STEM,
VRNA_DECOMP_EXT_EXT_EXT , VRNA_DECOMP_EXT_STEM_EXT ,
VRNA_DECOMP_EXT_EXT_STEM, VRNA_DECOMP_EXT_EXT_STEM1, vrna_sc_add_f(),
vrna_sc_add_exp_f(), vrna_sc_add_bt(), vrna_sc_add_data()

Param i
Left (5’) delimiter position of substructure

Param j
Right (3’) delimiter position of substructure

Param k
Left delimiter of decomposition

Param l
Right delimiter of decomposition

Param d
Decomposition step indicator

Param data
Auxiliary data

Return
Pseudo energy contribution in deka-kalories per mol

328 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

typedef FLT_OR_DBL (*vrna_sc_exp_f)(int i, int j, int k, int l, unsigned char d, void *data)
#include <ViennaRNA/constraints/soft.h> Callback to retrieve pseudo energy contribution as Boltz-
mann Factors for soft constraint feature.

This is the prototype for callback functions used by the partition function recursions to evaluate generic
soft constraints. The first four parameters passed indicate the delimiting nucleotide positions of the de-
composition, and the parameter denotes the decomposition step. The last parameter data is the aux-
iliary data structure associated to the hard constraints via vrna_sc_add_data(), or NULL if no auxiliary
data was added.

Notes on Callback Functions:
This callback enables one to add (pseudo-)energy contributions to individual decompositions of
the secondary structure (Partition function variant, i.e. contributions must be returned as Boltz-
mann factors).

See also:
VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML,
VRNA_DECOMP_ML_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML,
VRNA_DECOMP_ML_UP, VRNA_DECOMP_ML_ML_STEM, VRNA_DECOMP_ML_COAXIAL,
VRNA_DECOMP_EXT_EXT , VRNA_DECOMP_EXT_UP, VRNA_DECOMP_EXT_STEM,
VRNA_DECOMP_EXT_EXT_EXT , VRNA_DECOMP_EXT_STEM_EXT ,
VRNA_DECOMP_EXT_EXT_STEM, VRNA_DECOMP_EXT_EXT_STEM1, vrna_sc_add_exp_f(),
vrna_sc_add_f(), vrna_sc_add_bt(), vrna_sc_add_data()

Param i
Left (5’) delimiter position of substructure

Param j
Right (3’) delimiter position of substructure

Param k
Left delimiter of decomposition

Param l
Right delimiter of decomposition

Param d
Decomposition step indicator

Param data
Auxiliary data

Return
Pseudo energy contribution in deka-kalories per mol

typedef vrna_basepair_t *(*vrna_sc_bt_f)(int i, int j, int k, int l, unsigned char d, void *data)
#include <ViennaRNA/constraints/soft.h> Callback to retrieve auxiliary base pairs for soft constraint
feature.

Notes on Callback Functions:
This callback enables one to add auxiliary base pairs in the backtracking steps of hairpin- and
interior loops.

7.2. The RNA Folding Grammar 329

ViennaRNA, Release 2.6.4

See also:
VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML,
VRNA_DECOMP_ML_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML,
VRNA_DECOMP_ML_UP, VRNA_DECOMP_ML_ML_STEM, VRNA_DECOMP_ML_COAXIAL,
VRNA_DECOMP_EXT_EXT , VRNA_DECOMP_EXT_UP, VRNA_DECOMP_EXT_STEM,
VRNA_DECOMP_EXT_EXT_EXT , VRNA_DECOMP_EXT_STEM_EXT ,
VRNA_DECOMP_EXT_EXT_STEM, VRNA_DECOMP_EXT_EXT_STEM1, vrna_sc_add_bt(),
vrna_sc_add_f(), vrna_sc_add_exp_f(), vrna_sc_add_data()

Param i
Left (5’) delimiter position of substructure

Param j
Right (3’) delimiter position of substructure

Param k
Left delimiter of decomposition

Param l
Right delimiter of decomposition

Param d
Decomposition step indicator

Param data
Auxiliary data

Return
List of additional base pairs

Functions

void vrna_sc_init(vrna_fold_compound_t *fc)
#include <ViennaRNA/constraints/soft.h> Initialize an empty soft constraints data structure within a
vrna_fold_compound_t.

This function adds a proper soft constraints data structure to the vrna_fold_compound_t data structure.
If soft constraints already exist within the fold compound, they are removed.

SWIG Wrapper Notes:
This function is attached as method sc_init() to objects of type fold_compound. See, e.g.
RNA.fold_compound.sc_init() in the Python API .

See also:
vrna_sc_set_bp(), vrna_sc_set_up(), vrna_sc_add_SHAPE_deigan(),
vrna_sc_add_SHAPE_zarringhalam(), vrna_sc_remove(), vrna_sc_add_f(), vrna_sc_add_exp_f(),
vrna_sc_add_pre(), vrna_sc_add_post()

Note: Accepts vrna_fold_compound_t of type VRNA_FC_TYPE_SINGLE and
VRNA_FC_TYPE_COMPARATIVE

Parameters
• fc – The vrna_fold_compound_t where an empty soft constraint feature is to be added

to

330 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int vrna_sc_set_bp(vrna_fold_compound_t *fc, const FLT_OR_DBL **constraints, unsigned int
options)

#include <ViennaRNA/constraints/soft.h> Set soft constraints for paired nucleotides.

SWIG Wrapper Notes:
This function is attached as method sc_set_bp() to objects of type fold_compound. See, e.g.
RNA.fold_compound.sc_set_bp() in the Python API .

See also:
vrna_sc_add_bp(), vrna_sc_set_up(), vrna_sc_add_up()

Note: This function replaces any pre-exisitng soft constraints with the ones supplied in constraints.

Parameters
• fc – The vrna_fold_compound_t the soft constraints are associated with

• constraints – A two-dimensional array of pseudo free energies in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

• options – The options flag indicating how/where to store the soft constraints

Returns
Non-zero on successful application of the constraint, 0 otherwise.

int vrna_sc_add_bp(vrna_fold_compound_t *fc, int i, int j, FLT_OR_DBL energy, unsigned int options)
#include <ViennaRNA/constraints/soft.h> Add soft constraints for paired nucleotides.

SWIG Wrapper Notes:
This function is attached as an overloaded method sc_add_bp() to objects of type
fold_compound. The method either takes arguments for a single base pair (i,j) with the cor-
responding energy value:

fold_compound.sc_add_bp(i, j, energy, options)

or an entire 2-dimensional matrix with dimensions n x n that stores free energy contributions for any
base pair (i,j) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛:

fold_compound.sc_add_bp(matrix, options)

In both variants, the optional argument options defaults to VRNA_OPTION_DEFAULT . See, e.g.
RNA.fold_compound.sc_add_bp() in the Python API .

See also:
vrna_sc_set_bp(), vrna_sc_set_up(), vrna_sc_add_up()

Parameters
• fc – The vrna_fold_compound_t the soft constraints are associated with

• i – The 5’ position of the base pair the soft constraint is added for

• j – The 3’ position of the base pair the soft constraint is added for

• energy – The free energy (soft-constraint) in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

• options – The options flag indicating how/where to store the soft constraints

Returns
Non-zero on successful application of the constraint, 0 otherwise.

7.2. The RNA Folding Grammar 331

ViennaRNA, Release 2.6.4

int vrna_sc_set_up(vrna_fold_compound_t *fc, const FLT_OR_DBL *constraints, unsigned int
options)

#include <ViennaRNA/constraints/soft.h> Set soft constraints for unpaired nucleotides.

SWIG Wrapper Notes:
This function is attached as method sc_set_up() to objects of type fold_compound. See, e.g.
RNA.fold_compound.sc_set_up() in the Python API .

See also:
vrna_sc_add_up(), vrna_sc_set_bp(), vrna_sc_add_bp()

Note: This function replaces any pre-exisitng soft constraints with the ones supplied in constraints.

Parameters
• fc – The vrna_fold_compound_t the soft constraints are associated with

• constraints – A vector of pseudo free energies in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

• options – The options flag indicating how/where to store the soft constraints

Returns
Non-zero on successful application of the constraint, 0 otherwise.

int vrna_sc_add_up(vrna_fold_compound_t *fc, int i, FLT_OR_DBL energy, unsigned int options)
#include <ViennaRNA/constraints/soft.h> Add soft constraints for unpaired nucleotides.

SWIG Wrapper Notes:
This function is attached as an overloaded method sc_add_up() to objects of type
fold_compound. The method either takes arguments for a single nucleotide 𝑖 with the corre-
sponding energy value:

fold_compound.sc_add_up(i, energy, options)

or an entire vector that stores free energy contributions for each nucleotide 𝑖 with 1 ≤ 𝑖 ≤ 𝑛:

fold_compound.sc_add_bp(vector, options)

In both variants, the optional argument options defaults to VRNA_OPTION_DEFAULT . See, e.g.
RNA.fold_compound.sc_add_up() in the Python API .

See also:
vrna_sc_set_up(), vrna_sc_add_bp(), vrna_sc_set_bp()

Parameters
• fc – The vrna_fold_compound_t the soft constraints are associated with

• i – The nucleotide position the soft constraint is added for

• energy – The free energy (soft-constraint) in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

• options – The options flag indicating how/where to store the soft constraints

Returns
Non-zero on successful application of the constraint, 0 otherwise.

332 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void vrna_sc_remove(vrna_fold_compound_t *fc)
#include <ViennaRNA/constraints/soft.h> Remove soft constraints from vrna_fold_compound_t.

SWIG Wrapper Notes:
This function is attached as method sc_remove() to objects of type fold_compound. See, e.g.
RNA.fold_compound.sc_remove() in the Python API .

Note: Accepts vrna_fold_compound_t of type VRNA_FC_TYPE_SINGLE and
VRNA_FC_TYPE_COMPARATIVE

Parameters
• fc – The vrna_fold_compound_t possibly containing soft constraints

void vrna_sc_free(vrna_sc_t *sc)
#include <ViennaRNA/constraints/soft.h> Free memory occupied by a vrna_sc_t data structure.

Parameters
• sc – The data structure to free from memory

int vrna_sc_add_data(vrna_fold_compound_t *fc, void *data, vrna_auxdata_free_f free_data)
#include <ViennaRNA/constraints/soft.h> Add an auxiliary data structure for the generic soft con-
straints callback function.

SWIG Wrapper Notes:
This function is attached as method sc_add_data() to objects of type fold_compound. See,
e.g. RNA.fold_compound.sc_add_data() in the Python API .

See also:
vrna_sc_add_f(), vrna_sc_add_exp_f(), vrna_sc_add_bt()

Parameters
• fc – The fold compound the generic soft constraint function should be bound to

• data – A pointer to the data structure that holds required data for function ‘f’

• free_data – A pointer to a function that free’s the memory occupied by data (Maybe
NULL)

Returns
Non-zero on successful binding the data (and free-function), 0 otherwise

int vrna_sc_add_f(vrna_fold_compound_t *fc, vrna_sc_f f)
#include <ViennaRNA/constraints/soft.h> Bind a function pointer for generic soft constraint feature
(MFE version)

This function allows one to easily bind a function pointer and corresponding data structure to the
soft constraint part vrna_sc_t of the vrna_fold_compound_t. The function for evaluating the generic
soft constraint feature has to return a pseudo free energy �̂� in 𝑑𝑎𝑐𝑎𝑙/𝑚𝑜𝑙, where 1𝑑𝑎𝑐𝑎𝑙/𝑚𝑜𝑙 =
10𝑐𝑎𝑙/𝑚𝑜𝑙.

SWIG Wrapper Notes:
This function is attached as method sc_add_f() to objects of type fold_compound. See, e.g.
RNA.fold_compound.sc_add_f() in the Python API .

7.2. The RNA Folding Grammar 333

ViennaRNA, Release 2.6.4

See also:
vrna_sc_add_data(), vrna_sc_add_bt(), vrna_sc_add_exp_f()

Parameters
• fc – The fold compound the generic soft constraint function should be bound to

• f – A pointer to the function that evaluates the generic soft constraint feature

Returns
Non-zero on successful binding the callback function, 0 otherwise

int vrna_sc_add_bt(vrna_fold_compound_t *fc, vrna_sc_bt_f f)
#include <ViennaRNA/constraints/soft.h> Bind a backtracking function pointer for generic soft con-
straint feature.

This function allows one to easily bind a function pointer to the soft constraint part vrna_sc_t of
the vrna_fold_compound_t. The provided function should be used for backtracking purposes in
loop regions that were altered via the generic soft constraint feature. It has to return an array of
vrna_basepair_t data structures, were the last element in the list is indicated by a value of -1 in it’s
i position.

SWIG Wrapper Notes:
This function is attached as method sc_add_bt() to objects of type fold_compound. See, e.g.
RNA.fold_compound.sc_add_bt() in the Python API .

See also:
vrna_sc_add_data(), vrna_sc_add_f(), vrna_sc_add_exp_f()

Parameters
• fc – The fold compound the generic soft constraint function should be bound to

• f – A pointer to the function that returns additional base pairs

Returns
Non-zero on successful binding the callback function, 0 otherwise

int vrna_sc_add_exp_f(vrna_fold_compound_t *fc, vrna_sc_exp_f exp_f)
#include <ViennaRNA/constraints/soft.h> Bind a function pointer for generic soft constraint feature
(PF version)

This function allows one to easily bind a function pointer and corresponding data structure to the soft
constraint part vrna_sc_t of the vrna_fold_compound_t. The function for evaluating the generic soft
constraint feature has to return a pseudo free energy �̂� as Boltzmann factor, i.e. 𝑒𝑥𝑝(−�̂�/𝑘𝑇). The
required unit for 𝐸 is 𝑐𝑎𝑙/𝑚𝑜𝑙.

SWIG Wrapper Notes:
This function is attached as method sc_add_exp_f() to objects of type fold_compound. See,
e.g. RNA.fold_compound.sc_add_exp_f() in the Python API .

See also:
vrna_sc_add_bt(), vrna_sc_add_f(), vrna_sc_add_data()

Parameters
• fc – The fold compound the generic soft constraint function should be bound to

• exp_f – A pointer to the function that evaluates the generic soft constraint feature

334 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Returns
Non-zero on successful binding the callback function, 0 otherwise

struct vrna_sc_s
#include <ViennaRNA/constraints/soft.h> The soft constraints data structure.

Public Members

const vrna_sc_type_e type

unsigned int n

unsigned char state

int **energy_up
Energy contribution for stretches of unpaired nucleotides.

FLT_OR_DBL **exp_energy_up
Boltzmann Factors of the energy contributions for unpaired sequence stretches.

int *up_storage
Storage container for energy contributions per unpaired nucleotide.

vrna_sc_bp_storage_t **bp_storage
Storage container for energy contributions per base pair.

int *energy_bp
Energy contribution for base pairs.

FLT_OR_DBL *exp_energy_bp
Boltzmann Factors of the energy contribution for base pairs.

int **energy_bp_local
Energy contribution for base pairs (sliding window approach)

FLT_OR_DBL **exp_energy_bp_local
Boltzmann Factors of the energy contribution for base pairs (sliding window approach)

union vrna_sc_s.[anonymous] [anonymous]

int *energy_stack
Pseudo Energy contribution per base pair involved in a stack.

FLT_OR_DBL *exp_energy_stack
Boltzmann weighted pseudo energy contribution per nucleotide involved in a stack.

7.2. The RNA Folding Grammar 335

ViennaRNA, Release 2.6.4

vrna_sc_f f
A function pointer used for pseudo energy contribution in MFE calculations.

See also:
vrna_sc_add_f()

vrna_sc_bt_f bt
A function pointer used to obtain backtraced base pairs in loop regions that were altered by soft
constrained pseudo energy contributions.

See also:
vrna_sc_add_bt()

vrna_sc_exp_f exp_f
A function pointer used for pseudo energy contribution boltzmann factors in PF calculations.

See also:
vrna_sc_add_exp_f()

void *data
A pointer to the data object provided for for pseudo energy contribution functions of the generic
soft constraints feature.

vrna_auxdata_prepare_f prepare_data

vrna_auxdata_free_f free_data

Introduction

Secondary Structure constraints can be subdivided into two groups:

• Hard Constraints, and

• Soft Constraints.

While hard constraints directly influence the production rules used in the folding recursions by allowing, disallow-
ing, or enforcing certain decomposition steps, soft constraints are used to change position specific contributions in
the recursions by adding bonuses/penalties in form of pseudo free energies to certain loop configurations.

Secondary structure constraints are always applied at decomposition level, i.e. in each step of the recursive structure
decomposition, for instance during MFE prediction. Below is a visualization of the decomposition scheme

336 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

For Hard Constraints the following option flags may be used to constrain the pairing behavior of single, or pairs
of nucleotides:

• VRNA_CONSTRAINT_CONTEXT_EXT_LOOP

• VRNA_CONSTRAINT_CONTEXT_HP_LOOP

• VRNA_CONSTRAINT_CONTEXT_INT_LOOP

• VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC

• VRNA_CONSTRAINT_CONTEXT_MB_LOOP

• VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC

• VRNA_CONSTRAINT_CONTEXT_ENFORCE

• VRNA_CONSTRAINT_CONTEXT_NO_REMOVE

• VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS

However, for Soft Constraints we do not allow for simple loop type dependent constraining. But soft constraints
are equipped with generic constraint support. This enables the user to pass arbitrary callback functions that return
auxiliary energy contributions for evaluation the evaluation of any decomposition.

The callback will then always be notified about the type of decomposition that is happening, and the corresponding
delimiting sequence positions. The following decomposition steps are distinguished, and should be captured by
the user’s implementation of the callback:

• VRNA_DECOMP_PAIR_HP

• VRNA_DECOMP_PAIR_IL

• VRNA_DECOMP_PAIR_ML

• VRNA_DECOMP_ML_ML_ML

• VRNA_DECOMP_ML_STEM

• VRNA_DECOMP_ML_ML

• VRNA_DECOMP_ML_UP

• VRNA_DECOMP_ML_ML_STEM

• VRNA_DECOMP_ML_COAXIAL

• VRNA_DECOMP_EXT_EXT

• VRNA_DECOMP_EXT_UP

7.2. The RNA Folding Grammar 337

ViennaRNA, Release 2.6.4

• VRNA_DECOMP_EXT_STEM

• VRNA_DECOMP_EXT_EXT_EXT

• VRNA_DECOMP_EXT_STEM_EXT

• VRNA_DECOMP_EXT_STEM_OUTSIDE

• VRNA_DECOMP_EXT_EXT_STEM

• VRNA_DECOMP_EXT_EXT_STEM1

General API symbols

Defines

VRNA_CONSTRAINT_FILE

#include <ViennaRNA/constraints/basic.h> Flag for vrna_constraints_add() to indicate that con-
straints are present in a text file.

Deprecated:
Use 0 instead!

See also:
vrna_constraints_add()

VRNA_CONSTRAINT_SOFT_MFE

#include <ViennaRNA/constraints/basic.h> Indicate generation of constraints for MFE folding.

Deprecated:
This flag has no meaning anymore, since constraints are now always stored! (since v2.2.6)

VRNA_CONSTRAINT_SOFT_PF

#include <ViennaRNA/constraints/basic.h> Indicate generation of constraints for partition function
computation.

Deprecated:
Use VRNA_OPTION_PF instead!

VRNA_DECOMP_PAIR_HP

#include <ViennaRNA/constraints/basic.h> Flag passed to generic softt constraints callback to indicate
hairpin loop decomposition step.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates a hairpin loop enclosed by the base pair (𝑖, 𝑗).

338 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_DECOMP_PAIR_IL

#include <ViennaRNA/constraints/basic.h> Indicator for interior loop decomposition step.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates an interior loop enclosed by the base pair (𝑖, 𝑗), and enclosing the base pair (𝑘, 𝑙).

VRNA_DECOMP_PAIR_ML

#include <ViennaRNA/constraints/basic.h> Indicator for multibranch loop decomposition step.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates a multibranch loop enclosed by the base pair (𝑖, 𝑗), and consisting of some enclosed multi loop
content from k to l.

VRNA_DECOMP_ML_ML_ML

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates a multibranch loop part in the interval [𝑖 : 𝑗], which will be decomposed into two multibranch
loop parts [𝑖 : 𝑘], and [𝑙 : 𝑗].

VRNA_DECOMP_ML_STEM

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates a multibranch loop part in the interval [𝑖 : 𝑗], which will be considered a single stem branching
off with base pair (𝑘, 𝑙).

VRNA_DECOMP_ML_ML

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates a multibranch loop part in the interval [𝑖 : 𝑗], which will be decomposed into a (usually) smaller
multibranch loop part [𝑘 : 𝑙].

7.2. The RNA Folding Grammar 339

ViennaRNA, Release 2.6.4

VRNA_DECOMP_ML_UP

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates a multibranch loop part in the interval [𝑖 : 𝑗], which will be considered a multibranch loop part
that only consists of unpaired nucleotides.

VRNA_DECOMP_ML_ML_STEM

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates a multibranch loop part in the interval [𝑖 : 𝑗], which will decomposed into a multibranch loop
part [𝑖 : 𝑘], and a stem with enclosing base pair (𝑙, 𝑗).

VRNA_DECOMP_ML_COAXIAL

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates a multibranch loop part in the interval [𝑖 : 𝑗], where two stems with enclosing pairs (𝑖, 𝑘) and
(𝑙, 𝑗) are coaxially stacking onto each other.

VRNA_DECOMP_ML_COAXIAL_ENC

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates a multibranch loop part in the interval [𝑖 : 𝑗], where two stems with enclosing pairs (𝑖, 𝑘) and
(𝑙, 𝑗) are coaxially stacking onto each other.

340 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_DECOMP_EXT_EXT

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates an exterior loop part in the interval [𝑖 : 𝑗], which will be decomposed into a (usually) smaller
exterior loop part [𝑘 : 𝑙].

VRNA_DECOMP_EXT_UP

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evalu-
ates an exterior loop part in the interval [𝑖 : 𝑗], which will be considered as an exterior loop component
consisting of only unpaired nucleotides.

VRNA_DECOMP_EXT_STEM

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates an exterior loop part in the interval [𝑖 : 𝑗], which will be considered a stem with enclosing pair
(𝑘, 𝑙).

VRNA_DECOMP_EXT_EXT_EXT

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates an exterior loop part in the interval [𝑖 : 𝑗], which will be decomposed into two exterior loop parts
[𝑖 : 𝑘] and [𝑙 : 𝑗].

VRNA_DECOMP_EXT_STEM_EXT

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates an exterior loop part in the interval [𝑖 : 𝑗], which will be decomposed into a stem branching off
with base pair (𝑖, 𝑘), and an exterior loop part [𝑙 : 𝑗].

7.2. The RNA Folding Grammar 341

ViennaRNA, Release 2.6.4

VRNA_DECOMP_EXT_STEM_OUTSIDE

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of exterior loop part.

VRNA_DECOMP_EXT_EXT_STEM

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates an exterior loop part in the interval [𝑖 : 𝑗], which will be decomposed into an exterior loop part
[𝑖 : 𝑘], and a stem branching off with base pair (𝑙, 𝑗).

VRNA_DECOMP_EXT_EXT_STEM1

#include <ViennaRNA/constraints/basic.h> Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step eval-
uates an exterior loop part in the interval [𝑖 : 𝑗], which will be decomposed into an exterior loop part
[𝑖 : 𝑘], and a stem branching off with base pair (𝑙, 𝑗 − 1).

Functions

void vrna_message_constraint_options(unsigned int option)
#include <ViennaRNA/constraints/hard.h> Print a help message for pseudo dot-bracket structure con-
straint characters to stdout. (constraint support is specified by option parameter)

Currently available options are:VRNA_CONSTRAINT_DB_PIPE (paired with another
base)VRNA_CONSTRAINT_DB_DOT (no constraint at all)VRNA_CONSTRAINT_DB_X
(base must not pair)VRNA_CONSTRAINT_DB_ANG_BRACK (paired down-
stream/upstream)VRNA_CONSTRAINT_DB_RND_BRACK (base i pairs base j)

pass a collection of options as one value like this:

vrna_message_constraints(option_1 | option_2 | option_n)

See also:
vrna_message_constraint_options_all(), vrna_constraints_add(), VRNA_CONSTRAINT_DB,
VRNA_CONSTRAINT_DB_PIPE, VRNA_CONSTRAINT_DB_DOT , VRNA_CONSTRAINT_DB_X,
VRNA_CONSTRAINT_DB_ANG_BRACK, VRNA_CONSTRAINT_DB_RND_BRACK ,
VRNA_CONSTRAINT_DB_INTERMOL, VRNA_CONSTRAINT_DB_INTRAMOL

Parameters

342 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• option – Option switch that tells which constraint help will be printed

void vrna_message_constraint_options_all(void)
#include <ViennaRNA/constraints/hard.h> Print structure constraint characters to stdout (full con-
straint support)

See also:
vrna_message_constraint_options(), vrna_constraints_add(), VRNA_CONSTRAINT_DB,
VRNA_CONSTRAINT_DB_PIPE, VRNA_CONSTRAINT_DB_DOT , VRNA_CONSTRAINT_DB_X,
VRNA_CONSTRAINT_DB_ANG_BRACK, VRNA_CONSTRAINT_DB_RND_BRACK ,
VRNA_CONSTRAINT_DB_INTERMOL, VRNA_CONSTRAINT_DB_INTRAMOL

High Level Constraints Interfaces

High-level interfaces that build upon the soft constraints framework can be obtained by the implementations in the
submodules:

• Post-transcriptional Base Modifications

• SHAPE Reactivity Data

• Incorporating Ligands Binding to Specific Sequence/Structure Motifs

An implementation that generates soft constraints for unpaired nucleotides by minimizing the discrepancy between
their predicted and expected pairing probability is available in submodule Generate Soft Constraints from Data.

7.2.5 Secondary Structure Folding Recurrences

To predict secondary structures composed of the four distinguished loop types introduced before, all algorithms
implemented in RNAlib follow a specific recursive decomposition scheme, also known as the RNA folding grammar,
or Secondary Structure Folding Recurrences.

However, compared to other RNA secondary structure prediction libraries, our implementation allows for a fine-
grained control of the above recursions by constraining both, the individual derivations of the grammar as well as
the evaluation of particular loop contributions. Furthermore, we provide a mechanism to extend the above grammar
with additional derivation rules, so-called Domains.

7.2. The RNA Folding Grammar 343

ViennaRNA, Release 2.6.4

7.2.6 Additional Structural Domains

Some applications of RNA secondary structure prediction require an extension of the regular RNA folding gram-
mar. For instance one would like to include proteins and other ligands binding to unpaired loop regions while
competing with conventional base pairing. Another application could be that one may want to include the for-
mation of self-enclosed structural modules, such as G-quadruplexes. For such applications, we provide a pair of
additional domains that extend the regular RNA folding grammar, Structured Domains and Unstructured Domains.

While unstructured domains are usually determined by a more or less precise sequence motif, e.g. the binding
site for a protein, structured domains are considered self-enclosed modules with a more or less complex pairing
pattern. Our extension with these two domains introduces two production rules to fill additional dynamic process-
ing matrices S and U where we store the pre-computed contributions of structured domains (S), and unstructured
domains (U).

7.2.7 Structured Domains

Usually, structured domains represent self-enclosed structural modules that exhibit a more or less complex base
pairing pattern. This can be more or less well-defined 3D motifs, such as G-Quadruplexes, or loops with additional
non-canonical base pair interactions, such as kink-turns.

Note: Currently, our implementation only provides the specialized case of G-Quadruplexes.

344 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.2.8 Unstructured Domains

Unstructured domains appear in the production rules of the RNA folding grammar wherever new unpaired nu-
cleotides are attached to a growing substructure (see also Lorenz et al. [2016]):

The white boxes represent the stretch of RNA bound to the ligand and represented by a more or less specific
sequence motif. The motif itself is considered unable to form base pairs. The additional production rule U is used
to precompute the contribution of unpaired stretches possibly bound by one or more ligands. The auxiliary DP
matrix for this production rule is filled right before processing the other (regular) production rules of the RNA
folding grammar.

7.2.9 Domain Extension API

For the sake of flexibility, each of the domains is associated with a specific data structure serving as an abstract
interface to the extension. The interface uses callback functions to

• pre-compute arbitrary data, e.g. filling up additional dynamic programming matrices, and

• evaluate the contribution of a paired or unpaired structural feature of the RNA.

Implementations of these callbacks are separate for regular free energy evaluation, e.g. MFE prediction, and parti-
tion function applications. A data structure holding arbitrary data required for the callback functions can be asso-
ciated to the domain as well. While RNAlib comes with a default implementation for structured and unstructured
domains, the system is entirely user-customizable.

See also. . .
Unstructured Domains, Structured Domains, G-Quadruplexes, Ligands Binding to Unstructured Domains

7.2. The RNA Folding Grammar 345

ViennaRNA, Release 2.6.4

7.2.10 Constraints on the Folding Grammar

Secondary Structure constraints can be subdivided into two groups:

• Hard Constraints

• Soft Constraints

While Hard-Constraints directly influence the production rules used in the folding recursions by allowing, disal-
lowing, or enforcing certain decomposition steps, Soft-constraints on the other hand are used to change position
specific contributions in the recursions by adding bonuses/penalties in form of pseudo free energies to certain loop
configurations.

Note: Secondary structure constraints are always applied at decomposition level, i.e. in each step of the recursive
structure decomposition, for instance during MFE prediction.

7.2.11 Hard Constraints API

Hard constraints as implemented in our library can be specified for individual loop types, i.e. the atomic derivations
of the RNA folding grammar rules. Hence, the pairing behavior of both, single nucleotides and pairs of bases,
can be constrained in every loop context separately. Additionally, an abstract implementation using a callback
mechanism allows for full control of more complex hard constraints.

See also. . .
Hard Constraints

7.2.12 Soft Constraints API

For the sake of memory efficiency, we do not implement a loop context aware version of soft constraints. The static
soft constraints as implemented only distinguish unpaired from paired nucleotides. This is usually sufficient for
most use-case scenarios. However, similar to hard constraints, an abstract soft constraints implementation using a
callback mechanism exists, that allows for any soft constraint that is compatible with the RNA folding grammar.
Thus, loop contexts and even individual derivation rules can be addressed separately for maximum flexibility in
soft-constraints application.

See also. . .
Soft Constraints, Incorporating Ligands Binding to Specific Sequence/Structure Motifs, SHAPE Reactivity Data

Typedefs

typedef int (*vrna_grammar_rule_f)(vrna_fold_compound_t *fc, int i, int j, void *data)
#include <ViennaRNA/grammar.h>

typedef void (*vrna_grammar_rule_f_aux)(vrna_fold_compound_t *fc, int i, int j, void *data)
#include <ViennaRNA/grammar.h>

346 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

typedef FLT_OR_DBL (*vrna_grammar_rule_f_exp)(vrna_fold_compound_t *fc, int i, int j, void
*data)

#include <ViennaRNA/grammar.h>

typedef void (*vrna_grammar_rule_f_aux_exp)(vrna_fold_compound_t *fc, int i, int j, void *data)
#include <ViennaRNA/grammar.h>

typedef void (*vrna_grammar_cond_f)(vrna_fold_compound_t *fc, unsigned char stage, void *data)
#include <ViennaRNA/grammar.h>

typedef void (*vrna_grammar_data_free_f)(void *data)
#include <ViennaRNA/grammar.h> Free auxiliary data.

Param data
The auxiliary data to be free’d

typedef struct vrna_gr_aux_s vrna_gr_aux_t
#include <ViennaRNA/grammar.h>

Functions

int vrna_gr_set_aux_f(vrna_fold_compound_t *fc, vrna_grammar_rule_f cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_aux_exp_f(vrna_fold_compound_t *fc, vrna_grammar_rule_f_exp cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_aux_c(vrna_fold_compound_t *fc, vrna_grammar_rule_f cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_aux_exp_c(vrna_fold_compound_t *fc, vrna_grammar_rule_f_exp cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_aux_m(vrna_fold_compound_t *fc, vrna_grammar_rule_f cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_aux_exp_m(vrna_fold_compound_t *fc, vrna_grammar_rule_f_exp cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_aux_m1(vrna_fold_compound_t *fc, vrna_grammar_rule_f cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_aux_exp_m1(vrna_fold_compound_t *fc, vrna_grammar_rule_f_exp cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_aux(vrna_fold_compound_t *fc, vrna_grammar_rule_f_aux cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_aux_exp(vrna_fold_compound_t *fc, vrna_grammar_rule_f_aux_exp cb)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_data(vrna_fold_compound_t *fc, void *data, vrna_grammar_data_free_f free_data)
#include <ViennaRNA/grammar.h>

int vrna_gr_set_cond(vrna_fold_compound_t *fc, vrna_grammar_cond_f cb)
#include <ViennaRNA/grammar.h>

7.2. The RNA Folding Grammar 347

ViennaRNA, Release 2.6.4

int vrna_gr_reset(vrna_fold_compound_t *fc)
#include <ViennaRNA/grammar.h>

struct vrna_gr_aux_s

Public Members

vrna_grammar_cond_f cb_proc
A callback for pre- and post-processing of auxiliary grammar rules.

vrna_grammar_rule_f cb_aux_f

vrna_grammar_rule_f cb_aux_c

vrna_grammar_rule_f cb_aux_m

vrna_grammar_rule_f cb_aux_m1

vrna_grammar_rule_f_aux cb_aux

vrna_grammar_rule_f_exp cb_aux_exp_f

vrna_grammar_rule_f_exp cb_aux_exp_c

vrna_grammar_rule_f_exp cb_aux_exp_m

vrna_grammar_rule_f_exp cb_aux_exp_m1

vrna_grammar_rule_f_aux_exp cb_aux_exp

void *data

vrna_grammar_data_free_f free_data

7.3 The RNA Secondary Structure Landscape

7.3.1 Neighborhood Relation and Move Sets for Secondary Structures

Different functions to generate structural neighbors of a secondary structure according to a particular Move Set.

This module contains methods to compute the neighbors of an RNA secondary structure. Neighbors of a given
structure are all structures that differ in exactly one base pair. That means one can insert an delete base pairs in
the given structure. These insertions and deletions of base pairs are usually called moves. A third move which
is considered in these methods is a shift move. A shifted base pair has one stable position and one position that
changes. These moves are encoded as follows:

• insertion: (𝑖, 𝑗) where 𝑖, 𝑗 > 0

• deletion: (𝑖, 𝑗) where 𝑖, 𝑗 < 0

348 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• shift: (𝑖, 𝑗) where either 𝑖 > 0, 𝑗 < 0 or 𝑖 < 0, 𝑗 > 0

The negative position of a shift indicates the position that has changed.

An example:

We are given a sequence and a structure.
Sequence AAGGAAACC
Structure ..(.....)
Indices 123456789

The given base pair is (3,9) and the neighbors are the insertion (4, 8),
the deletion (-3,-9), the shift (3,-8) and the shift (-4, 9).
This leads to the neighbored structures:
...(....)
.........
...(...).
....(...)

A simple method to construct all insertions is to iterate over the positions of a sequence twice. The first iteration
has the index i in [1, sequence length], the second iteration has the index j in [i+1, sequence length]. All pairs (i,j)
with compatible letters and which are non-crossing with present base pairs are valid neighbored insertion moves.
Valid deletion moves are all present base pairs with negative sign. Valid shift moves are constructed by taking all
paired positions as fix position of a shift move and iterating over all positions of the sequence. If the letters of a
position are compatible and if it the move is non-crossing with existing base pairs, we have a valid shift move. The
method of generating shift moves can be accelerated by skipping neighbored base pairs.

If we need to construct all neighbors several times for subsequent moves, we can speed up the task by using the
move set of the previous structure. The previous move set has to be filtered, such that all moves that would cross the
next selected move are non-crossing. Next, the selected move has to be removed. Then one has to only to generate
all moves that were not possible before. One move is the inverted selected move (if it was an insertion, simply
make the indices negative). The generation of all other new moves is different and depends on the selected move.
It is easy for an insertion move, because we have only to include all non-crossing shift moves, that are possible
with the new base pair. For that we can either iterate over the sequence or we can select all crossing shift moves in
the filter procedure and convert them into shifts.

The generation of new moves given a deletion is a little bit more complex, because we can create more moves. At
first we can insert the deleted pair as insertion move. Then we generate all insertions that would have crossed the
deleted base pair. Finally we construct all crossing shift moves.

If the given move is a shift, we can save much time by specifying the intervals for the generation of new moves. The
interval which was enclosed by the positive position of the shift move and the previous paired position is the freed
interval after applying the move. This freed interval includes all positions and base pairs that we need to construct
new insertions and shifts. All these new moves have one position in the freed interval and the other position in the
environment of the freed interval. The environment are all position which are outside the freed interval, but within
the same enclosing loop of the shift move. The environment for valid base pairs can be divided into one or more
intervals, depending on the shift move. The following examples describe a few scenarios to specify the intervals
of the environment.

Example 1:

increase the freed interval with a shift move
AAAAGACAAGAAACAAAAGAGAAACAACAAACAAGAAACAAACAAAA
....(....(...)....(.(...)..)......(...)...).... // structure before the shift
....(....(...)....(.(...)......)..(...)...).... // structure after the shift
............................[__]............... // freed interval
..................[________]................... // interval that can pair with the␣
→˓freed interval

Example 2:

7.3. The RNA Secondary Structure Landscape 349

ViennaRNA, Release 2.6.4

switch the freed interval with a shift move
AAAAGACAAGAAACAAAAGAGAAACAACAAACAAGAAACAAACAAAA
....(....(...)....(.(...)..)......(...)...).... // structure before the shift
....(.(..(...)....).(...).........(...)...).... // structure after the shift
...................[_______]................... // freed interval
....[_].....................[_____________].... // intervals that can pair with the␣
→˓freed interval

Example 3:

decrease the freed interval with a shift move
AAAAGACAAGAAACAAAAGAGAAACAACAAACAAGAAACAAACAAAA
....(....(...)....(.(...)......)..(...)...).... // structure before the shift
....(....(...)....(.(...)..)......(...)...).... // structure after the shift
............................[__]............... // freed interval
....[____________].............[__________].... // intervals that can pair with the␣
→˓freed interval

Given the intervals of the environment and the freed interval, the new shift moves can be constructed quickly. One
has to take all positions of pairs from the environment in order to create valid pairs with positions in the freed
interval. The same procedure can be applied for the other direction. This is taking all paired positions within the
freed interval in order to look for pairs with valid positions in the intervals of the environment.

Defines

VRNA_MOVESET_INSERTION

#include <ViennaRNA/landscape/move.h> Option flag indicating insertion move.

See also:
vrna_neighbors(), vrna_neighbors_successive, vrna_path()

350 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_MOVESET_DELETION

#include <ViennaRNA/landscape/move.h> Option flag indicating deletion move.

See also:
vrna_neighbors(), vrna_neighbors_successive, vrna_path()

VRNA_MOVESET_SHIFT

#include <ViennaRNA/landscape/move.h> Option flag indicating shift move.

See also:
vrna_neighbors(), vrna_neighbors_successive, vrna_path()

VRNA_MOVESET_NO_LP

#include <ViennaRNA/landscape/move.h> Option flag indicating moves without lonely base pairs.

See also:
vrna_neighbors(), vrna_neighbors_successive, vrna_path()

VRNA_MOVESET_DEFAULT

#include <ViennaRNA/landscape/move.h> Option flag indicating default move set, i.e. inser-
tions/deletion of a base pair.

See also:
vrna_neighbors(), vrna_neighbors_successive, vrna_path()

VRNA_MOVE_NO_APPLY

#include <ViennaRNA/landscape/move.h>

VRNA_NEIGHBOR_CHANGE

#include <ViennaRNA/landscape/neighbor.h> State indicator for a neighbor that has been changed.

See also:
vrna_move_neighbor_diff_cb()

VRNA_NEIGHBOR_INVALID

#include <ViennaRNA/landscape/neighbor.h> State indicator for a neighbor that has been invalidated.

See also:
vrna_move_neighbor_diff_cb()

VRNA_NEIGHBOR_NEW

#include <ViennaRNA/landscape/neighbor.h> State indicator for a neighbor that has become newly
available.

7.3. The RNA Secondary Structure Landscape 351

ViennaRNA, Release 2.6.4

See also:
vrna_move_neighbor_diff_cb()

Typedefs

typedef struct vrna_move_s vrna_move_t
#include <ViennaRNA/landscape/move.h> A single move that transforms a secondary structure into
one of its neighbors.

typedef void (*vrna_move_update_f)(vrna_fold_compound_t *fc, vrna_move_t neighbor, unsigned int
state, void *data)

#include <ViennaRNA/landscape/neighbor.h> Prototype of the neighborhood update callback.

See also:
vrna_move_neighbor_diff_cb(), VRNA_NEIGHBOR_CHANGE, VRNA_NEIGHBOR_INVALID,
VRNA_NEIGHBOR_NEW

Param fc
The fold compound the calling function is working on

Param neighbor
The move that generates the (changed or new) neighbor

Param state
The state of the neighbor (move) as supplied by argument neighbor

Param data
Some arbitrary data pointer as passed to vrna_move_neighbor_diff_cb()

void() vrna_callback_move_update (vrna_fold_compound_t *fc, vrna_move_t neighbor,
unsigned int state, void *data)

#include <ViennaRNA/landscape/neighbor.h>

Functions

vrna_move_t vrna_move_init(int pos_5, int pos_3)
#include <ViennaRNA/landscape/move.h> Create an atomic move.

See also:
vrna_move_s

Parameters
• pos_5 – The 5’ position of the move (positive for insertions, negative for removal, any

value for shift moves)

• pos_3 – The 3’ position of the move (positive for insertions, negative for removal, any
value for shift moves)

Returns
An atomic move as specified by pos_5 and pos_3

352 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void vrna_move_list_free(vrna_move_t *moves)
#include <ViennaRNA/landscape/move.h> delete all moves in a zero terminated list.

void vrna_move_apply(short *pt, const vrna_move_t *m)

#include <ViennaRNA/landscape/move.h> Apply a particular move / transition to a secondary struc-
ture, i.e. transform a structure.

Parameters
• pt – [inout] The pair table representation of the secondary structure

• m – [in] The move to apply

void vrna_move_apply_db(char *structure, const short *pt, const vrna_move_t *m)

#include <ViennaRNA/landscape/move.h>

int vrna_move_is_removal(const vrna_move_t *m)

#include <ViennaRNA/landscape/move.h> Test whether a move is a base pair removal.

Parameters
• m – The move to test against

Returns
Non-zero if the move is a base pair removal, 0 otherwise

int vrna_move_is_insertion(const vrna_move_t *m)

#include <ViennaRNA/landscape/move.h> Test whether a move is a base pair insertion.

Parameters
• m – The move to test against

Returns
Non-zero if the move is a base pair insertion, 0 otherwise

int vrna_move_is_shift(const vrna_move_t *m)

#include <ViennaRNA/landscape/move.h> Test whether a move is a base pair shift.

Parameters
• m – The move to test against

Returns
Non-zero if the move is a base pair shift, 0 otherwise

int vrna_move_compare(const vrna_move_t *m, const vrna_move_t *b, const short *pt)
#include <ViennaRNA/landscape/move.h> Compare two moves.

The function compares two moves m and b and returns whether move m is lexicographically smaller
(-1), larger (1) or equal to move b.

If any of the moves m or b is a shift move, this comparison only makes sense in a structure context.
Thus, the third argument with the current structure must be provided.

Note: This function returns 0 (equality) upon any error, e.g. missing input

Warning: Currently, shift moves are not supported!

Parameters
• m – The first move of the comparison

• b – The second move of the comparison

7.3. The RNA Secondary Structure Landscape 353

ViennaRNA, Release 2.6.4

• pt – The pair table of the current structure that is compatible with both moves (maybe
NULL if moves are guaranteed to be no shifts)

Returns
-1 if m < b, 1 if m > b, 0 otherwise

void vrna_loopidx_update(int *loopidx, const short *pt, int length, const vrna_move_t *m)

#include <ViennaRNA/landscape/neighbor.h> Alters the loopIndices array that was constructed with
vrna_loopidx_from_ptable().

The loopIndex of the current move will be inserted. The correctness of the input will not be checked
because the speed should be optimized.

Parameters
• loopidx – [inout] The loop index data structure that needs an update

• pt – [in] A pair table on which the move will be executed

• length – The length of the structure

• m – [in] The move that is applied to the current structure

vrna_move_t *vrna_neighbors(vrna_fold_compound_t *fc, const short *pt, unsigned int options)
#include <ViennaRNA/landscape/neighbor.h> Generate neighbors of a secondary structure.

This function allows one to generate all structural neighbors (according to a particular move set) of an
RNA secondary structure. The neighborhood is then returned as a list of transitions / moves required
to transform the current structure into the actual neighbor.

SWIG Wrapper Notes:
This function is attached as an overloaded method neighbors() to objects of type
fold_compound. The optional parameter options defaults to VRNA_MOVESET_DEFAULT if
it is omitted. See, e.g. RNA.fold_compound.neighbors() in the Python API .

See also:
vrna_neighbors_successive(), vrna_move_apply(), VRNA_MOVESET_INSERTION ,
VRNA_MOVESET_DELETION , VRNA_MOVESET_SHIFT , VRNA_MOVESET_DEFAULT

Parameters
• fc – [in] A vrna_fold_compound_t containing the energy parameters and model details

• pt – [in] The pair table representation of the structure

• options – Options to modify the behavior of this function, e.g. available move set

Returns
Neighbors as a list of moves / transitions (the last element in the list has both of its fields
set to 0)

vrna_move_t *vrna_neighbors_successive(const vrna_fold_compound_t *fc, const vrna_move_t
*curr_move, const short *prev_pt, const vrna_move_t
*prev_neighbors, int size_prev_neighbors, int
*size_neighbors, unsigned int options)

#include <ViennaRNA/landscape/neighbor.h> Generate neighbors of a secondary structure (the fast
way)

This function implements a fast way to generate all neighbors of a secondary structure that results from
successive applications of individual moves. The speed-up results from updating an already known
list of valid neighbors before the individual move towards the current structure took place. In essence,
this function removes neighbors that are not accessible anymore and inserts neighbors emerging after
a move took place.

354 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_neighbors(), vrna_move_apply(), VRNA_MOVESET_INSERTION ,
VRNA_MOVESET_DELETION , VRNA_MOVESET_SHIFT , VRNA_MOVESET_DEFAULT

Parameters
• fc – [in] A vrna_fold_compound_t containing the energy parameters and model details

• curr_move – [in] The move that was/will be applied to prev_pt

• prev_pt – [in] A pair table representation of the structure before curr_move is/was
applied

• prev_neighbors – [in] The list of neighbors of prev_pt

• size_prev_neighbors – The size of prev_neighbors, i.e. the lists length

• size_neighbors – [out] A pointer to store the size / length of the new neighbor list

• options – Options to modify the behavior of this function, e.g. available move set

Returns
Neighbors as a list of moves / transitions (the last element in the list has both of its fields
set to 0)

int vrna_move_neighbor_diff_cb(vrna_fold_compound_t *fc, short *ptable, vrna_move_t move,
vrna_move_update_f cb, void *data, unsigned int options)

#include <ViennaRNA/landscape/neighbor.h> Apply a move to a secondary structure and indicate
which neighbors have changed consequentially.

This function applies a move to a secondary structure and explores the local neighborhood of the af-
fected loop. Any changes to previously compatible neighbors that have been affected by this loop will
be reported through a callback function. In particular, any of the three cases might appear:

• A previously available neighbor move has changed, usually the free energy change of the move
(VRNA_NEIGHBOR_CHANGE)

• A previously available neighbor move became invalid (VRNA_NEIGHBOR_INVALID)

• A new neighbor move becomes available (VRNA_NEIGHBOR_NEW)

See also:
vrna_move_neighbor_diff(), VRNA_NEIGHBOR_CHANGE, VRNA_NEIGHBOR_INVALID,
VRNA_NEIGHBOR_NEW , vrna_move_update_f , #VRNA_MOVE_NO_APPLY

Parameters
• fc – A fold compound for the RNA sequence(s) that this function operates on

• ptable – The current structure as pair table

• move – The move to apply

• cb – The address of the callback function that is passed the neighborhood changes

• data – An arbitrary data pointer that will be passed through to the callback function
cb

• options – Options to modify the behavior of this function, .e.g available move set

Returns
Non-zero on success, 0 otherwise

7.3. The RNA Secondary Structure Landscape 355

ViennaRNA, Release 2.6.4

vrna_move_t *vrna_move_neighbor_diff(vrna_fold_compound_t *fc, short *ptable, vrna_move_t
move, vrna_move_t **invalid_moves, unsigned int options)

#include <ViennaRNA/landscape/neighbor.h> Apply a move to a secondary structure and indicate
which neighbors have changed consequentially.

Similar to vrna_move_neighbor_diff_cb(), this function applies a move to a secondary structure and
reports back the neighbors of the current structure become affected by this move. Instead of executing
a callback for each of the affected neighbors, this function compiles two lists of neighbor moves, one
that is returned and consists of all moves that are novel or may have changed in energy, and a second,
invalid_moves, that consists of all the neighbor moves that become invalid, respectively.

Parameters
• fc – A fold compound for the RNA sequence(s) that this function operates on

• ptable – The current structure as pair table

• move – The move to apply

• invalid_moves – The address of a move list where the function stores those moves
that become invalid

• options – Options to modify the behavior of this function, .e.g available move set

Returns
A list of moves that might have changed in energy or are novel compared to the structure
before application of the move

struct vrna_move_s
#include <ViennaRNA/landscape/move.h> An atomic representation of the transition / move from one
structure to its neighbor.

An atomic transition / move may be one of the following:

• a base pair insertion,

• a base pair removal, or

• a base pair shift where an existing base pair changes one of its pairing partner.

These moves are encoded by two integer values that represent the affected 5’ and 3’ nucleotide positions.
Furthermore, we use the following convention on the signedness of these encodings:

• both values are positive for insertion moves

• both values are negative for base pair removals

• both values have different signedness for shift moves, where the positive value indicates the nu-
cleotide that stays constant, and the others absolute value is the new pairing partner

Note: A value of 0 in either field is used as list-end indicator and doesn’t represent any valid move.

Public Members

int pos_5
The (absolute value of the) 5’ position of a base pair, or any position of a shifted pair.

int pos_3
The (absolute value of the) 3’ position of a base pair, or any position of a shifted pair.

356 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

vrna_move_t *next
The next base pair (if an elementary move changes more than one base pair), or NULL Has to be
terminated with move 0,0.

7.3.2 (Re-)folding Paths, Saddle Points, Energy Barriers, and Local Minima

API for various RNA folding path algorithms.

This part of our API allows for generating RNA secondary structure (re-)folding paths between two secondary
structures or simply starting from a single structure.

This is most important if an estimate of the refolding energy barrier between two structures is required, or a struc-
ture’s corresponding local minimum needs to be determined, e.g. through a gradient-descent walk.

This part of the interface is further split into the following sections:

• Direct Refolding Paths between two Secondary Structures, and

• Folding Paths that start at a single Secondary Structure

Defines

VRNA_PATH_TYPE_DOT_BRACKET

#include <ViennaRNA/landscape/paths.h> Flag to indicate producing a (re-)folding path as list of dot-
bracket structures.

See also:
vrna_path_t, vrna_path_options_findpath(), vrna_path_direct(), vrna_path_direct_ub()

VRNA_PATH_TYPE_MOVES

#include <ViennaRNA/landscape/paths.h> Flag to indicate producing a (re-)folding path as list of tran-
sition moves.

See also:
vrna_path_t, vrna_path_options_findpath(), vrna_path_direct(), vrna_path_direct_ub()

Typedefs

typedef struct vrna_path_s vrna_path_t
#include <ViennaRNA/landscape/paths.h> Typename for the refolding path data structure
vrna_path_s.

typedef struct vrna_path_options_s *vrna_path_options_t
#include <ViennaRNA/landscape/paths.h> Options data structure for (re-)folding path implementa-
tions.

7.3. The RNA Secondary Structure Landscape 357

ViennaRNA, Release 2.6.4

Functions

void vrna_path_free(vrna_path_t *path)
#include <ViennaRNA/landscape/paths.h> Release (free) memory occupied by a (re-)folding path.

See also:
vrna_path_direct(), vrna_path_direct_ub(), vrna_path_findpath(), vrna_path_findpath_ub()

Parameters
• path – The refolding path to be free’d

void vrna_path_options_free(vrna_path_options_t options)
#include <ViennaRNA/landscape/paths.h> Release (free) memory occupied by an options data struc-
ture for (re-)folding path implementations.

See also:
vrna_path_options_findpath(), vrna_path_direct(), vrna_path_direct_ub()

Parameters
• options – The options data structure to be free’d

struct vrna_path_s
#include <ViennaRNA/landscape/paths.h> An element of a refolding path list.

Usually, one has to deal with an array of vrna_path_s, e.g. returned from one of the refolding-path
algorithms.

Since in most cases the length of the list is not known in advance, such lists have an end-of-list marker,
which is either:

• a value of NULL for vrna_path_s::s if vrna_path_s::type =
VRNA_PATH_TYPE_DOT_BRACKET , or

• a vrna_path_s::move with zero in both fields vrna_move_t::pos_5 and vrna_move_t::pos_3 if
vrna_path_s::type = VRNA_PATH_TYPE_MOVES.

In the following we show an example for how to cover both cases of iteration:

vrna_path_t *ptr = path; // path was returned from one of the refolding path␣
→˓functions, e.g. vrna_path_direct()

if (ptr) {
if (ptr->type == VRNA_PATH_TYPE_DOT_BRACKET) {
for (; ptr->s; ptr++)
printf("%s [%6.2f]\n", ptr->s, ptr->en);

} else if (ptr->type == VRNA_PATH_TYPE_MOVES) {
for (; ptr->move.pos_5 != 0; ptr++)
printf("move %d:%d, dG = %6.2f\n", ptr->move.pos_5, ptr->move.pos_3,␣

→˓ptr->en);
}

}

358 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_path_free()

Public Members

unsigned int type
The type of the path element.

A value of VRNA_PATH_TYPE_DOT_BRACKET indicates that vrna_path_s::s consists of the
secondary structure in dot-bracket notation, and vrna_path_s::en the corresponding free energy.

On the other hand, if the value is VRNA_PATH_TYPE_MOVES, vrna_path_s::s is NULL and
vrna_path_s::move is set to the transition move that transforms a previous structure into it’s neigh-
bor along the path. In this case, the attribute vrna_path_s::en states the change in free energy with
respect to the structure before application of vrna_path_s::move.

double en
Free energy of current structure.

char *s
Secondary structure in dot-bracket notation.

vrna_move_t move
Move that transforms the previous structure into it’s next neighbor along the path.

7.3.3 Direct Refolding Paths between two Secondary Structures

Heuristics to explore direct, optimal (re-)folding paths between two secondary structures.

Functions

int vrna_path_findpath_saddle(vrna_fold_compound_t *fc, const char *s1, const char *s2, int width)
#include <ViennaRNA/landscape/findpath.h> Find energy of a saddle point between 2 structures
(search only direct path)

This function uses an inplementation of the findpath algorithm [Flamm et al., 2001] for near-optimal
direct refolding path prediction.

Model details, and energy parameters are used as provided via the parameter ‘fc’. The
vrna_fold_compound_t does not require memory for any DP matrices, but requires all most basic init
values as one would get from a call like this:

fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_DEFAULT);

SWIG Wrapper Notes:
This function is attached as an overloaded method path_findpath_saddle() to objects of type
fold_compound. The optional parameter width defaults to 1 if it is omitted. See, e.g. RNA.
fold_compound.path_findpath_saddle() in the Python API .

7.3. The RNA Secondary Structure Landscape 359

ViennaRNA, Release 2.6.4

See also:
vrna_path_findpath_saddle_ub(), vrna_fold_compound(), vrna_fold_compound_t,
vrna_path_findpath()

Parameters
• fc – The vrna_fold_compound_t with precomputed sequence encoding and model de-

tails

• s1 – The start structure in dot-bracket notation

• s2 – The target structure in dot-bracket notation

• width – A number specifying how many strutures are being kept at each step during
the search

Returns
The saddle energy in 10cal/mol

int vrna_path_findpath_saddle_ub(vrna_fold_compound_t *fc, const char *s1, const char *s2, int
width, int maxE)

#include <ViennaRNA/landscape/findpath.h> Find energy of a saddle point between 2 structures
(search only direct path)

This function uses an inplementation of the findpath algorithm [Flamm et al., 2001] for near-optimal
direct refolding path prediction.

Model details, and energy parameters are used as provided via the parameter ‘fc’. The
vrna_fold_compound_t does not require memory for any DP matrices, but requires all most basic init
values as one would get from a call like this:

fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_DEFAULT);

SWIG Wrapper Notes:
This function is attached as an overloaded method path_findpath_saddle() to objects of type
fold_compound. The optional parameter width defaults to 1 if it is omitted, while the optional
parameter maxE defaults to INF. In case the function did not find a path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥

the function returns a NULL object, i.e. undef for Perl and None for Python. See, e.g. RNA.
fold_compound.path_findpath_saddle() in the Python API .

See also:
vrna_path_findpath_saddle(), vrna_fold_compound(), vrna_fold_compound_t, vrna_path_findpath()

Warning: The argument maxE (𝐸𝑚𝑎𝑥) enables one to specify an upper bound, or maximum free
energy for the saddle point between the two input structures. If no path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 is
found, the function simply returns maxE

Parameters
• fc – The vrna_fold_compound_t with precomputed sequence encoding and model de-

tails

• s1 – The start structure in dot-bracket notation

• s2 – The target structure in dot-bracket notation

• width – A number specifying how many strutures are being kept at each step during
the search

• maxE – An upper bound for the saddle point energy in 10cal/mol

360 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Returns
The saddle energy in 10cal/mol

vrna_path_t *vrna_path_findpath(vrna_fold_compound_t *fc, const char *s1, const char *s2, int
width)

#include <ViennaRNA/landscape/findpath.h> Find refolding path between 2 structures (search only
direct path)

This function uses an inplementation of the findpath algorithm [Flamm et al., 2001] for near-optimal
direct refolding path prediction.

Model details, and energy parameters are used as provided via the parameter ‘fc’. The
vrna_fold_compound_t does not require memory for any DP matrices, but requires all most basic init
values as one would get from a call like this:

fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_DEFAULT);

SWIG Wrapper Notes:
This function is attached as an overloaded method path_findpath() to objects of type
fold_compound. The optional parameter width defaults to 1 if it is omitted. See, e.g. RNA.
fold_compound.path_findpath() in the Python API .

See also:
vrna_path_findpath_ub(), vrna_fold_compound(), vrna_fold_compound_t,
vrna_path_findpath_saddle()

Parameters
• fc – The vrna_fold_compound_t with precomputed sequence encoding and model de-

tails

• s1 – The start structure in dot-bracket notation

• s2 – The target structure in dot-bracket notation

• width – A number specifying how many strutures are being kept at each step during
the search

Returns
The saddle energy in 10cal/mol

vrna_path_t *vrna_path_findpath_ub(vrna_fold_compound_t *fc, const char *s1, const char *s2, int
width, int maxE)

#include <ViennaRNA/landscape/findpath.h> Find refolding path between 2 structures (search only
direct path)

This function uses an inplementation of the findpath algorithm [Flamm et al., 2001] for near-optimal
direct refolding path prediction.

Model details, and energy parameters are used as provided via the parameter ‘fc’. The
vrna_fold_compound_t does not require memory for any DP matrices, but requires all most basic init
values as one would get from a call like this:

fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_DEFAULT);

SWIG Wrapper Notes:
This function is attached as an overloaded method path_findpath() to objects of type
fold_compound. The optional parameter width defaults to 1 if it is omitted, while the optional
parameter maxE defaults to INF. In case the function did not find a path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 the

7.3. The RNA Secondary Structure Landscape 361

ViennaRNA, Release 2.6.4

function returns an empty list. See, e.g. RNA.fold_compound.path_findpath() in the Python
API .

See also:
vrna_path_findpath(), vrna_fold_compound(), vrna_fold_compound_t, vrna_path_findpath_saddle()

Warning: The argument maxE enables one to specify an upper bound, or maximum free energy
for the saddle point between the two input structures. If no path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 is found, the
function simply returns NULL

Parameters
• fc – The vrna_fold_compound_t with precomputed sequence encoding and model de-

tails

• s1 – The start structure in dot-bracket notation

• s2 – The target structure in dot-bracket notation

• width – A number specifying how many strutures are being kept at each step during
the search

• maxE – An upper bound for the saddle point energy in 10cal/mol

Returns
The saddle energy in 10cal/mol

vrna_path_options_t vrna_path_options_findpath(int width, unsigned int type)
#include <ViennaRNA/landscape/paths.h> Create options data structure for findpath direct (re-)folding
path heuristic.

This function returns an options data structure that switches the vrna_path_direct() and
vrna_path_direct_ub() API functions to use the findpath [Flamm et al., 2001] heuristic. The parameter
width specifies the width of the breadth-first search while the second parameter type allows one to
set the type of the returned (re-)folding path.

Currently, the following return types are available:

• A list of dot-bracket structures and corresponding free energy (flag:
VRNA_PATH_TYPE_DOT_BRACKET)

• A list of transition moves and corresponding free energy changes (flag:
VRNA_PATH_TYPE_MOVES)

SWIG Wrapper Notes:
This function is available as overloaded function path_options_findpath(). The op-
tional parameter width defaults to 10 if omitted, while the optional parameter type defaults
to VRNA_PATH_TYPE_DOT_BRACKET . See, e.g. RNA.path_options_findpath() in the
Python API .

See also:
VRNA_PATH_TYPE_DOT_BRACKET , VRNA_PATH_TYPE_MOVES, vrna_path_options_free(),
vrna_path_direct(), vrna_path_direct_ub()

Parameters
• width – Width of the breath-first search strategy

• type – Setting that specifies how the return (re-)folding path should be encoded

Returns
An options data structure with settings for the findpath direct path heuristic

362 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

vrna_path_t *vrna_path_direct(vrna_fold_compound_t *fc, const char *s1, const char *s2,
vrna_path_options_t options)

#include <ViennaRNA/landscape/paths.h> Determine an optimal direct (re-)folding path between two
secondary structures.

This is the generic wrapper function to retrieve (an optimal) (re-)folding path between two secondary
structures s1 and s2. The actual algorithm that is used to generate the (re-)folding path is determined
by the settings specified in the options data structure. This data structure also determines the return
type, which might be either:

• a list of dot-bracket structures with corresponding free energy, or

• a list of transition moves with corresponding free energy change

If the options parameter is passed a NULL pointer, this function defaults to the findpath heuristic
[Flamm et al., 2001] with a breadth-first search width of 10, and the returned path consists of dot-
bracket structures with corresponding free energies.

SWIG Wrapper Notes:
This function is attached as an overloaded method path_direct() to objects of type
fold_compound. The optional parameter options defaults to NULL if it is omitted. See, e.g.
RNA.fold_compound.path_direct() in the Python API .

See also:
vrna_path_direct_ub(), vrna_path_options_findpath(), vrna_path_options_free(), vrna_path_free()

Parameters
• fc – The vrna_fold_compound_t with precomputed sequence encoding and model de-

tails

• s1 – The start structure in dot-bracket notation

• s2 – The target structure in dot-bracket notation

• options – An options data structure that specifies the path heuristic and corresponding
settings (maybe NULL)

Returns
An optimal (re-)folding path between the two input structures

vrna_path_t *vrna_path_direct_ub(vrna_fold_compound_t *fc, const char *s1, const char *s2, int
maxE, vrna_path_options_t options)

#include <ViennaRNA/landscape/paths.h> Determine an optimal direct (re-)folding path between two
secondary structures.

This function is similar to vrna_path_direct(), but allows to specify an upper-bound for the saddle point
energy. The underlying algorithms will stop determining an (optimal) (re-)folding path, if none can be
found that has a saddle point below the specified upper-bound threshold maxE.

SWIG Wrapper Notes:
This function is attached as an overloaded method path_direct() to objects of type
fold_compound. The optional parameter maxE defaults to #INT_MAX - 1 if it is omitted, while
the optional parameter options defaults to NULL. In case the function did not find a path with
𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 it returns an empty list. See, e.g. RNA.fold_compound.path_direct() in
the Python API .

See also:
vrna_path_direct_ub(), vrna_path_options_findpath(), vrna_path_options_free(), vrna_path_free()

7.3. The RNA Secondary Structure Landscape 363

ViennaRNA, Release 2.6.4

Warning: The argument maxE enables one to specify an upper bound, or maximum free energy
for the saddle point between the two input structures. If no path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 is found, the
function simply returns NULL

Parameters
• fc – The vrna_fold_compound_t with precomputed sequence encoding and model de-

tails

• s1 – The start structure in dot-bracket notation

• s2 – The target structure in dot-bracket notation

• maxE – Upper bound for the saddle point along the (re-)folding path

• options – An options data structure that specifies the path heuristic and corresponding
settings (maybe NULL)

Returns
An optimal (re-)folding path between the two input structures

7.3.4 Folding Paths that start at a single Secondary Structure

Implementation of gradient- and random walks starting from a single secondary structure.

Defines

VRNA_PATH_STEEPEST_DESCENT

#include <ViennaRNA/landscape/walk.h> Option flag to request a steepest descent / gradient path.

See also:
vrna_path()

VRNA_PATH_RANDOM

#include <ViennaRNA/landscape/walk.h> Option flag to request a random walk path.

See also:
vrna_path()

VRNA_PATH_NO_TRANSITION_OUTPUT

#include <ViennaRNA/landscape/walk.h> Option flag to omit returning the transition path.

See also:
vrna_path(), vrna_path_gradient(), vrna_path_random()

364 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_PATH_DEFAULT

#include <ViennaRNA/landscape/walk.h> Option flag to request defaults (steepest descent / default
move set)

See also:
vrna_path(), VRNA_PATH_STEEPEST_DESCENT , VRNA_MOVESET_DEFAULT

Functions

vrna_move_t *vrna_path(vrna_fold_compound_t *fc, short *pt, unsigned int steps, unsigned int options)
#include <ViennaRNA/landscape/walk.h> Compute a path, store the final structure, and return a list
of transition moves from the start to the final structure.

This function computes, given a start structure in pair table format, a transition path, updates
the pair table to the final structure of the path. Finally, if not requested otherwise by using the
VRNA_PATH_NO_TRANSITION_OUTPUT flag in the options field, this function returns a list of
individual transitions that lead from the start to the final structure if requested.

The currently available transition paths are

• Steepest Descent / Gradient walk (flag: VRNA_PATH_STEEPEST_DESCENT)

• Random walk (flag: VRNA_PATH_RANDOM)

The type of transitions must be set through the options parameter

SWIG Wrapper Notes:
This function is attached as an overloaded method path() to objects of type fold_compound.
The optional parameter options defaults to VRNA_PATH_DEFAULT if it is omitted. See, e.g.
RNA.fold_compound.path() in the Python API .

See also:
vrna_path_gradient(), vrna_path_random(), vrna_ptable(), vrna_ptable_copy(),
vrna_fold_compound() VRNA_PATH_STEEPEST_DESCENT , VRNA_PATH_RANDOM,
VRNA_MOVESET_DEFAULT , VRNA_MOVESET_SHIFT , VRNA_PATH_NO_TRANSITION_OUTPUT

Note: Since the result is written to the input structure you may want to use vrna_ptable_copy() before
calling this function to keep the initial structure

Parameters
• fc – [in] A vrna_fold_compound_t containing the energy parameters and model details

• pt – [inout] The pair table containing the start structure. Used to update to the final
structure after execution of this function

• options – [in] Options to modify the behavior of this function

Returns
A list of transition moves (default), or NULL (if options &
VRNA_PATH_NO_TRANSITION_OUTPUT)

vrna_move_t *vrna_path_gradient(vrna_fold_compound_t *fc, short *pt, unsigned int options)
#include <ViennaRNA/landscape/walk.h> Compute a steepest descent / gradient path, store the final
structure, and return a list of transition moves from the start to the final structure.

7.3. The RNA Secondary Structure Landscape 365

ViennaRNA, Release 2.6.4

This function computes, given a start structure in pair table format, a steepest descent path, updates
the pair table to the final structure of the path. Finally, if not requested otherwise by using the
VRNA_PATH_NO_TRANSITION_OUTPUT flag in the options field, this function returns a list of
individual transitions that lead from the start to the final structure if requested.

SWIG Wrapper Notes:
This function is attached as an overloaded method path_gradient() to objects of type
fold_compound. The optional parameter options defaults to VRNA_PATH_DEFAULT if it is
omitted. See, e.g. RNA.fold_compound.path_gradient() in the Python API .

See also:
vrna_path_random(), vrna_path(), vrna_ptable(), vrna_ptable_copy(),
vrna_fold_compound() VRNA_MOVESET_DEFAULT , VRNA_MOVESET_SHIFT ,
VRNA_PATH_NO_TRANSITION_OUTPUT

Note: Since the result is written to the input structure you may want to use vrna_ptable_copy() before
calling this function to keep the initial structure

Parameters
• fc – [in] A vrna_fold_compound_t containing the energy parameters and model details

• pt – [inout] The pair table containing the start structure. Used to update to the final
structure after execution of this function

• options – [in] Options to modify the behavior of this function

Returns
A list of transition moves (default), or NULL (if options &
VRNA_PATH_NO_TRANSITION_OUTPUT)

vrna_move_t *vrna_path_random(vrna_fold_compound_t *fc, short *pt, unsigned int steps, unsigned
int options)

#include <ViennaRNA/landscape/walk.h> Generate a random walk / path of a given length, store the
final structure, and return a list of transition moves from the start to the final structure.

This function generates, given a start structure in pair table format, a random walk / path, updates
the pair table to the final structure of the path. Finally, if not requested otherwise by using the
VRNA_PATH_NO_TRANSITION_OUTPUT flag in the options field, this function returns a list of
individual transitions that lead from the start to the final structure if requested.

SWIG Wrapper Notes:
This function is attached as an overloaded method path_gradient() to objects of type
fold_compound. The optional parameter options defaults to VRNA_PATH_DEFAULT if it is
omitted. See, e.g. RNA.fold_compound.path_random() in the Python API .

See also:
vrna_path_gradient(), vrna_path(), vrna_ptable(), vrna_ptable_copy(),
vrna_fold_compound() VRNA_MOVESET_DEFAULT , VRNA_MOVESET_SHIFT ,
VRNA_PATH_NO_TRANSITION_OUTPUT

Note: Since the result is written to the input structure you may want to use vrna_ptable_copy() before
calling this function to keep the initial structure

Parameters

366 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• fc – [in] A vrna_fold_compound_t containing the energy parameters and model details

• pt – [inout] The pair table containing the start structure. Used to update to the final
structure after execution of this function

• steps – [in] The length of the path, i.e. the total number of transitions / moves

• options – [in] Options to modify the behavior of this function

Returns
A list of transition moves (default), or NULL (if options &
VRNA_PATH_NO_TRANSITION_OUTPUT)

7.3.5 Deprecated Interface for (Re-)folding Paths, Saddle Points, and Energy Bar-
riers

Typedefs

typedef struct vrna_path_s path_t
#include <ViennaRNA/landscape/paths.h> Old typename of vrna_path_s.

Deprecated:
Use vrna_path_t instead!

Functions

int find_saddle(const char *seq, const char *s1, const char *s2, int width)
#include <ViennaRNA/landscape/findpath.h> Find energy of a saddle point between 2 structures
(search only direct path)

Deprecated:
Use vrna_path_findpath_saddle() instead!

Parameters
• seq – RNA sequence

• s1 – A pointer to the character array where the first secondary structure in dot-bracket
notation will be written to

• s2 – A pointer to the character array where the second secondary structure in dot-
bracket notation will be written to

• width – integer how many strutures are being kept during the search

Returns
the saddle energy in 10cal/mol

void free_path(vrna_path_t *path)
#include <ViennaRNA/landscape/findpath.h> Free memory allocated by get_path() function.

7.3. The RNA Secondary Structure Landscape 367

ViennaRNA, Release 2.6.4

Deprecated:
Use vrna_path_free() instead!

Parameters
• path – pointer to memory to be freed

vrna_path_t *get_path(const char *seq, const char *s1, const char *s2, int width)
#include <ViennaRNA/landscape/findpath.h> Find refolding path between 2 structures (search only
direct path)

Deprecated:
Use vrna_path_findpath() instead!

Parameters
• seq – RNA sequence

• s1 – A pointer to the character array where the first secondary structure in dot-bracket
notation will be written to

• s2 – A pointer to the character array where the second secondary structure in dot-
bracket notation will be written to

• width – integer how many strutures are being kept during the search

Returns
direct refolding path between two structures

7.4 Minimum Free Energy (MFE) Algorithms

Computing the Minimum Free Energy (MFE), i.e. the most stable conformation in thermodynamic equilibrium.

7.4.1 Global MFE Prediction

Variations of the global Minimum Free Energy (MFE) prediction algorithm.

We provide implementations of the global MFE prediction algorithm for

• Single sequences,

• Multiple sequence alignments (MSA), and

• RNA-RNA hybrids

API Symbols

368 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Basic global MFE prediction interface

float vrna_mfe(vrna_fold_compound_t *fc, char *structure)
#include <ViennaRNA/mfe.h> Compute minimum free energy and an appropriate secondary structure
of an RNA sequence, or RNA sequence alignment.

Depending on the type of the provided vrna_fold_compound_t, this function predicts the MFE for a
single sequence (or connected component of multiple sequences), or an averaged MFE for a sequence
alignment. If backtracking is activated, it also constructs the corresponding secondary structure, or
consensus structure. Therefore, the second parameter, structure, has to point to an allocated block of
memory with a size of at least strlen(sequence) + 1 to store the backtracked MFE structure. (For
consensus structures, this is the length of the alignment + 1. If NULL is passed, no backtracking will be
performed.

SWIG Wrapper Notes:
This function is attached as method mfe() to objects of type fold_compound. The param-
eter structure is returned along with the MFE und must not be provided. See e.g. RNA.
fold_compound.mfe() in the Python API .

See also:
vrna_fold_compound_t, vrna_fold_compound(), vrna_fold(), vrna_circfold(),
vrna_fold_compound_comparative(), vrna_alifold(), vrna_circalifold()

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Parameters
• fc – fold compound

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to (Maybe NULL)

Returns
the minimum free energy (MFE) in kcal/mol

float vrna_mfe_dimer(vrna_fold_compound_t *fc, char *structure)
#include <ViennaRNA/mfe.h> Compute the minimum free energy of two interacting RNA molecules.

The code is analog to the vrna_mfe() function.

Deprecated:
This function is obsolete since vrna_mfe() can handle complexes multiple sequences since v2.5.0.
Use vrna_mfe() for connected component MFE instead and compute MFEs of unconnected states
separately.

SWIG Wrapper Notes:
This function is attached as method mfe_dimer() to objects of type fold_compound. The pa-
rameter structure is returned along with the MFE und must not be provided. See e.g. RNA.
fold_compound.mfe_dimer() in the Python API .

See also:
vrna_mfe()

Parameters

7.4. Minimum Free Energy (MFE) Algorithms 369

ViennaRNA, Release 2.6.4

• fc – fold compound

• structure – Will hold the barcket dot structure of the dimer molecule

Returns
minimum free energy of the structure

Simplified global MFE prediction using sequence(s) or multiple sequence alignment(s)

float vrna_fold(const char *sequence, char *structure)
#include <ViennaRNA/mfe.h> Compute Minimum Free Energy (MFE), and a corresponding secondary
structure for an RNA sequence.

This simplified interface to vrna_mfe() computes the MFE and, if required, a secondary structure for an
RNA sequence using default options. Memory required for dynamic programming (DP) matrices will
be allocated and free’d on-the-fly. Hence, after return of this function, the recursively filled matrices
are not available any more for any post-processing, e.g. suboptimal backtracking, etc.

SWIG Wrapper Notes:
This function is available as function fold() in the global namespace. The parameter structure
is returned along with the MFE und must not be provided. See e.g. RNA.fold() in the Python
API .

See also:
vrna_circfold(), vrna_mfe()

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or
you require other conditions than specified by the default model details, use vrna_mfe(), and the data
structure vrna_fold_compound_t instead.

Parameters
• sequence – RNA sequence

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

float vrna_circfold(const char *sequence, char *structure)
#include <ViennaRNA/mfe.h> Compute Minimum Free Energy (MFE), and a corresponding secondary
structure for a circular RNA sequence.

This simplified interface to vrna_mfe() computes the MFE and, if required, a secondary structure for
a circular RNA sequence using default options. Memory required for dynamic programming (DP)
matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the recursively
filled matrices are not available any more for any post-processing, e.g. suboptimal backtracking, etc.

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See
Hofacker and Stadler [2006] for further details.

SWIG Wrapper Notes:
This function is available as function circfold() in the global namespace. The parameter
structure is returned along with the MFE und must not be provided. See e.g. RNA.circfold()
in the Python API .

370 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_fold(), vrna_mfe()

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or
you require other conditions than specified by the default model details, use vrna_mfe(), and the data
structure vrna_fold_compound_t instead.

Parameters
• sequence – RNA sequence

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

float vrna_alifold(const char **sequences, char *structure)
#include <ViennaRNA/mfe.h> Compute Minimum Free Energy (MFE), and a corresponding consensus
secondary structure for an RNA sequence alignment using a comparative method.

This simplified interface to vrna_mfe() computes the MFE and, if required, a consensus secondary
structure for an RNA sequence alignment using default options. Memory required for dynamic pro-
gramming (DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function,
the recursively filled matrices are not available any more for any post-processing, e.g. suboptimal
backtracking, etc.

SWIG Wrapper Notes:
This function is available as function alifold() in the global namespace. The parameter
structure is returned along with the MFE und must not be provided. See e.g. RNA.alifold()
in the Python API .

See also:
vrna_circalifold(), vrna_mfe()

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or
you require other conditions than specified by the default model details, use vrna_mfe(), and the data
structure vrna_fold_compound_t instead.

Parameters
• sequences – RNA sequence alignment

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

float vrna_circalifold(const char **sequences, char *structure)
#include <ViennaRNA/mfe.h> Compute Minimum Free Energy (MFE), and a corresponding consensus
secondary structure for a sequence alignment of circular RNAs using a comparative method.

This simplified interface to vrna_mfe() computes the MFE and, if required, a consensus secondary
structure for an RNA sequence alignment using default options. Memory required for dynamic pro-
gramming (DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function,

7.4. Minimum Free Energy (MFE) Algorithms 371

ViennaRNA, Release 2.6.4

the recursively filled matrices are not available any more for any post-processing, e.g. suboptimal
backtracking, etc.

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See
Hofacker and Stadler [2006] for further details.

SWIG Wrapper Notes:
This function is available as function circalifold() in the global namespace. The param-
eter structure is returned along with the MFE und must not be provided. See e.g. RNA.
circalifold() in the Python API .

See also:
vrna_alifold(), vrna_mfe()

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or
you require other conditions than specified by the default model details, use vrna_mfe(), and the data
structure vrna_fold_compound_t instead.

Parameters
• sequences – Sequence alignment of circular RNAs

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

float vrna_cofold(const char *sequence, char *structure)
#include <ViennaRNA/mfe.h> Compute Minimum Free Energy (MFE), and a corresponding secondary
structure for two dimerized RNA sequences.

This simplified interface to vrna_mfe() computes the MFE and, if required, a secondary structure for
two RNA sequences upon dimerization using default options. Memory required for dynamic program-
ming (DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the
recursively filled matrices are not available any more for any post-processing, e.g. suboptimal back-
tracking, etc.

Deprecated:
This function is obsolete since vrna_mfe()/vrna_fold() can handle complexes multiple sequences
since v2.5.0. Use vrna_mfe()/vrna_fold() for connected component MFE instead and compute
MFEs of unconnected states separately.

SWIG Wrapper Notes:
This function is available as function cofold() in the global namespace. The parameter
structure is returned along with the MFE und must not be provided. See e.g. RNA.cofold()
in the Python API .

See also:
vrna_fold(), vrna_mfe(), vrna_fold_compound(), vrna_fold_compound_t, vrna_cut_point_insert()

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or
you require other conditions than specified by the default model details, use vrna_mfe(), and the data
structure vrna_fold_compound_t instead.

372 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Parameters
• sequence – two RNA sequences separated by the ‘&’ character

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

7.4.2 Deprecated Interface for Global MFE Prediction

Unnamed Group

float alifold(const char **strings, char *structure)
#include <ViennaRNA/alifold.h> Compute MFE and according consensus structure of an alignment
of sequences.

This function predicts the consensus structure for the aligned ‘sequences’ and returns the minimum
free energy; the mfe structure in bracket notation is returned in ‘structure’.

Sufficient space must be allocated for ‘structure’ before calling alifold().

Deprecated:
Usage of this function is discouraged! Use vrna_alifold(), or vrna_mfe() instead!

See also:
vrna_alifold(), vrna_mfe()

Parameters
• strings – A pointer to a NULL terminated array of character arrays

• structure – A pointer to a character array that may contain a constraining consensus
structure (will be overwritten by a consensus structure that exhibits the MFE)

Returns
The free energy score in kcal/mol

float circalifold(const char **strings, char *structure)
#include <ViennaRNA/alifold.h> Compute MFE and according structure of an alignment of sequences
assuming the sequences are circular instead of linear.

Deprecated:
Usage of this function is discouraged! Use vrna_alicircfold(), and vrna_mfe() instead!

See also:
vrna_alicircfold(), vrna_alifold(), vrna_mfe()

Parameters
• strings – A pointer to a NULL terminated array of character arrays

7.4. Minimum Free Energy (MFE) Algorithms 373

ViennaRNA, Release 2.6.4

• structure – A pointer to a character array that may contain a constraining consensus
structure (will be overwritten by a consensus structure that exhibits the MFE)

Returns
The free energy score in kcal/mol

void free_alifold_arrays(void)
#include <ViennaRNA/alifold.h> Free the memory occupied by MFE alifold functions.

Deprecated:
Usage of this function is discouraged! It only affects memory being free’d that was allo-
cated by an old API function before. Release of memory occupied by the newly introduced
vrna_fold_compound_t is handled by vrna_fold_compound_free()

See also:
vrna_fold_compound_free()

Functions

float cofold(const char *sequence, char *structure)
#include <ViennaRNA/cofold.h> Compute the minimum free energy of two interacting RNA
molecules.

The code is analog to the fold() function. If cut_point ==-1 results should be the same as with fold().

Deprecated:
use vrna_mfe_dimer() instead

Parameters
• sequence – The two sequences concatenated

• structure – Will hold the barcket dot structure of the dimer molecule

Returns
minimum free energy of the structure

float cofold_par(const char *string, char *structure, vrna_param_t *parameters, int is_constrained)
#include <ViennaRNA/cofold.h> Compute the minimum free energy of two interacting RNA
molecules.

Deprecated:
use vrna_mfe_dimer() instead

void free_co_arrays(void)
#include <ViennaRNA/cofold.h> Free memory occupied by cofold()

Deprecated:
This function will only free memory allocated by a prior call of cofold() or cofold_par(). See
vrna_mfe_dimer() for how to use the new API

374 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_fc_destroy(), vrna_mfe_dimer()

Note: folding matrices now reside in the fold compound, and should be free’d there

void update_cofold_params(void)
#include <ViennaRNA/cofold.h> Recalculate parameters.

Deprecated:
See vrna_params_subst() for an alternative using the new API

void update_cofold_params_par(vrna_param_t *parameters)
#include <ViennaRNA/cofold.h> Recalculate parameters.

Deprecated:
See vrna_params_subst() for an alternative using the new API

void export_cofold_arrays_gq(int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **fc_p, int
**ggg_p, int **indx_p, char **ptype_p)

#include <ViennaRNA/cofold.h> Export the arrays of partition function cofold (with gquadruplex sup-
port)

Export the cofold arrays for use e.g. in the concentration Computations or suboptimal secondary struc-
ture backtracking

Deprecated:
folding matrices now reside within the fold compound. Thus, this function will only work in
conjunction with a prior call to cofold() or cofold_par()

See also:
vrna_mfe_dimer() for the new API

Parameters
• f5_p – A pointer to the ‘f5’ array, i.e. array conatining best free energy in interval [1,j]

• c_p – A pointer to the ‘c’ array, i.e. array containing best free energy in interval [i,j]
given that i pairs with j

• fML_p – A pointer to the ‘M’ array, i.e. array containing best free energy in interval
[i,j] for any multiloop segment with at least one stem

• fM1_p – A pointer to the ‘M1’ array, i.e. array containing best free energy in interval
[i,j] for multiloop segment with exactly one stem

• fc_p – A pointer to the ‘fc’ array, i.e. array . . .

• ggg_p – A pointer to the ‘ggg’ array, i.e. array containing best free energy of a gquadru-
plex delimited by [i,j]

• indx_p – A pointer to the indexing array used for accessing the energy matrices

• ptype_p – A pointer to the ptype array containing the base pair types for each possi-
bility (i,j)

7.4. Minimum Free Energy (MFE) Algorithms 375

ViennaRNA, Release 2.6.4

void export_cofold_arrays(int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **fc_p, int
**indx_p, char **ptype_p)

#include <ViennaRNA/cofold.h> Export the arrays of partition function cofold.

Export the cofold arrays for use e.g. in the concentration Computations or suboptimal secondary struc-
ture backtracking

Deprecated:
folding matrices now reside within the vrna_fold_compound_t. Thus, this function will only work
in conjunction with a prior call to the deprecated functions cofold() or cofold_par()

See also:
vrna_mfe_dimer() for the new API

Parameters
• f5_p – A pointer to the ‘f5’ array, i.e. array conatining best free energy in interval [1,j]

• c_p – A pointer to the ‘c’ array, i.e. array containing best free energy in interval [i,j]
given that i pairs with j

• fML_p – A pointer to the ‘M’ array, i.e. array containing best free energy in interval
[i,j] for any multiloop segment with at least one stem

• fM1_p – A pointer to the ‘M1’ array, i.e. array containing best free energy in interval
[i,j] for multiloop segment with exactly one stem

• fc_p – A pointer to the ‘fc’ array, i.e. array . . .

• indx_p – A pointer to the indexing array used for accessing the energy matrices

• ptype_p – A pointer to the ptype array containing the base pair types for each possi-
bility (i,j)

void initialize_cofold(int length)
#include <ViennaRNA/cofold.h> allocate arrays for folding

Deprecated:
{This function is obsolete and will be removed soon!}

float fold_par(const char *sequence, char *structure, vrna_param_t *parameters, int is_constrained, int
is_circular)

#include <ViennaRNA/fold.h> Compute minimum free energy and an appropriate secondary structure
of an RNA sequence.

The first parameter given, the RNA sequence, must be uppercase and should only contain an alphabet
Σ that is understood by the RNAlib

(e.g. Σ = {𝐴,𝑈,𝐶,𝐺})

The second parameter, structure, must always point to an allocated block of memory with a size of at
least strlen(sequence) + 1

If the third parameter is NULL, global model detail settings are assumed for the folding recursions.
Otherwise, the provided parameters are used.

The fourth parameter indicates whether a secondary structure constraint in enhanced dot-bracket nota-
tion is passed through the structure parameter or not. If so, the characters ” | x < > ” are recognized to
mark bases that are paired, unpaired, paired upstream, or downstream, respectively. Matching brackets
” () ” denote base pairs, dots “.” are used for unconstrained bases.

376 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

To indicate that the RNA sequence is circular and thus has to be post-processed, set the last parameter
to non-zero

After a successful call of fold_par(), a backtracked secondary structure (in dot-bracket notation) that
exhibits the minimum of free energy will be written to the memory structure is pointing to. The function
returns the minimum of free energy for any fold of the sequence given.

Deprecated:
use vrna_mfe() instead!

See also:
vrna_mfe(), fold(), circfold(), vrna_md_t, set_energy_model(), get_scaled_parameters()

Note: OpenMP: Passing NULL to the ‘parameters’ argument involves access to several global model
detail variables and thus is not to be considered threadsafe

Parameters
• sequence – RNA sequence

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to

• parameters – A data structure containing the pre-scaled energy contributions and the
model details. (NULL may be passed, see OpenMP notes above)

• is_constrained – Switch to indicate that a structure constraint is passed via the
structure argument (0==off)

• is_circular – Switch to (de-)activate post-processing steps in case RNA sequence
is circular (0==off)

Returns
the minimum free energy (MFE) in kcal/mol

float fold(const char *sequence, char *structure)
#include <ViennaRNA/fold.h> Compute minimum free energy and an appropriate secondary structure
of an RNA sequence.

This function essentially does the same thing as fold_par(). However, it takes its model details, i.e.
temperature, dangles, tetra_loop, noGU, no_closingGU, fold_constrained, noLonelyPairs from the
current global settings within the library

Deprecated:
use vrna_fold(), or vrna_mfe() instead!

See also:
fold_par(), circfold()

Parameters
• sequence – RNA sequence

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to

7.4. Minimum Free Energy (MFE) Algorithms 377

ViennaRNA, Release 2.6.4

Returns
the minimum free energy (MFE) in kcal/mol

float circfold(const char *sequence, char *structure)
#include <ViennaRNA/fold.h> Compute minimum free energy and an appropriate secondary structure
of a circular RNA sequence.

This function essentially does the same thing as fold_par(). However, it takes its model details, i.e.
temperature, dangles, tetra_loop, noGU, no_closingGU, fold_constrained, noLonelyPairs from the
current global settings within the library

Deprecated:
Use vrna_circfold(), or vrna_mfe() instead!

See also:
fold_par(), circfold()

Parameters
• sequence – RNA sequence

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

void free_arrays(void)
#include <ViennaRNA/fold.h> Free arrays for mfe folding.

Deprecated:
See vrna_fold(), vrna_circfold(), or vrna_mfe() and vrna_fold_compound_t for the usage of the
new API!

void update_fold_params(void)
#include <ViennaRNA/fold.h> Recalculate energy parameters.

Deprecated:
For non-default model settings use the new API with vrna_params_subst() and vrna_mfe() instead!

void update_fold_params_par(vrna_param_t *parameters)
#include <ViennaRNA/fold.h> Recalculate energy parameters.

Deprecated:
For non-default model settings use the new API with vrna_params_subst() and vrna_mfe() instead!

void export_fold_arrays(int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **indx_p, char
**ptype_p)

#include <ViennaRNA/fold.h>

Deprecated:
See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

378 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void export_fold_arrays_par(int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **indx_p, char
**ptype_p, vrna_param_t **P_p)

#include <ViennaRNA/fold.h>

Deprecated:
See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

void export_circfold_arrays(int *Fc_p, int *FcH_p, int *FcI_p, int *FcM_p, int **fM2_p, int
**f5_p, int **c_p, int **fML_p, int **fM1_p, int **indx_p, char
**ptype_p)

#include <ViennaRNA/fold.h>

Deprecated:
See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

void export_circfold_arrays_par(int *Fc_p, int *FcH_p, int *FcI_p, int *FcM_p, int **fM2_p, int
**f5_p, int **c_p, int **fML_p, int **fM1_p, int **indx_p, char
**ptype_p, vrna_param_t **P_p)

#include <ViennaRNA/fold.h>

Deprecated:
See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

int LoopEnergy(int n1, int n2, int type, int type_2, int si1, int sj1, int sp1, int sq1)
#include <ViennaRNA/fold.h>

Deprecated:
{This function is deprecated and will be removed soon. Use E_IntLoop() instead!}

int HairpinE(int size, int type, int si1, int sj1, const char *string)
#include <ViennaRNA/fold.h>

Deprecated:
{This function is deprecated and will be removed soon. Use E_Hairpin() instead!}

void initialize_fold(int length)
#include <ViennaRNA/fold.h> Allocate arrays for folding

Deprecated:
See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

char *backtrack_fold_from_pair(char *sequence, int i, int j)
#include <ViennaRNA/fold.h>

7.4.3 Local (sliding window) MFE Prediction

Variations of the local (sliding window) Minimum Free Energy (MFE) prediction algorithm.

We provide implementations for the local (sliding window) MFE prediction algorithm for

• Single sequences,

• Multiple sequence alignments (MSA), and

Note, that our implementation scans an RNA sequence (or MSA) from the 3’ to the 5’ end, and reports back locally
optimal (consensus) structures, the corresponding free energy, and the position of the sliding window in global
coordinates.

For any particular RNA sequence (or MSA) multiple locally optimal (consensus) secondary structures may be
predicted. Thus, we tried to implement an interface that allows for an effortless conversion of the corresponding
hits into any target data structure. As a consequence, we provide two distinct ways to retrieve the corresponding
predictions, either

7.4. Minimum Free Energy (MFE) Algorithms 379

ViennaRNA, Release 2.6.4

• through directly writing to an open FILE stream on-the-fly, or

• through a callback function mechanism.

The latter allows one to store the results in any possible target data structure. Our implementations then pass the
results through the user-implemented callback as soon as the prediction for a particular window is finished.

Basic local (sliding window) MFE prediction interface

float vrna_mfe_window(vrna_fold_compound_t *fc, FILE *file)
#include <ViennaRNA/mfe_window.h> Local MFE prediction using a sliding window approach.

Computes minimum free energy structures using a sliding window approach, where base pairs may
not span outside the window. In contrast to vrna_mfe(), where a maximum base pair span may be
set using the vrna_md_t.max_bp_span attribute and one globally optimal structure is predicted, this
function uses a sliding window to retrieve all locally optimal structures within each window. The
size of the sliding window is set in the vrna_md_t.window_size attribute, prior to the retrieval of the
vrna_fold_compound_t using vrna_fold_compound() with option VRNA_OPTION_WINDOW

The predicted structures are written on-the-fly, either to stdout, if a NULL pointer is passed as file
parameter, or to the corresponding filehandle.

SWIG Wrapper Notes:
This function is attached as overloaded method mfe_window() to objects of type
fold_compound. The parameter FILE has default value of NULL and can be omitted. See
e.g. RNA.fold_compound.mfe_window() in the Python API .

See also:
vrna_fold_compound(), vrna_mfe_window_zscore(), vrna_mfe(), vrna_Lfold(), vrna_Lfoldz(),
VRNA_OPTION_WINDOW , vrna_md_t.max_bp_span, vrna_md_t.window_size

Parameters
• fc – The vrna_fold_compound_t with preallocated memory for the DP matrices

• file – The output file handle where predictions are written to (maybe NULL)

float vrna_mfe_window_cb(vrna_fold_compound_t *fc, vrna_mfe_window_f cb, void *data)
#include <ViennaRNA/mfe_window.h>

SWIG Wrapper Notes:
This function is attached as overloaded method mfe_window_cb() to objects of type
fold_compound. The parameter data has default value of NULL and can be omitted. See e.g.
RNA.fold_compound.mfe_window_cb() in the Python API .

float vrna_mfe_window_zscore(vrna_fold_compound_t *fc, double min_z, FILE *file)
#include <ViennaRNA/mfe_window.h> Local MFE prediction using a sliding window approach (with
z-score cut-off)

Computes minimum free energy structures using a sliding window approach, where base pairs may
not span outside the window. This function is the z-score version of vrna_mfe_window(), i.e. only
predictions above a certain z-score cut-off value are printed. As for vrna_mfe_window(), the size
of the sliding window is set in the vrna_md_t.window_size attribute, prior to the retrieval of the
vrna_fold_compound_t using vrna_fold_compound() with option VRNA_OPTION_WINDOW .

The predicted structures are written on-the-fly, either to stdout, if a NULL pointer is passed as file
parameter, or to the corresponding filehandle.

380 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is attached as overloaded method mfe_window_zscore() to objects of type
fold_compound. The parameter FILE has default value of NULL and can be omitted. See e.g.
RNA.fold_compound.mfe_window_zscore() in the Python API .

See also:
vrna_fold_compound(), vrna_mfe_window_zscore(), vrna_mfe(), vrna_Lfold(), vrna_Lfoldz(),
VRNA_OPTION_WINDOW , vrna_md_t.max_bp_span, vrna_md_t.window_size

Parameters
• fc – The vrna_fold_compound_t with preallocated memory for the DP matrices

• min_z – The minimal z-score for a predicted structure to appear in the output

• file – The output file handle where predictions are written to (maybe NULL)

float vrna_mfe_window_zscore_cb(vrna_fold_compound_t *fc, double min_z,
vrna_mfe_window_zscore_f cb, void *data)

#include <ViennaRNA/mfe_window.h>

SWIG Wrapper Notes:
This function is attached as overloaded method mfe_window_zscore_cb() to objects of type
fold_compound. The parameter data has default value of NULL and can be omitted. See e.g.
RNA.fold_compound.mfe_window_zscore() in the Python API .

Simplified local MFE prediction using sequence(s) or multiple sequence alignment(s)

float vrna_Lfold(const char *string, int window_size, FILE *file)
#include <ViennaRNA/mfe_window.h> Local MFE prediction using a sliding window approach (sim-
plified interface)

This simplified interface to vrna_mfe_window() computes the MFE and locally optimal secondary
structure using default options. Structures are predicted using a sliding window approach, where base
pairs may not span outside the window. Memory required for dynamic programming (DP) matrices will
be allocated and free’d on-the-fly. Hence, after return of this function, the recursively filled matrices
are not available any more for any post-processing.

SWIG Wrapper Notes:
This function is available as overloaded function Lfold() in the global namespace. The parameter
file defaults to NULL and may be omitted. See e.g. RNA.Lfold() in the Python API .

See also:
vrna_mfe_window(), vrna_Lfoldz(), vrna_mfe_window_zscore()

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you
require other conditions than specified by the default model details, use vrna_mfe_window(), and the
data structure vrna_fold_compound_t instead.

Parameters
• string – The nucleic acid sequence

• window_size – The window size for locally optimal structures

• file – The output file handle where predictions are written to (if NULL, output is
written to stdout)

7.4. Minimum Free Energy (MFE) Algorithms 381

ViennaRNA, Release 2.6.4

float vrna_Lfold_cb(const char *string, int window_size, vrna_mfe_window_f cb, void *data)
#include <ViennaRNA/mfe_window.h>

SWIG Wrapper Notes:
This function is available as overloaded function Lfold_cb() in the global namespace. The pa-
rameter data defaults to NULL and may be omitted. See e.g. RNA.Lfold_cb() in the Python
API .

float vrna_Lfoldz(const char *string, int window_size, double min_z, FILE *file)
#include <ViennaRNA/mfe_window.h> Local MFE prediction using a sliding window approach with
z-score cut-off (simplified interface)

This simplified interface to vrna_mfe_window_zscore() computes the MFE and locally optimal sec-
ondary structure using default options. Structures are predicted using a sliding window approach,
where base pairs may not span outside the window. Memory required for dynamic programming (DP)
matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the recursively
filled matrices are not available any more for any post-processing. This function is the z-score version
of vrna_Lfold(), i.e. only predictions above a certain z-score cut-off value are printed.

See also:
vrna_mfe_window_zscore(), vrna_Lfold(), vrna_mfe_window()

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you
require other conditions than specified by the default model details, use vrna_mfe_window(), and the
data structure vrna_fold_compound_t instead.

Parameters
• string – The nucleic acid sequence

• window_size – The window size for locally optimal structures

• min_z – The minimal z-score for a predicted structure to appear in the output

• file – The output file handle where predictions are written to (if NULL, output is
written to stdout)

float vrna_Lfoldz_cb(const char *string, int window_size, double min_z, vrna_mfe_window_zscore_f
cb, void *data)

#include <ViennaRNA/mfe_window.h>

SWIG Wrapper Notes:
This function is available as overloaded function Lfoldz_cb() in the global namespace. The
parameter data defaults to NULL and may be omitted. See e.g. RNA.Lfoldz_cb() in the Python
API .

float vrna_aliLfold(const char **alignment, int maxdist, FILE *fp)
#include <ViennaRNA/mfe_window.h>

SWIG Wrapper Notes:
This function is available as overloaded function aliLfold() in the global namespace. The pa-
rameter fp defaults to NULL and may be omitted. See e.g. RNA.aliLfold() in the Python API .

float vrna_aliLfold_cb(const char **alignment, int maxdist, vrna_mfe_window_f cb, void *data)
#include <ViennaRNA/mfe_window.h>

382 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is available as overloaded function aliLfold_cb() in the global namespace. The
parameter data defaults to NULL and may be omitted. See e.g. RNA.aliLfold_cb() in the
Python API .

Typedefs

typedef void (*vrna_mfe_window_f)(int start, int end, const char *structure, float en, void *data)
#include <ViennaRNA/mfe_window.h> The default callback for sliding window MFE structure predic-
tions.

Notes on Callback Functions:
This function will be called for each hit in a sliding window MFE prediction.

See also:
vrna_mfe_window()

Param start
provides the first position of the hit (1-based, relative to entire sequence/alignment)

Param end
provides the last position of the hit (1-based, relative to the entire sequence/alignment)

Param structure
provides the (sub)structure in dot-bracket notation

Param en
is the free energy of the structure hit in kcal/mol

Param data
is some arbitrary data pointer passed through by the function executing the callback

void() vrna_mfe_window_callback (int start, int end, const char *structure,
float en, void *data)

#include <ViennaRNA/mfe_window.h>

typedef void (*vrna_mfe_window_zscore_f)(int start, int end, const char *structure, float en, float
zscore, void *data)

#include <ViennaRNA/mfe_window.h>

void() vrna_mfe_window_zscore_callback (int start, int end,
const char *structure, float en, float zscore, void *data)

#include <ViennaRNA/mfe_window.h>

7.4. Minimum Free Energy (MFE) Algorithms 383

ViennaRNA, Release 2.6.4

7.4.4 Deprecated Interface for Local (sliding window) MFE Prediction

Functions

float Lfold(const char *string, const char *structure, int maxdist)
#include <ViennaRNA/Lfold.h> The local analog to fold().

Computes the minimum free energy structure including only base pairs with a span smaller than
‘maxdist’

Deprecated:
Use vrna_mfe_window() instead!

float Lfoldz(const char *string, const char *structure, int maxdist, int zsc, double min_z)
#include <ViennaRNA/Lfold.h>

Deprecated:
Use vrna_mfe_window_zscore() instead!

float aliLfold(const char **AS, const char *structure, int maxdist)
#include <ViennaRNA/Lfold.h>

float aliLfold_cb(const char **AS, int maxdist, vrna_mfe_window_f cb, void *data)
#include <ViennaRNA/Lfold.h>

7.4.5 Backtracking MFE structures

Backtracking related interfaces

Functions

int vrna_backtrack_from_intervals(vrna_fold_compound_t *fc, vrna_bp_stack_t *bp_stack, sect
bt_stack[], int s)

#include <ViennaRNA/mfe.h>

float vrna_backtrack5(vrna_fold_compound_t *fc, unsigned int length, char *structure)
#include <ViennaRNA/mfe.h> Backtrack an MFE (sub)structure.

This function allows one to backtrack the MFE structure for a (sub)sequence

SWIG Wrapper Notes:
This function is attached as overloaded method backtrack() to objects of type fold_compound.
The parameter length defaults to the total length of the RNA sequence and may be omitted. The
parameter structure is returned along with the MFE und must not be provided. See e.g. RNA.
fold_compound.backtrack() in the Python API .

See also:
vrna_mfe(), vrna_pbacktrack5()

384 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Note: On error, the function returns INF / 100. and stores the empty string in structure.

Parameters
• fc – fold compound

• length – The length of the subsequence, starting from the 5’ end

• structure – A pointer to the character array where the secondary structure in dot-
bracket notation will be written to. (Must have size of at least $p length + 1)

Pre
Requires pre-filled MFE dynamic programming matrices, i.e. one has to call vrna_mfe()
prior to calling this function

Returns
The minimum free energy (MFE) for the specified length in kcal/mol and a correspond-
ing secondary structure in dot-bracket notation (stored in structure)

int vrna_backtrack_window(vrna_fold_compound_t *fc, const char *Lfold_filename, long file_pos,
char **structure, double mfe)

#include <ViennaRNA/mfe.h>

int vrna_BT_ext_loop_f5(vrna_fold_compound_t *fc, int *k, int *i, int *j, vrna_bp_stack_t *bp_stack,
int *stack_count)

#include <ViennaRNA/loops/external.h>

int vrna_BT_ext_loop_f3(vrna_fold_compound_t *fc, int *k, int maxdist, int *i, int *j, vrna_bp_stack_t
*bp_stack, int *stack_count)

#include <ViennaRNA/loops/external.h>

int vrna_BT_ext_loop_f3_pp(vrna_fold_compound_t *fc, int *i, int maxdist)
#include <ViennaRNA/loops/external.h>

int vrna_BT_hp_loop(vrna_fold_compound_t *fc, int i, int j, int en, vrna_bp_stack_t *bp_stack, int
*stack_count)

#include <ViennaRNA/loops/hairpin.h> Backtrack a hairpin loop closed by (𝑖, 𝑗).

Note: This function is polymorphic! The provided vrna_fold_compound_t may be of type
VRNA_FC_TYPE_SINGLE or VRNA_FC_TYPE_COMPARATIVE

int vrna_BT_stack(vrna_fold_compound_t *fc, int *i, int *j, int *en, vrna_bp_stack_t *bp_stack, int
*stack_count)

#include <ViennaRNA/loops/internal.h> Backtrack a stacked pair closed by (𝑖, 𝑗).

int vrna_BT_int_loop(vrna_fold_compound_t *fc, int *i, int *j, int en, vrna_bp_stack_t *bp_stack, int
*stack_count)

#include <ViennaRNA/loops/internal.h> Backtrack an interior loop closed by (𝑖, 𝑗).

int vrna_BT_mb_loop(vrna_fold_compound_t *fc, int *i, int *j, int *k, int en, int *component1, int
*component2)

#include <ViennaRNA/loops/multibranch.h> Backtrack the decomposition of a multi branch loop
closed by (𝑖, 𝑗).

Parameters
• fc – The vrna_fold_compound_t filled with all relevant data for backtracking

• i – 5’ position of base pair closing the loop (will be set to 5’ position of leftmost
decomposed block upon successful backtracking)

7.4. Minimum Free Energy (MFE) Algorithms 385

ViennaRNA, Release 2.6.4

• j – 3’ position of base pair closing the loop (will be set to 3’ position of rightmost
decomposed block upon successful backtracking)

• k – Split position that delimits leftmost from rightmost block, [i,k] and [k+1, j], re-
spectively. (Will be set upon successful backtracking)

• en – The energy contribution of the substructure enclosed by (𝑖, 𝑗)

• component1 – Type of leftmost block (1 = ML, 2 = C)

• component2 – Type of rightmost block (1 = ML, 2 = C)

Returns
1, if backtracking succeeded, 0 otherwise.

int vrna_BT_mb_loop_split(vrna_fold_compound_t *fc, int *i, int *j, int *k, int *l, int *component1,
int *component2, vrna_bp_stack_t *bp_stack, int *stack_count)

#include <ViennaRNA/loops/multibranch.h>

7.4.6 Zuker’s Algorithm

Our library provides fast dynamic programming Minimum Free Energy (MFE) folding algorithms derived from
the decomposition scheme as described by Zuker and Stiegler [1981].

7.4.7 MFE for circular RNAs

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See Hofacker
and Stadler [2006] for further details.

7.4.8 MFE Algorithm API

Predicting the Minimum Free Energy (MFE) and a corresponding (consensus) secondary structure.

In a nutshell we provide two different flavors for MFE prediction:

• Global MFE Prediction - to compute the MFE for the entire sequence

• Local (sliding window) MFE Prediction - to compute MFEs for each window using a sliding window ap-
proach

Each of these flavors, again, provides two implementations to either compute the MFE based on

• single RNA (DNA) sequence(s), or

• multiple sequences interacting with each other, or

• a comparative approach using multiple sequence alignments (MSA).

For the latter, a consensus secondary structure is predicted and our implementations compute an average of free
energies for each sequence in the MSA plus an additional covariance pseudo-energy term.

The implementations for Backtracking MFE structures are generally agnostic with respect to whether local or
global structure prediction is in place.

386 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.5 Partition Function and Equilibrium Properties

In contrast to methods that compute the property of a single structure in the ensemble, e.g. Minimum Free Energy
(MFE) Algorithms, the partition function algorithms always consider the entire equilibrium ensemble. For that
purpose, the algorithm(s) made available by McCaskill [1990] and its variants can be used to efficiently compute

• the partition function, and from that

• various equilibrium probabilities, for instance base pair probabilities, probabilities of individual structure
motifs, and many more.

The principal idea behind this approach is that in equilibrium, statistical mechanics and polymer theory tells us
that the frequency or probability 𝑝(𝑠) of a particular state 𝑠 depends on its energy 𝐸(𝑠) and follows a Boltzmann
distribution, i.e.

𝑝(𝑠) ∝ 𝑒−𝛽𝐸(𝑠) with 𝛽 =
1

𝑘𝑇

where 𝑘 ≈ 1.987 · 10−3 𝑘𝑐𝑎𝑙
𝑚𝑜𝑙 𝐾 is the Boltzmann constant, and 𝑇 the thermodynamic temperature. From that

relation, the actual probability of state 𝑠 can then be obtained using a proper scaling factor, the canonical partition
function

𝑍 =
∑︁
𝑠∈Ω

𝑒−𝛽𝐸(𝑠)

where Ω is the finite set of all states. Finally, the equilibrium probability of state 𝑠 can be computed as

𝑝(𝑠) =
𝑒−𝛽𝐸(𝑠)

𝑍

Instead of enumerating all states exhaustively to compute 𝑍 one can apply the Secondary Structure Folding Recur-
rences again for an efficient computation in cubic time. An outside variant of the same recursions is then used to
compute probabilities for base pairs, stretches of consecutive unpaired nucleotides, or structural motifs.

See also. . .
Further details of the Partition function and Base Pair Probability algorithm can be obtained from McCaskill [1990]

7.5.1 Global Partition Function and Equilibrium Probabilities

Variations of the global partition function algorithm.

We provide implementations of the global partition function algorithm for

• Single sequences,

• Multiple sequence alignments (MSA), and

• RNA-RNA hybrids

7.5. Partition Function and Equilibrium Properties 387

ViennaRNA, Release 2.6.4

Basic global partition function interface

FLT_OR_DBL vrna_pf(vrna_fold_compound_t *fc, char *structure)
#include <ViennaRNA/part_func.h> Compute the partition function 𝑄 for a given RNA sequence, or
sequence alignment.

If structure is not a NULL pointer on input, it contains on return a string consisting of the letters ” . , | {
} () ” denoting bases that are essentially unpaired, weakly paired, strongly paired without preference,
weakly upstream (downstream) paired, or strongly up- (down-)stream paired bases, respectively. If the
model’s compute_bpp is set to 0 base pairing probabilities will not be computed (saving CPU time),
otherwise after calculations took place pr will contain the probability that bases i and j pair.

SWIG Wrapper Notes:
This function is attached as method pf() to objects of type fold_compound. See, e.g. RNA.
fold_compound.pf() in the Python API .

See also:
vrna_fold_compound_t, vrna_fold_compound(), vrna_pf_fold(), vrna_pf_circfold(),
vrna_fold_compound_comparative(), vrna_pf_alifold(), vrna_pf_circalifold(),
vrna_db_from_probs(), vrna_exp_params(), vrna_aln_pinfo()

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE. Also, this function may
return INF / 100. in case of contradicting constraints or numerical over-/underflow. In the latter case,
a corresponding warning will be issued to stdout.

Parameters
• fc – [inout] The fold compound data structure

• structure – [inout] A pointer to the character array where position-wise pairing
propensity will be stored. (Maybe NULL)

Returns
The ensemble free energy 𝐺 = −𝑅𝑇 · log(𝑄) in kcal/mol

vrna_dimer_pf_t vrna_pf_dimer(vrna_fold_compound_t *fc, char *structure)
#include <ViennaRNA/part_func.h> Calculate partition function and base pair probabilities of nucleic
acid/nucleic acid dimers.

This is the cofold partition function folding.

SWIG Wrapper Notes:
This function is attached as method pf_dimer() to objects of type fold_compound. See, e.g.
RNA.fold_compound.pf_dimer() in the Python API .

See also:
vrna_fold_compound() for how to retrieve the necessary data structure

Note: This function may return INF / 100. for the FA, FB, FAB, F0AB members of the output data
structure in case of contradicting constraints or numerical over-/underflow. In the latter case, a corre-
sponding warning will be issued to stdout.

Parameters

388 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• fc – the fold compound data structure

• structure – Will hold the structure or constraints

Returns
vrna_dimer_pf_t structure containing a set of energies needed for concentration compu-
tations.

FLT_OR_DBL *vrna_pf_substrands(vrna_fold_compound_t *fc, size_t complex_size)
#include <ViennaRNA/part_func.h>

FLT_OR_DBL vrna_pf_add(FLT_OR_DBL dG1, FLT_OR_DBL dG2, double kT)
#include <ViennaRNA/part_func.h>

Simplified global partition function computation using sequence(s) or multiple sequence
alignment(s)

float vrna_pf_fold(const char *sequence, char *structure, vrna_ep_t **pl)
#include <ViennaRNA/part_func.h> Compute Partition function 𝑄 (and base pair probabilities) for an
RNA sequence using a comparative method.

This simplified interface to vrna_pf() computes the partition function and, if required, base pair proba-
bilities for an RNA sequence using default options. Memory required for dynamic programming (DP)
matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the recursively
filled matrices are not available any more for any post-processing.

See also:
vrna_pf_circfold(), vrna_pf(), vrna_fold_compound(), vrna_fold_compound_t

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you
require other conditions than specified by the default model details, use vrna_pf(), and the data structure
vrna_fold_compound_t instead.

Parameters
• sequence – RNA sequence

• structure – A pointer to the character array where position-wise pairing propensity
will be stored. (Maybe NULL)

• pl – A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)

Returns
The ensemble free energy 𝐺 = −𝑅𝑇 · log(𝑄) in kcal/mol

float vrna_pf_circfold(const char *sequence, char *structure, vrna_ep_t **pl)
#include <ViennaRNA/part_func.h> Compute Partition function 𝑄 (and base pair probabilities) for a
circular RNA sequences using a comparative method.

This simplified interface to vrna_pf() computes the partition function and, if required, base pair proba-
bilities for a circular RNA sequence using default options. Memory required for dynamic programming
(DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the recur-
sively filled matrices are not available any more for any post-processing.

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See
Hofacker and Stadler [2006] for further details.

7.5. Partition Function and Equilibrium Properties 389

ViennaRNA, Release 2.6.4

See also:
vrna_pf_fold(), vrna_pf(), vrna_fold_compound(), vrna_fold_compound_t

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you
require other conditions than specified by the default model details, use vrna_pf(), and the data structure
vrna_fold_compound_t instead.

Parameters
• sequence – A circular RNA sequence

• structure – A pointer to the character array where position-wise pairing propensity
will be stored. (Maybe NULL)

• pl – A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)

Returns
The ensemble free energy 𝐺 = −𝑅𝑇 · log(𝑄) in kcal/mol

float vrna_pf_alifold(const char **sequences, char *structure, vrna_ep_t **pl)
#include <ViennaRNA/part_func.h> Compute Partition function 𝑄 (and base pair probabilities) for an
RNA sequence alignment using a comparative method.

This simplified interface to vrna_pf() computes the partition function and, if required, base pair prob-
abilities for an RNA sequence alignment using default options. Memory required for dynamic pro-
gramming (DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function,
the recursively filled matrices are not available any more for any post-processing.

See also:
vrna_pf_circalifold(), vrna_pf(), vrna_fold_compound_comparative(), vrna_fold_compound_t

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you
require other conditions than specified by the default model details, use vrna_pf(), and the data structure
vrna_fold_compound_t instead.

Parameters
• sequences – RNA sequence alignment

• structure – A pointer to the character array where position-wise pairing propensity
will be stored. (Maybe NULL)

• pl – A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)

Returns
The ensemble free energy 𝐺 = −𝑅𝑇 · log(𝑄) in kcal/mol

float vrna_pf_circalifold(const char **sequences, char *structure, vrna_ep_t **pl)
#include <ViennaRNA/part_func.h> Compute Partition function 𝑄 (and base pair probabilities) for an
alignment of circular RNA sequences using a comparative method.

This simplified interface to vrna_pf() computes the partition function and, if required, base pair prob-
abilities for an RNA sequence alignment using default options. Memory required for dynamic pro-
gramming (DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function,
the recursively filled matrices are not available any more for any post-processing.

390 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See
Hofacker and Stadler [2006] for further details.

See also:
vrna_pf_alifold(), vrna_pf(), vrna_fold_compound_comparative(), vrna_fold_compound_t

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you
require other conditions than specified by the default model details, use vrna_pf(), and the data structure
vrna_fold_compound_t instead.

Parameters
• sequences – Sequence alignment of circular RNAs

• structure – A pointer to the character array where position-wise pairing propensity
will be stored. (Maybe NULL)

• pl – A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)

Returns
The ensemble free energy 𝐺 = −𝑅𝑇 · log(𝑄) in kcal/mol

vrna_dimer_pf_t vrna_pf_co_fold(const char *seq, char *structure, vrna_ep_t **pl)
#include <ViennaRNA/part_func.h> Calculate partition function and base pair probabilities of nucleic
acid/nucleic acid dimers.

This simplified interface to vrna_pf_dimer() computes the partition function and, if required, base
pair probabilities for an RNA-RNA interaction using default options. Memory required for dynamic
programming (DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function,
the recursively filled matrices are not available any more for any post-processing.

See also:
vrna_pf_dimer()

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you
require other conditions than specified by the default model details, use vrna_pf_dimer(), and the data
structure vrna_fold_compound_t instead.

Parameters
• seq – Two concatenated RNA sequences with a delimiting ‘&’ in between

• structure – A pointer to the character array where position-wise pairing propensity
will be stored. (Maybe NULL)

• pl – A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)

Returns
vrna_dimer_pf_t structure containing a set of energies needed for concentration compu-
tations.

7.5. Partition Function and Equilibrium Properties 391

ViennaRNA, Release 2.6.4

Functions

vrna_ep_t *vrna_plist_from_probs(vrna_fold_compound_t *fc, double cut_off)
#include <ViennaRNA/utils/structures.h> Create a vrna_ep_t from base pair probability matrix.

The probability matrix provided via the vrna_fold_compound_t is parsed and all pair probabilities
above the given threshold are used to create an entry in the plist

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be
used to stop looping over its entries

Parameters
• fc – [in] The fold compound

• cut_off – [in] The cutoff value

Returns
A pointer to the plist that is to be created

struct vrna_dimer_pf_s
#include <ViennaRNA/part_func.h> Data structure returned by vrna_pf_dimer()

Public Members

double F0AB
Null model without DuplexInit.

double FAB
all states with DuplexInit correction

double FcAB
true hybrid states only

double FA
monomer A

double FB
monomer B

struct vrna_multimer_pf_s

Public Members

double F_connected
Fully connected ensemble (incl. DuplexInititiation and rotational symmetry correction.

double *F_monomers
monomers

size_t num_monomers
Number of monomers.

392 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.5.2 Local (sliding window) Partition Function and Equilibrium Probabilities

Scanning version using a sliding window approach to compute equilibrium probabilities.

Basic local partition function interface

int vrna_probs_window(vrna_fold_compound_t *fc, int ulength, unsigned int options,
vrna_probs_window_f cb, void *data)

#include <ViennaRNA/part_func_window.h> Compute various equilibrium probabilities under a slid-
ing window approach.

This function applies a sliding window scan for the sequence provided with the argument fc and reports
back equilibrium probabilities through the callback function cb. The data reported to the callback
depends on the options flag.

Options:

• VRNA_PROBS_WINDOW_BPP - Trigger base pairing probabilities.

• VRNA_PROBS_WINDOW_UP - Trigger unpaired probabilities.

• VRNA_PROBS_WINDOW_UP_SPLIT - Trigger detailed unpaired probabilities split up into dif-
ferent loop type contexts.

Options may be OR-ed together

See also:
vrna_pfl_fold_cb(), vrna_pfl_fold_up_cb()

Note: The parameter ulength only affects computation and resulting data if unpaired probability
computations are requested through the options flag.

Parameters
• fc – The fold compound with sequence data, model settings and precomputed energy

parameters

• ulength – The maximal length of an unpaired segment (only for unpaired probability
computations)

• cb – The callback function which collects the pair probability data for further process-
ing

• data – Some arbitrary data structure that is passed to the callback cb

• options – Option flags to control the behavior of this function

Returns
0 on failure, non-zero on success

7.5. Partition Function and Equilibrium Properties 393

ViennaRNA, Release 2.6.4

Simplified global partition function computation using sequence(s) or multiple sequence
alignment(s)

vrna_ep_t *vrna_pfl_fold(const char *sequence, int window_size, int max_bp_span, float cutoff)
#include <ViennaRNA/part_func_window.h> Compute base pair probabilities using a sliding-window
approach.

This is a simplified wrapper to vrna_probs_window() that given a nucleid acid sequence, a window
size, a maximum base pair span, and a cutoff value computes the pair probabilities for any base pair
in any window. The pair probabilities are returned as a list and the user has to take care to free() the
memory occupied by the list.

See also:
vrna_probs_window(), vrna_pfl_fold_cb(), vrna_pfl_fold_up()

Note: This function uses default model settings! For custom model settings, we refer to the function
vrna_probs_window() .

In case of any computation errors, this function returns NULL

Parameters
• sequence – The nucleic acid input sequence

• window_size – The size of the sliding window

• max_bp_span – The maximum distance along the backbone between two nucleotides
that form a base pairs

• cutoff – A cutoff value that omits all pairs with lower probability

Returns
A list of base pair probabilities, terminated by an entry with vrna_ep_t.i and vrna_ep_t.j
set to 0

int vrna_pfl_fold_cb(const char *sequence, int window_size, int max_bp_span, vrna_probs_window_f
cb, void *data)

#include <ViennaRNA/part_func_window.h> Compute base pair probabilities using a sliding-window
approach (callback version)

This is a simplified wrapper to vrna_probs_window() that given a nucleid acid sequence, a window size,
a maximum base pair span, and a cutoff value computes the pair probabilities for any base pair in any
window. It is similar to vrna_pfl_fold() but uses a callback mechanism to return the pair probabilities.

Read the details for vrna_probs_window() for details on the callback implementation!

See also:
vrna_probs_window(), vrna_pfl_fold(), vrna_pfl_fold_up_cb()

Note: This function uses default model settings! For custom model settings, we refer to the function
vrna_probs_window().

Parameters
• sequence – The nucleic acid input sequence

• window_size – The size of the sliding window

394 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• max_bp_span – The maximum distance along the backbone between two nucleotides
that form a base pairs

• cb – The callback function which collects the pair probability data for further process-
ing

• data – Some arbitrary data structure that is passed to the callback cb

Returns
0 on failure, non-zero on success

double **vrna_pfl_fold_up(const char *sequence, int ulength, int window_size, int max_bp_span)
#include <ViennaRNA/part_func_window.h> Compute probability of contiguous unpaired segments.

This is a simplified wrapper to vrna_probs_window() that given a nucleic acid sequence, a maximum
length of unpaired segments (ulength), a window size, and a maximum base pair span computes the
equilibrium probability of any segment not exceeding ulength. The probabilities to be unpaired are
returned as a 1-based, 2-dimensional matrix with dimensions 𝑁 × 𝑀 , where 𝑁 is the length of the
sequence and 𝑀 is the maximum segment length. As an example, the probability of a segment of size
5 starting at position 100 is stored in the matrix entry 𝑋[100][5].

It is the users responsibility to free the memory occupied by this matrix.

Note: This function uses default model settings! For custom model settings, we refer to the function
vrna_probs_window().

Parameters
• sequence – The nucleic acid input sequence

• ulength – The maximal length of an unpaired segment

• window_size – The size of the sliding window

• max_bp_span – The maximum distance along the backbone between two nucleotides
that form a base pairs

Returns
The probabilities to be unpaired for any segment not exceeding ulength

int vrna_pfl_fold_up_cb(const char *sequence, int ulength, int window_size, int max_bp_span,
vrna_probs_window_f cb, void *data)

#include <ViennaRNA/part_func_window.h> Compute probability of contiguous unpaired segments.

This is a simplified wrapper to vrna_probs_window() that given a nucleic acid sequence, a maximum
length of unpaired segments (ulength), a window size, and a maximum base pair span computes the
equilibrium probability of any segment not exceeding ulength. It is similar to vrna_pfl_fold_up() but
uses a callback mechanism to return the unpaired probabilities.

Read the details for vrna_probs_window() for details on the callback implementation!

Note: This function uses default model settings! For custom model settings, we refer to the function
vrna_probs_window().

Parameters
• sequence – The nucleic acid input sequence

• ulength – The maximal length of an unpaired segment

• window_size – The size of the sliding window

7.5. Partition Function and Equilibrium Properties 395

ViennaRNA, Release 2.6.4

• max_bp_span – The maximum distance along the backbone between two nucleotides
that form a base pairs

• cb – The callback function which collects the pair probability data for further process-
ing

• data – Some arbitrary data structure that is passed to the callback cb

Returns
0 on failure, non-zero on success

Defines

VRNA_EXT_LOOP

#include <ViennaRNA/part_func_window.h> Exterior loop.

VRNA_HP_LOOP

#include <ViennaRNA/part_func_window.h> Hairpin loop.

VRNA_INT_LOOP

#include <ViennaRNA/part_func_window.h> Internal loop.

VRNA_MB_LOOP

#include <ViennaRNA/part_func_window.h> Multibranch loop.

VRNA_ANY_LOOP

#include <ViennaRNA/part_func_window.h> Any loop.

VRNA_PROBS_WINDOW_BPP

#include <ViennaRNA/part_func_window.h> Trigger base pairing probabilities.

Passing this flag to vrna_probs_window() activates callback execution for base pairing probabilities. In
turn, the corresponding callback receives this flag through the type argument whenever base pairing
probabilities are provided.

Detailed information for the algorithm to compute unpaired probabilities can be taken from Bernhart
et al. [2005] .

See also:
vrna_probs_window()

VRNA_PROBS_WINDOW_UP

#include <ViennaRNA/part_func_window.h> Trigger unpaired probabilities.

Passing this flag to vrna_probs_window() activates callback execution for unpaired probabilities. In
turn, the corresponding callback receives this flag through the type argument whenever unpaired prob-
abilities are provided.

Detailed information for the algorithm to compute unpaired probabilities can be taken from Bernhart
et al. [2011] .

See also:
vrna_probs_window()

396 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_PROBS_WINDOW_STACKP

#include <ViennaRNA/part_func_window.h> Trigger base pair stack probabilities.

Passing this flag to vrna_probs_window() activates callback execution for stacking probabilities. In
turn, the corresponding callback receives this flag through the type argument whenever stack proba-
bilities are provided.

Bug:
Currently, this flag is a placeholder doing nothing as the corresponding implementation for stack
probability computation is missing.

See also:
vrna_probs_window()

VRNA_PROBS_WINDOW_UP_SPLIT

#include <ViennaRNA/part_func_window.h> Trigger detailed unpaired probabilities split up into dif-
ferent loop type contexts.

Passing this flag to vrna_probs_window() activates callback execution for unpaired probabili-
ties. In contrast to VRNA_PROBS_WINDOW_UP this flag requests unpaired probabilities to
be split up into different loop type contexts. In turn, the corresponding callback receives the
VRNA_PROBS_WINDOW_UP flag OR-ed together with the corresponding loop type, i.e.:

• VRNA_EXT_LOOP - Exterior loop.

• VRNA_HP_LOOP - Hairpin loop.

• VRNA_INT_LOOP - Internal loop.

• VRNA_MB_LOOP - Multibranch loop.

• VRNA_ANY_LOOP - Any loop.

See also:
vrna_probs_window(), VRNA_PROBS_WINDOW_UP

VRNA_PROBS_WINDOW_PF

#include <ViennaRNA/part_func_window.h> Trigger partition function.

Passing this flag to vrna_probs_window() activates callback execution for partition function. In turn,
the corresponding callback receives this flag through it’s type argument whenever partition function
data is provided.

See also:
vrna_probs_window()

Note: Instead of actually providing the partition function 𝑍, the callback is always provided with the
corresponding enemble free energy ∆𝐺 = −𝑅𝑇 ln𝑍.

7.5. Partition Function and Equilibrium Properties 397

ViennaRNA, Release 2.6.4

Typedefs

typedef void (*vrna_probs_window_f)(FLT_OR_DBL *pr, int pr_size, int i, int max, unsigned int type,
void *data)

#include <ViennaRNA/part_func_window.h> Sliding window probability computation callback.

Notes on Callback Functions:
This function will be called for each probability data set in the sliding window probability computa-
tion implementation of vrna_probs_window(). The argument type specifies the type of probability
that is passed to this function.

Types:

• VRNA_PROBS_WINDOW_BPP - Trigger base pairing probabilities.

• VRNA_PROBS_WINDOW_UP - Trigger unpaired probabilities.

• VRNA_PROBS_WINDOW_PF - Trigger partition function.

The above types usually come exclusively. However, for unpaired probabilities, the
VRNA_PROBS_WINDOW_UP flag is OR-ed together with one of the loop type contexts

• VRNA_EXT_LOOP - Exterior loop.

• VRNA_HP_LOOP - Hairpin loop.

• VRNA_INT_LOOP - Internal loop.

• VRNA_MB_LOOP - Multibranch loop.

• VRNA_ANY_LOOP - Any loop.

to indicate the particular type of data available through the pr pointer.

See also:
vrna_probs_window(), vrna_pfl_fold_up_cb()

Param pr
An array of probabilities

Param pr_size
The length of the probability array

Param i
The i-position (5’) of the probabilities

Param max
The (theoretical) maximum length of the probability array

Param type
The type of data that is provided

Param data
Auxiliary data

void() vrna_probs_window_callback (FLT_OR_DBL *pr, int pr_size, int i, int max,
unsigned int type, void *data)

#include <ViennaRNA/part_func_window.h>

398 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.5.3 Predicting various Thermodynamic Properties

Compute various thermodynamic properties using the partition function.

Many thermodynamic properties can be derived from the partition function

𝑍 =
∑︁
𝑠∈𝜔

𝑒
−𝐸(𝑠)

𝑘𝑇 .

In particular, for nucleic acids in equilibrium the probabilty 𝑝(𝐹) of a particular structural feature 𝐹 follows Boltz-
manns law, i.e.:

𝑝(𝐹) ∝
∑︁

𝑠|𝐹∈𝑠

𝑒
−𝐸(𝑠)

𝑘𝑇 .

The actual probabilities can then be obtained from the ratio of those structures containing 𝐹 and all structures, i.e.

𝑝(𝐹) =
1

𝑍

∑︁
𝑠|𝐹∈𝑠

𝑒
−𝐸(𝑠)

𝑘𝑇 .

Consequently, a particular secondary structure 𝑠 has equilibrium probability

𝑝(𝑠) =
1

𝑍
𝑒

−𝐸(𝑠)
𝑘𝑇

which can be easily computed once 𝑍 and 𝐸(𝑠) are known.

Efficient dynamic programming algorithms exist to compute the equilibrium probabilities

𝑝𝑖𝑗 =
1

𝑍

∑︁
𝑠|(𝑖,𝑗)∈𝑠

𝑒
−𝐸(𝑠)

𝑘𝑇

of base pairs (𝑖, 𝑗) without the need for exhaustive enumeration of 𝑠.

This interface provides the functions for all thermodynamic property computations implemented in RNAlib.

Thermodynamic Properties API

Base pair probabilities and derived computations

int vrna_pairing_probs(vrna_fold_compound_t *fc, char *structure)
#include <ViennaRNA/equilibrium_probs.h>

double vrna_mean_bp_distance_pr(int length, FLT_OR_DBL *pr)
#include <ViennaRNA/equilibrium_probs.h> Get the mean base pair distance in the thermodynamic
ensemble from a probability matrix.

< 𝑑 >=
∑︁
𝑎,𝑏

𝑝𝑎𝑝𝑏𝑑(𝑆𝑎, 𝑆𝑏)

this can be computed from the pair probs 𝑝𝑖𝑗 as

< 𝑑 >=
∑︁
𝑖𝑗

𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)

7.5. Partition Function and Equilibrium Properties 399

ViennaRNA, Release 2.6.4

Parameters
• length – The length of the sequence

• pr – The matrix containing the base pair probabilities

Returns
The mean pair distance of the structure ensemble

double vrna_mean_bp_distance(vrna_fold_compound_t *fc)
#include <ViennaRNA/equilibrium_probs.h> Get the mean base pair distance in the thermodynamic
ensemble.

< 𝑑 >=
∑︁
𝑎,𝑏

𝑝𝑎𝑝𝑏𝑑(𝑆𝑎, 𝑆𝑏)

this can be computed from the pair probs 𝑝𝑖𝑗 as

< 𝑑 >=
∑︁
𝑖𝑗

𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)

SWIG Wrapper Notes:
This function is attached as method mean_bp_distance() to objects of type fold_compound.
See, e.g. RNA.fold_compound.mean_bp_distance() in the Python API .

Parameters
• fc – The fold compound data structure

Returns
The mean pair distance of the structure ensemble

double vrna_ensemble_defect_pt(vrna_fold_compound_t *fc, const short *pt)
#include <ViennaRNA/equilibrium_probs.h> Compute the Ensemble Defect for a given target structure
provided as a vrna_ptable.

Given a target structure 𝑠, compute the average dissimilarity of a randomly drawn structure from the
ensemble, i.e.:

𝐸𝐷(𝑠) = 1 − 1

𝑛

∑︁
𝑖𝑗,(𝑖,𝑗)∈𝑠

𝑝𝑖𝑗 −
1

𝑛

∑︁
𝑖

(1 − 𝑠𝑖)𝑞𝑖

with sequence length 𝑛, the probability 𝑝𝑖𝑗 of a base pair (𝑖, 𝑗), the probability 𝑞𝑖 = 1 −
∑︀

𝑗 𝑝𝑖𝑗 of
nucleotide 𝑖 being unpaired, and the indicator variable 𝑠𝑖 = 1 if ∃(𝑖, 𝑗) ∈ 𝑠, and 𝑠𝑖 = 0 otherwise.

SWIG Wrapper Notes:
This function is attached as overloaded method ensemble_defect() to objects of type
fold_compound. See, e.g. RNA.fold_compound.ensemble_defect() in the Python API .

See also:
vrna_pf(), vrna_pairing_probs(), vrna_ensemble_defect()

Parameters
• fc – A fold_compound with pre-computed base pair probabilities

400 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• pt – A pair table representing a target structure

Pre
The vrna_fold_compound_t input parameter fcmust contain a valid base pair probability
matrix. This means that partition function and base pair probabilities must have been
computed using fc before execution of this function!

Returns
The ensemble defect with respect to the target structure, or -1. upon failure, e.g. pre-
conditions are not met

double vrna_ensemble_defect(vrna_fold_compound_t *fc, const char *structure)
#include <ViennaRNA/equilibrium_probs.h> Compute the Ensemble Defect for a given target struc-
ture.

This is a wrapper around vrna_ensemble_defect_pt(). Given a target structure 𝑠, compute the average
dissimilarity of a randomly drawn structure from the ensemble, i.e.:

𝐸𝐷(𝑠) = 1 − 1

𝑛

∑︁
𝑖𝑗,(𝑖,𝑗)∈𝑠

𝑝𝑖𝑗 −
1

𝑛

∑︁
𝑖

(1 − 𝑠𝑖)𝑞𝑖

with sequence length 𝑛, the probability 𝑝𝑖𝑗 of a base pair (𝑖, 𝑗), the probability 𝑞𝑖 = 1 −
∑︀

𝑗 𝑝𝑖𝑗 of
nucleotide 𝑖 being unpaired, and the indicator variable 𝑠𝑖 = 1 if ∃(𝑖, 𝑗) ∈ 𝑠, and 𝑠𝑖 = 0 otherwise.

SWIG Wrapper Notes:
This function is attached as method ensemble_defect() to objects of type fold_compound.
Note that the SWIG wrapper takes a structure in dot-bracket notation and converts it into a
pair table using vrna_ptable_from_string(). The resulting pair table is then internally passed
to vrna_ensemble_defect_pt(). To control which kind of matching brackets will be used dur-
ing conversion, the optional argument options can be used. See also the description of
vrna_ptable_from_string() for available options. (default: VRNA_BRACKETS_RND). See, e.g. RNA.
fold_compound.ensemble_defect() in the Python API .

See also:
vrna_pf(), vrna_pairing_probs(), vrna_ensemble_defect_pt()

Parameters
• fc – A fold_compound with pre-computed base pair probabilities

• structure – A target structure in dot-bracket notation

Pre
The vrna_fold_compound_t input parameter fcmust contain a valid base pair probability
matrix. This means that partition function and base pair probabilities must have been
computed using fc before execution of this function!

Returns
The ensemble defect with respect to the target structure, or -1. upon failure, e.g. pre-
conditions are not met

double *vrna_positional_entropy(vrna_fold_compound_t *fc)
#include <ViennaRNA/equilibrium_probs.h> Compute a vector of positional entropies.

This function computes the positional entropies from base pair probabilities as

𝑆(𝑖) = −
∑︁
𝑗

𝑝𝑖𝑗 log(𝑝𝑖𝑗) − 𝑞𝑖 log(𝑞𝑖)

7.5. Partition Function and Equilibrium Properties 401

ViennaRNA, Release 2.6.4

with unpaired probabilities 𝑞𝑖 = 1 −
∑︀

𝑗 𝑝𝑖𝑗 .

Low entropy regions have little structural flexibility and the reliability of the predicted structure is
high. High entropy implies many structural alternatives. While these alternatives may be functionally
important, they make structure prediction more difficult and thus less reliable.

SWIG Wrapper Notes:
This function is attached as method positional_entropy() to objects of type fold_compound.
See, e.g. RNA.fold_compound.positional_entropy() in the Python API .

Parameters
• fc – A fold_compound with pre-computed base pair probabilities

Pre
This function requires pre-computed base pair probabilities! Thus, vrna_pf() must be
called beforehand.

Returns
A 1-based vector of positional entropies 𝑆(𝑖). (position 0 contains the sequence length)

vrna_ep_t *vrna_stack_prob(vrna_fold_compound_t *fc, double cutoff)
#include <ViennaRNA/equilibrium_probs.h> Compute stacking probabilities.

For each possible base pair (𝑖, 𝑗), compute the probability of a stack (𝑖, 𝑗), (𝑖 + 1, 𝑗 − 1).

Parameters
• fc – The fold compound data structure with precomputed base pair probabilities

• cutoff – A cutoff value that limits the output to stacks with 𝑝 > cutoff.

Returns
A list of stacks with enclosing base pair (𝑖, 𝑗) and probabiltiy 𝑝

Multimer probabilities computations

void vrna_pf_dimer_probs(double FAB, double FA, double FB, vrna_ep_t *prAB, const vrna_ep_t
*prA, const vrna_ep_t *prB, int Alength, const vrna_exp_param_t
*exp_params)

#include <ViennaRNA/equilibrium_probs.h> Compute Boltzmann probabilities of dimerization with-
out homodimers.

Given the pair probabilities and free energies (in the null model) for a dimer AB and the two constituent
monomers A and B, compute the conditional pair probabilities given that a dimer AB actually forms.
Null model pair probabilities are given as a list as produced by vrna_plist_from_probs(), the dimer
probabilities ‘prAB’ are modified in place.

Parameters
• FAB – free energy of dimer AB

• FA – free energy of monomer A

• FB – free energy of monomer B

• prAB – pair probabilities for dimer

• prA – pair probabilities monomer

• prB – pair probabilities monomer

• Alength – Length of molecule A

• exp_params – The precomputed Boltzmann factors

402 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Structure probability computations

double vrna_pr_structure(vrna_fold_compound_t *fc, const char *structure)
#include <ViennaRNA/equilibrium_probs.h> Compute the equilibrium probability of a particular sec-
ondary structure.

The probability 𝑝(𝑠) of a particular secondary structure 𝑠 can be computed as

𝑝(𝑠) =
𝑒𝑥𝑝(−𝛽𝐸(𝑠)

𝑍

from the structures free energy 𝐸(𝑠) and the partition function

𝑍 =
∑︁
𝑠

𝑒𝑥𝑝(−𝛽𝐸(𝑠)), with 𝛽 =
1

𝑅𝑇

where 𝑅 is the gas constant and 𝑇 the thermodynamic temperature.

SWIG Wrapper Notes:
This function is attached as method pr_structure() to objects of type fold_compound. See,
e.g. RNA.fold_compound.pr_structure() in the Python API .

Parameters
• fc – The fold compound data structure with precomputed partition function

• structure – The secondary structure to compute the probability for in dot-bracket
notation

Pre
The fold compound fc must have went through a call to vrna_pf() to fill the dynamic
programming matrices with the corresponding partition function.

Returns
The probability of the input structure (range [0 : 1])

double vrna_pr_energy(vrna_fold_compound_t *fc, double e)
#include <ViennaRNA/equilibrium_probs.h>

SWIG Wrapper Notes:
This function is attached as method pr_energy() to objects of type fold_compound. See, e.g.
RNA.fold_compound.pr_energy() in the Python API .

Basic heat capacity function interface

vrna_heat_capacity_t *vrna_heat_capacity(vrna_fold_compound_t *fc, float T_min, float T_max,
float T_increment, unsigned int mpoints)

#include <ViennaRNA/heat_capacity.h> Compute the specific heat for an RNA.

This function computes an RNAs specific heat in a given temperature range from the partition function
by numeric differentiation. The result is returned as a list of pairs of temperature in C and specific heat
in Kcal/(Mol*K).

Users can specify the temperature range for the computation from T_min to T_max, as well as the
increment step size T_increment. The latter also determines how many times the partition function is
computed. Finally, the parameter mpoints determines how smooth the curve should be. The algorithm

7.5. Partition Function and Equilibrium Properties 403

ViennaRNA, Release 2.6.4

itself fits a parabola to 2·𝑚𝑝𝑜𝑖𝑛𝑡𝑠+1 data points to calculate 2nd derivatives. Increasing this parameter
produces a smoother curve.

SWIG Wrapper Notes:
This function is attached as overloaded method heat_capacity() to objects of type
fold_compound. If the optional function arguments T_min, T_max, T_increment, and mpoints
are omitted, they default to 0.0, 100.0, 1.0 and 2, respectively. See, e.g. RNA.fold_compound.
heat_capacity() in the Python API .

See also:
vrna_heat_capacity_cb(), vrna_heat_capacity_t, vrna_heat_capacity_s

Parameters
• fc – The vrna_fold_compound_t with the RNA sequence to analyze

• T_min – Lowest temperature in C

• T_max – Highest temperature in C

• T_increment – Stepsize for temperature incrementation in C (a reasonable choice
might be 1C)

• mpoints – The number of interpolation points to calculate 2nd derivative (a reasonable
choice might be 2, min: 1, max: 100)

Returns
A list of pairs of temperatures and corresponding heat capacity or NULL upon any failure.
The last entry of the list is indicated by a temperature field set to a value smaller than
T_min

int vrna_heat_capacity_cb(vrna_fold_compound_t *fc, float T_min, float T_max, float T_increment,
unsigned int mpoints, vrna_heat_capacity_f cb, void *data)

#include <ViennaRNA/heat_capacity.h> Compute the specific heat for an RNA (callback variant)

Similar to vrna_heat_capacity(), this function computes an RNAs specific heat in a given temperature
range from the partition function by numeric differentiation. Instead of returning a list of tempera-
ture/specific heat pairs, however, this function returns the individual results through a callback mech-
anism. The provided function will be called for each result and passed the corresponding temperature
and specific heat values along with the arbitrary data as provided through the data pointer argument.

Users can specify the temperature range for the computation from T_min to T_max, as well as the
increment step size T_increment. The latter also determines how many times the partition function is
computed. Finally, the parameter mpoints determines how smooth the curve should be. The algorithm
itself fits a parabola to 2·𝑚𝑝𝑜𝑖𝑛𝑡𝑠+1 data points to calculate 2nd derivatives. Increasing this parameter
produces a smoother curve.

SWIG Wrapper Notes:
This function is attached as method heat_capacity_cb() to objects of type fold_compound.
See, e.g. RNA.fold_compound.heat_capacity_cb() in the Python API .

See also:
vrna_heat_capacity(), vrna_heat_capacity_f

Parameters
• fc – The vrna_fold_compound_t with the RNA sequence to analyze

• T_min – Lowest temperature in C

• T_max – Highest temperature in C

404 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• T_increment – Stepsize for temperature incrementation in C (a reasonable choice
might be 1C)

• mpoints – The number of interpolation points to calculate 2nd derivative (a reasonable
choice might be 2, min: 1, max: 100)

• cb – The user-defined callback function that receives the individual results

• data – An arbitrary data structure that will be passed to the callback in conjunction
with the results

Returns
Returns 0 upon failure, and non-zero otherwise

Simplified heat capacity computation

vrna_heat_capacity_t *vrna_heat_capacity_simple(const char *sequence, float T_min, float T_max,
float T_increment, unsigned int mpoints)

#include <ViennaRNA/heat_capacity.h> Compute the specific heat for an RNA (simplified variant)

Similar to vrna_heat_capacity(), this function computes an RNAs specific heat in a given temperature
range from the partition function by numeric differentiation. This simplified version, however, only
requires the RNA sequence as input instead of a vrna_fold_compound_t data structure. The result is
returned as a list of pairs of temperature in C and specific heat in Kcal/(Mol*K).

Users can specify the temperature range for the computation from T_min to T_max, as well as the
increment step size T_increment. The latter also determines how many times the partition function is
computed. Finally, the parameter mpoints determines how smooth the curve should be. The algorithm
itself fits a parabola to 2·𝑚𝑝𝑜𝑖𝑛𝑡𝑠+1 data points to calculate 2nd derivatives. Increasing this parameter
produces a smoother curve.

SWIG Wrapper Notes:
This function is available as overloaded function heat_capacity(). If the optional function
arguments T_min, T_max, T_increment, and mpoints are omitted, they default to 0.0, 100.0,
1.0 and 2, respectively. See, e.g. RNA.head_capacity() in the Python API .

See also:
vrna_heat_capacity(), vrna_heat_capacity_cb(), vrna_heat_capacity_t, vrna_heat_capacity_s

Parameters
• sequence – The RNA sequence input (must be uppercase)

• T_min – Lowest temperature in C

• T_max – Highest temperature in C

• T_increment – Stepsize for temperature incrementation in C (a reasonable choice
might be 1C)

• mpoints – The number of interpolation points to calculate 2nd derivative (a reasonable
choice might be 2, min: 1, max: 100)

Returns
A list of pairs of temperatures and corresponding heat capacity or NULL upon any failure.
The last entry of the list is indicated by a temperature field set to a value smaller than
T_min

7.5. Partition Function and Equilibrium Properties 405

ViennaRNA, Release 2.6.4

Typedefs

typedef void (*vrna_heat_capacity_f)(float temp, float heat_capacity, void *data)
#include <ViennaRNA/heat_capacity.h> The callback for heat capacity predictions.

Notes on Callback Functions:
This function will be called for each evaluated temperature in the heat capacity prediction.

See also:
vrna_heat_capacity_cb()

Param temp
The current temperature this results corresponds to in C

Param heat_capacity
The heat capacity in Kcal/(Mol * K)

Param data
Some arbitrary data pointer passed through by the function executing the callback

void() vrna_heat_capacity_callback (float temp, float heat_capacity, void *data)

#include <ViennaRNA/heat_capacity.h>

typedef struct vrna_heat_capacity_s vrna_heat_capacity_t
#include <ViennaRNA/heat_capacity.h> A single result from heat capacity computations.

This is a convenience typedef for vrna_heat_capacity_s, i.e. results as obtained from
vrna_heat_capacity()

struct vrna_heat_capacity_s
#include <ViennaRNA/heat_capacity.h> A single result from heat capacity computations.

See also:
vrna_heat_capacity()

Public Members

float temperature
The temperature in C.

float heat_capacity
The specific heat at this temperature in Kcal/(Mol * K)

406 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.5.4 Deprecated Interface for Global Partition Function Computation

Unnamed Group

float alipf_fold_par(const char **sequences, char *structure, vrna_ep_t **pl, vrna_exp_param_t
*parameters, int calculate_bppm, int is_constrained, int is_circular)

#include <ViennaRNA/alifold.h>

Deprecated:
Use vrna_pf() instead

Parameters
• sequences –

• structure –

• pl –

• parameters –

• calculate_bppm –

• is_constrained –

• is_circular –

Returns

float alipf_fold(const char **sequences, char *structure, vrna_ep_t **pl)
#include <ViennaRNA/alifold.h> The partition function version of alifold() works in analogy to
pf_fold(). Pair probabilities and information about sequence covariations are returned via the ‘pi’ vari-
able as a list of vrna_pinfo_t structs. The list is terminated by the first entry with pi.i = 0.

Deprecated:
Use vrna_pf() instead

Parameters
• sequences –

• structure –

• pl –

Returns

float alipf_circ_fold(const char **sequences, char *structure, vrna_ep_t **pl)
#include <ViennaRNA/alifold.h>

Deprecated:
Use vrna_pf() instead

Parameters
• sequences –

• structure –

• pl –

7.5. Partition Function and Equilibrium Properties 407

ViennaRNA, Release 2.6.4

Returns

FLT_OR_DBL *export_ali_bppm(void)
#include <ViennaRNA/alifold.h> Get a pointer to the base pair probability array.

Accessing the base pair probabilities for a pair (i,j) is achieved by

FLT_OR_DBL *pr = export_bppm(); pr_ij = pr[iindx[i]-j];

Deprecated:
Usage of this function is discouraged! The new vrna_fold_compound_t allows direct access to the
folding matrices, including the pair probabilities! The pair probability array returned here reflects
the one of the latest call to vrna_pf(), or any of the old API calls for consensus structure partition
function folding.

See also:
vrna_fold_compound_t, vrna_fold_compound_comparative(), and vrna_pf()

Returns
A pointer to the base pair probability array

void free_alipf_arrays(void)
#include <ViennaRNA/alifold.h> Free the memory occupied by folding matrices allocated by
alipf_fold, alipf_circ_fold, etc.

Deprecated:
Usage of this function is discouraged! This function only free’s memory allocated by old API
function calls. Memory allocated by any of the new API calls (starting with vrna_) will be not
affected!

See also:
vrna_fold_compound_t, vrna_vrna_fold_compound_free()

char *alipbacktrack(double *prob)
#include <ViennaRNA/alifold.h> Sample a consensus secondary structure from the Boltzmann ensem-
ble according its probability.

Deprecated:
Use vrna_pbacktrack() instead!

Parameters
• prob – to be described (berni)

Returns
A sampled consensus secondary structure in dot-bracket notation

int get_alipf_arrays(short ***S_p, short ***S5_p, short ***S3_p, unsigned short ***a2s_p, char
***Ss_p, FLT_OR_DBL **qb_p, FLT_OR_DBL **qm_p, FLT_OR_DBL
**q1k_p, FLT_OR_DBL **qln_p, short **pscore)

408 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

#include <ViennaRNA/alifold.h> Get pointers to (almost) all relavant arrays used in alifold’s partition
function computation.

Deprecated:
It is discouraged to use this function! The new vrna_fold_compound_t allows direct access to all
necessary consensus structure prediction related variables!

See also:
vrna_fold_compound_t, vrna_fold_compound_comparative(), vrna_pf(), pf_alifold(),
alipf_circ_fold()

Note: To obtain meaningful pointers, call alipf_fold first!

Parameters
• S_p – A pointer to the ‘S’ array (integer representation of nucleotides)

• S5_p – A pointer to the ‘S5’ array

• S3_p – A pointer to the ‘S3’ array

• a2s_p – A pointer to the alignment-column to sequence position mapping array

• Ss_p – A pointer to the ‘Ss’ array

• qb_p – A pointer to the QB matrix

• qm_p – A pointer to the QM matrix

• q1k_p – A pointer to the 5’ slice of the Q matrix (𝑞1𝑘(𝑘) = 𝑄(1, 𝑘))

• qln_p – A pointer to the 3’ slice of the Q matrix (𝑞𝑙𝑛(𝑙) = 𝑄(𝑙, 𝑛))

• pscore – A pointer to the start of a pscore list

Returns
Non Zero if everything went fine, 0 otherwise

Functions

float pf_fold_par(const char *sequence, char *structure, vrna_exp_param_t *parameters, int
calculate_bppm, int is_constrained, int is_circular)

#include <ViennaRNA/part_func.h> Compute the partition function 𝑄 for a given RNA sequence.

If structure is not a NULL pointer on input, it contains on return a string consisting of the letters ” . , | {
} () ” denoting bases that are essentially unpaired, weakly paired, strongly paired without preference,
weakly upstream (downstream) paired, or strongly up- (down-)stream paired bases, respectively. If
fold_constrained is not 0, the structure string is interpreted on input as a list of constraints for the
folding. The character “x” marks bases that must be unpaired, matching brackets ” () ” denote base
pairs, all other characters are ignored. Any pairs conflicting with the constraint will be forbidden. This
is usually sufficient to ensure the constraints are honored. If the parameter calculate_bppm is set to 0
base pairing probabilities will not be computed (saving CPU time), otherwise after calculations took
place pr will contain the probability that bases i and j pair.

Deprecated:
Use vrna_pf() instead

7.5. Partition Function and Equilibrium Properties 409

ViennaRNA, Release 2.6.4

See also:
vrna_pf(), bppm_to_structure(), export_bppm(), vrna_exp_params(), free_pf_arrays()

Note: The global array pr is deprecated and the user who wants the calculated base pair probabilities
for further computations is advised to use the function export_bppm()

Parameters
• sequence – [in] The RNA sequence input

• structure – [inout] A pointer to a char array where a base pair probability informa-
tion can be stored in a pseudo-dot-bracket notation (may be NULL, too)

• parameters – [in] Data structure containing the precalculated Boltzmann factors

• calculate_bppm – [in] Switch to Base pair probability calculations on/off (0==off)

• is_constrained – [in] Switch to indicate that a structure contraint is passed via the
structure argument (0==off)

• is_circular – [in] Switch to (de-)activate postprocessing steps in case RNA se-
quence is circular (0==off)

Post
After successful run the hidden folding matrices are filled with the appropriate Boltz-
mann factors. Depending on whether the global variable do_backtrack was set the base
pair probabilities are already computed and may be accessed for further usage via the ex-
port_bppm() function. A call of free_pf_arrays() will free all memory allocated by this
function. Successive calls will first free previously allocated memory before starting the
computation.

Returns
The ensemble free energy 𝐺 = −𝑅𝑇 · log(𝑄) in kcal/mol

float pf_fold(const char *sequence, char *structure)
#include <ViennaRNA/part_func.h> Compute the partition function 𝑄 of an RNA sequence.

If structure is not a NULL pointer on input, it contains on return a string consisting of the letters ” . , | {
} () ” denoting bases that are essentially unpaired, weakly paired, strongly paired without preference,
weakly upstream (downstream) paired, or strongly up- (down-)stream paired bases, respectively. If
fold_constrained is not 0, the structure string is interpreted on input as a list of constraints for the
folding. The character “x” marks bases that must be unpaired, matching brackets ” () ” denote base
pairs, all other characters are ignored. Any pairs conflicting with the constraint will be forbidden. This
is usually sufficient to ensure the constraints are honored. If do_backtrack has been set to 0 base pairing
probabilities will not be computed (saving CPU time), otherwise pr will contain the probability that
bases i and j pair.

See also:
pf_fold_par(), pf_circ_fold(), bppm_to_structure(), export_bppm()

Note: The global array pr is deprecated and the user who wants the calculated base pair probabilities
for further computations is advised to use the function export_bppm().OpenMP: This function is not
entirely threadsafe. While the recursions are working on their own copies of data the model details for
the recursions are determined from the global settings just before entering the recursions. Consider
using pf_fold_par() for a really threadsafe implementation.

410 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Parameters
• sequence – The RNA sequence input

• structure – A pointer to a char array where a base pair probability information can
be stored in a pseudo-dot-bracket notation (may be NULL, too)

Pre
This function takes its model details from the global variables provided in RNAlib

Post
After successful run the hidden folding matrices are filled with the appropriate Boltz-
mann factors. Depending on whether the global variable do_backtrack was set the base
pair probabilities are already computed and may be accessed for further usage via the ex-
port_bppm() function. A call of free_pf_arrays() will free all memory allocated by this
function. Successive calls will first free previously allocated memory before starting the
computation.

Returns
The ensemble free energy 𝐺 = −𝑅𝑇 · log(𝑄) in kcal/mol

float pf_circ_fold(const char *sequence, char *structure)
#include <ViennaRNA/part_func.h> Compute the partition function of a circular RNA sequence.

Deprecated:
Use vrna_pf() instead!

See also:
vrna_pf()

Note: The global array pr is deprecated and the user who wants the calculated base pair probabilities
for further computations is advised to use the function export_bppm().OpenMP: This function is not
entirely threadsafe. While the recursions are working on their own copies of data the model details for
the recursions are determined from the global settings just before entering the recursions. Consider
using pf_fold_par() for a really threadsafe implementation.

Pre
This function takes its model details from the global variables provided in RNAlib

Post
After successful run the hidden folding matrices are filled with the appropriate Boltz-
mann factors. Depending on whether the global variable do_backtrack was set the base
pair probabilities are already computed and may be accessed for further usage via the ex-
port_bppm() function. A call of free_pf_arrays() will free all memory allocated by this
function. Successive calls will first free previously allocated memory before starting the
computation.

Parameters
• sequence – [in] The RNA sequence input

• structure – [inout] A pointer to a char array where a base pair probability informa-
tion can be stored in a pseudo-dot-bracket notation (may be NULL, too)

Returns
The ensemble free energy 𝐺 = −𝑅𝑇 · log(𝑄) in kcal/mol

7.5. Partition Function and Equilibrium Properties 411

ViennaRNA, Release 2.6.4

void free_pf_arrays(void)
#include <ViennaRNA/part_func.h> Free arrays for the partition function recursions.

Call this function if you want to free all allocated memory associated with the partition function forward
recursion.

Deprecated:
See vrna_fold_compound_t and its related functions for how to free memory occupied by the
dynamic programming matrices

See also:
pf_fold_par(), pf_fold(), pf_circ_fold()

Note: Successive calls of pf_fold(), pf_circ_fold() already check if they should free any memory from
a previous run.OpenMP notice: This function should be called before leaving a thread in order to
avoid leaking memory

Post
All memory allocated by pf_fold_par(), pf_fold() or pf_circ_fold() will be free’d

void update_pf_params(int length)
#include <ViennaRNA/part_func.h> Recalculate energy parameters.

Call this function to recalculate the pair matrix and energy parameters after a change in folding param-
eters like temperature

Deprecated:
Use vrna_exp_params_subst() instead

void update_pf_params_par(int length, vrna_exp_param_t *parameters)
#include <ViennaRNA/part_func.h> Recalculate energy parameters.

Deprecated:
Use vrna_exp_params_subst() instead

FLT_OR_DBL *export_bppm(void)
#include <ViennaRNA/part_func.h> Get a pointer to the base pair probability array.

Accessing the base pair probabilities for a pair (i,j) is achieved by

FLT_OR_DBL *pr = export_bppm();
pr_ij = pr[iindx[i]-j];

See also:
pf_fold(), pf_circ_fold(), vrna_idx_row_wise()

Pre
Call pf_fold_par(), pf_fold() or pf_circ_fold() first to fill the base pair probability array

Returns
A pointer to the base pair probability array

412 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int get_pf_arrays(short **S_p, short **S1_p, char **ptype_p, FLT_OR_DBL **qb_p, FLT_OR_DBL
**qm_p, FLT_OR_DBL **q1k_p, FLT_OR_DBL **qln_p)

#include <ViennaRNA/part_func.h> Get the pointers to (almost) all relavant computation arrays used
in partition function computation.

See also:
pf_fold_par(), pf_fold(), pf_circ_fold()

Parameters
• S_p – [out] A pointer to the ‘S’ array (integer representation of nucleotides)

• S1_p – [out] A pointer to the ‘S1’ array (2nd integer representation of nucleotides)

• ptype_p – [out] A pointer to the pair type matrix

• qb_p – [out] A pointer to the QB matrix

• qm_p – [out] A pointer to the QM matrix

• q1k_p – [out] A pointer to the 5’ slice of the Q matrix (𝑞1𝑘(𝑘) = 𝑄(1, 𝑘))

• qln_p – [out] A pointer to the 3’ slice of the Q matrix (𝑞𝑙𝑛(𝑙) = 𝑄(𝑙, 𝑛))

Pre
In order to assign meaningful pointers, you have to call pf_fold_par() or pf_fold() first!

Returns
Non Zero if everything went fine, 0 otherwise

double get_subseq_F(int i, int j)
#include <ViennaRNA/part_func.h> Get the free energy of a subsequence from the q[] array.

double mean_bp_distance(int length)
#include <ViennaRNA/part_func.h> Get the mean base pair distance of the last partition function com-
putation.

Deprecated:
Use vrna_mean_bp_distance() or vrna_mean_bp_distance_pr() instead!

See also:
vrna_mean_bp_distance(), vrna_mean_bp_distance_pr()

Parameters
• length –

Returns
mean base pair distance in thermodynamic ensemble

double mean_bp_distance_pr(int length, FLT_OR_DBL *pr)
#include <ViennaRNA/part_func.h> Get the mean base pair distance in the thermodynamic ensemble.

This is a threadsafe implementation of mean_bp_dist() !

< 𝑑 >=
∑︀

𝑎,𝑏 𝑝𝑎𝑝𝑏𝑑(𝑆𝑎, 𝑆𝑏) this can be computed from the pair probs 𝑝𝑖𝑗 as< 𝑑 >=
∑︀

𝑖𝑗 𝑝𝑖𝑗(1−𝑝𝑖𝑗)

7.5. Partition Function and Equilibrium Properties 413

ViennaRNA, Release 2.6.4

Deprecated:
Use vrna_mean_bp_distance() or vrna_mean_bp_distance_pr() instead!

Parameters
• length – The length of the sequence

• pr – The matrix containing the base pair probabilities

Returns
The mean pair distance of the structure ensemble

vrna_ep_t *stackProb(double cutoff)
#include <ViennaRNA/part_func.h> Get the probability of stacks.

Deprecated:
Use vrna_stack_prob() instead!

void init_pf_fold(int length)
#include <ViennaRNA/part_func.h> Allocate space for pf_fold()

Deprecated:
This function is obsolete and will be removed soon!

vrna_dimer_pf_t co_pf_fold(char *sequence, char *structure)
#include <ViennaRNA/part_func_co.h> Calculate partition function and base pair probabilities.

This is the cofold partition function folding. The second molecule starts at the cut_point nucleotide.

Deprecated:
{Use vrna_pf_dimer() instead!}

Note: OpenMP: Since this function relies on the global parameters do_backtrack, dangles, tem-
perature and pf_scale it is not threadsafe according to concurrent changes in these variables! Use
co_pf_fold_par() instead to circumvent this issue.

Parameters
• sequence – Concatenated RNA sequences

• structure – Will hold the structure or constraints

Returns
vrna_dimer_pf_t structure containing a set of energies needed for concentration compu-
tations.

vrna_dimer_pf_t co_pf_fold_par(char *sequence, char *structure, vrna_exp_param_t *parameters, int
calculate_bppm, int is_constrained)

#include <ViennaRNA/part_func_co.h> Calculate partition function and base pair probabilities.

This is the cofold partition function folding. The second molecule starts at the cut_point nucleotide.

414 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Deprecated:
Use vrna_pf_dimer() instead!

See also:
get_boltzmann_factors(), co_pf_fold()

Parameters
• sequence – Concatenated RNA sequences

• structure – Pointer to the structure constraint

• parameters – Data structure containing the precalculated Boltzmann factors

• calculate_bppm – Switch to turn Base pair probability calculations on/off (0==off)

• is_constrained – Switch to indicate that a structure contraint is passed via the struc-
ture argument (0==off)

Returns
vrna_dimer_pf_t structure containing a set of energies needed for concentration compu-
tations.

void compute_probabilities(double FAB, double FEA, double FEB, vrna_ep_t *prAB, vrna_ep_t
*prA, vrna_ep_t *prB, int Alength)

#include <ViennaRNA/part_func_co.h> Compute Boltzmann probabilities of dimerization without ho-
modimers.

Given the pair probabilities and free energies (in the null model) for a dimer AB and the two con-
stituent monomers A and B, compute the conditional pair probabilities given that a dimer AB actually
forms. Null model pair probabilities are given as a list as produced by assign_plist_from_pr(), the
dimer probabilities ‘prAB’ are modified in place.

Deprecated:
{ Use vrna_pf_dimer_probs() instead!}

Parameters
• FAB – free energy of dimer AB

• FEA – free energy of monomer A

• FEB – free energy of monomer B

• prAB – pair probabilities for dimer

• prA – pair probabilities monomer

• prB – pair probabilities monomer

• Alength – Length of molecule A

void init_co_pf_fold(int length)
#include <ViennaRNA/part_func_co.h> DO NOT USE THIS FUNCTION ANYMORE

Deprecated:
{ This function is deprecated and will be removed soon!}

FLT_OR_DBL *export_co_bppm(void)
#include <ViennaRNA/part_func_co.h> Get a pointer to the base pair probability array.

Accessing the base pair probabilities for a pair (i,j) is achieved by

7.5. Partition Function and Equilibrium Properties 415

ViennaRNA, Release 2.6.4

FLT_OR_DBL *pr = export_bppm(); pr_ij = pr[iindx[i]-j];

Deprecated:
This function is deprecated and will be removed soon! The base pair probability array is available
through the vrna_fold_compound_t data structure, and its associated vrna_mx_pf_t member.

See also:
vrna_idx_row_wise()

Returns
A pointer to the base pair probability array

void free_co_pf_arrays(void)
#include <ViennaRNA/part_func_co.h> Free the memory occupied by co_pf_fold()

Deprecated:
This function will be removed for the new API soon! See vrna_pf_dimer(),
vrna_fold_compound(), and vrna_fold_compound_free() for an alternative

void update_co_pf_params(int length)
#include <ViennaRNA/part_func_co.h> Recalculate energy parameters.

This function recalculates all energy parameters given the current model settings.

Deprecated:
Use vrna_exp_params_subst() instead!

Parameters
• length – Length of the current RNA sequence

void update_co_pf_params_par(int length, vrna_exp_param_t *parameters)
#include <ViennaRNA/part_func_co.h> Recalculate energy parameters.

This function recalculates all energy parameters given the current model settings. It’s second argument
can either be NULL or a data structure containing the precomputed Boltzmann factors. In the first
scenario, the necessary data structure will be created automatically according to the current global
model settings, i.e. this mode might not be threadsafe. However, if the provided data structure is not
NULL, threadsafety for the model parameters dangles, pf_scale and temperature is regained, since their
values are taken from this data structure during subsequent calculations.

Deprecated:
Use vrna_exp_params_subst() instead!

Parameters
• length – Length of the current RNA sequence

• parameters – data structure containing the precomputed Boltzmann factors

416 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void assign_plist_from_db(vrna_ep_t **pl, const char *struc, float pr)
#include <ViennaRNA/utils/structures.h> Create a vrna_ep_t from a dot-bracket string.

The dot-bracket string is parsed and for each base pair an entry in the plist is created. The probability
of each pair in the list is set by a function parameter.

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be
used to stop looping over its entries

Deprecated:
Use vrna_plist() instead

Parameters
• pl – A pointer to the vrna_ep_t that is to be created

• struc – The secondary structure in dot-bracket notation

• pr – The probability for each base pair

void assign_plist_from_pr(vrna_ep_t **pl, FLT_OR_DBL *probs, int length, double cutoff)
#include <ViennaRNA/utils/structures.h> Create a vrna_ep_t from a probability matrix.

The probability matrix given is parsed and all pair probabilities above the given threshold are used to
create an entry in the plist

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be
used to stop looping over its entries

Deprecated:
Use vrna_plist_from_probs() instead!

Note: This function is threadsafe

Parameters
• pl – [out] A pointer to the vrna_ep_t that is to be created

• probs – [in] The probability matrix used for creating the plist

• length – [in] The length of the RNA sequence

• cutoff – [in] The cutoff value

7.5.5 Deprecated Interface for Local (Sliding Window) Partition Function Com-
putation

7.5. Partition Function and Equilibrium Properties 417

ViennaRNA, Release 2.6.4

Functions

void update_pf_paramsLP(int length)
#include <ViennaRNA/LPfold.h>

Parameters
• length –

void update_pf_paramsLP_par(int length, vrna_exp_param_t *parameters)
#include <ViennaRNA/LPfold.h>

vrna_ep_t *pfl_fold(char *sequence, int winSize, int pairSize, float cutoffb, double **pU, vrna_ep_t
**dpp2, FILE *pUfp, FILE *spup)

#include <ViennaRNA/LPfold.h> Compute partition functions for locally stable secondary structures.

pfl_fold computes partition functions for every window of size ‘winSize’ possible in a RNA molecule,
allowing only pairs with a span smaller than ‘pairSize’. It returns the mean pair probabilities averaged
over all windows containing the pair in ‘pl’. ‘winSize’ should always be >= ‘pairSize’. Note that in
contrast to Lfold(), bases outside of the window do not influence the structure at all. Only probabilities
higher than ‘cutoffb’ are kept.

If ‘pU’ is supplied (i.e is not the NULL pointer), pfl_fold() will also compute the mean probability
that regions of length ‘u’ and smaller are unpaired. The parameter ‘u’ is supplied in ‘pup[0][0]’. On
return the ‘pup’ array will contain these probabilities, with the entry on ‘pup[x][y]’ containing the mean
probability that x and the y-1 preceding bases are unpaired. The ‘pU’ array needs to be large enough
to hold n+1 float* entries, where n is the sequence length.

If an array dpp2 is supplied, the probability of base pair (i,j) given that there already exists a base pair
(i+1,j-1) is also computed and saved in this array. If pUfp is given (i.e. not NULL), pU is not saved
but put out imediately. If spup is given (i.e. is not NULL), the pair probabilities in pl are not saved but
put out imediately.

Parameters
• sequence – RNA sequence

• winSize – size of the window

• pairSize – maximum size of base pair

• cutoffb – cutoffb for base pairs

• pU – array holding all unpaired probabilities

• dpp2 – array of dependent pair probabilities

• pUfp – file pointer for pU

• spup – file pointer for pair probabilities

Returns
list of pair probabilities

vrna_ep_t *pfl_fold_par(char *sequence, int winSize, int pairSize, float cutoffb, double **pU,
vrna_ep_t **dpp2, FILE *pUfp, FILE *spup, vrna_exp_param_t
*parameters)

#include <ViennaRNA/LPfold.h> Compute partition functions for locally stable secondary structures.

void putoutpU_prob(double **pU, int length, int ulength, FILE *fp, int energies)
#include <ViennaRNA/LPfold.h> Writes the unpaired probabilities (pU) or opening energies into a file.

Can write either the unpaired probabilities (accessibilities) pU or the opening energies -log(pU)kT into
a file

Parameters
• pU – pair probabilities

418 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• length – length of RNA sequence

• ulength – maximum length of unpaired stretch

• fp – file pointer of destination file

• energies – switch to put out as opening energies

void putoutpU_prob_bin(double **pU, int length, int ulength, FILE *fp, int energies)
#include <ViennaRNA/LPfold.h> Writes the unpaired probabilities (pU) or opening energies into a
binary file.

Can write either the unpaired probabilities (accessibilities) pU or the opening energies -log(pU)kT into
a file

Parameters
• pU – pair probabilities

• length – length of RNA sequence

• ulength – maximum length of unpaired stretch

• fp – file pointer of destination file

• energies – switch to put out as opening energies

7.5.6 Partition Function API

Similar to our Minimum Free Energy (MFE) Algorithms, we provide two different flavors for partition function
computations:

• Global Partition Function and Equilibrium Probabilities - to compute the partition function for a full length
sequence

• Local (sliding window) Partition Function and Equilibrium Probabilities - to compute the partition function
of each window using a sliding window approach

While the global partition function approach supports predictions using single sequences as well as consensus
partition functions for multiple sequence alignments (MSA), we currently do not support MSA input for the local
variant.

Comparative prediction computes an average of the free energy contributions plus an additional covariance pseudo-
energy term, exactly as we do for the Minimum Free Energy (MFE) Algorithms.

Boltzmann weights for the free energy contributions of individual loops can be found in Energy Evaluation for
Individual Loops.

Our implementations also provide a stochastic backtracking procedure to draw @ref subopt_stochbt according to
their equilibrium probabilty.

7.5.7 General Partition Function API

7.5. Partition Function and Equilibrium Properties 419

ViennaRNA, Release 2.6.4

Functions

int vrna_pf_float_precision(void)
#include <ViennaRNA/part_func.h> Find out whether partition function computations are using single
precision floating points.

See also:
FLT_OR_DBL

Returns
1 if single precision is used, 0 otherwise

7.6 Suboptimals and Representative Structures

Sample and enumerate suboptimal secondary structures from RNA sequence data.

7.6.1 Suboptimal Structures sensu Zuker

The algorithm to compute optimal secondary structures that contain a particular base pair has been published by
Zuker [1989] and is based on ideas for predicting structures for circular RNAs, in particular viroids, as presented
in Steger et al. [1984].

Functions

SOLUTION *zukersubopt(const char *string)
#include <ViennaRNA/subopt.h> Compute Zuker type suboptimal structures.

Compute Suboptimal structures according to M. Zuker, i.e. for every possible base pair the minimum
energy structure containing the resp. base pair. Returns a list of these structures and their energies.

Deprecated:
use vrna_zukersubopt() instead

Parameters
• string – RNA sequence

Returns
List of zuker suboptimal structures

SOLUTION *zukersubopt_par(const char *string, vrna_param_t *parameters)
#include <ViennaRNA/subopt.h> Compute Zuker type suboptimal structures.

Deprecated:
use vrna_zukersubopt() instead

420 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

vrna_subopt_solution_t *vrna_subopt_zuker(vrna_fold_compound_t *fc)
#include <ViennaRNA/subopt_zuker.h> Compute Zuker type suboptimal structures.

Compute Suboptimal structures according to Zuker [1989] , i.e. for every possible base pair the mini-
mum energy structure containing the resp. base pair. Returns a list of these structures and their energies.

SWIG Wrapper Notes:
This function is attached as method subopt_zuker() to objects of type fold_compound. See, e.g.
RNA.fold_compound.subopt_zuker() in the Python API .

See also:
vrna_subopt(), zukersubopt(), zukersubopt_par()

Parameters
• fc – fold compound

Returns
List of zuker suboptimal structures

7.6.2 Suboptimal Structures within an Energy Band around the MFE

Typedefs

typedef void (*vrna_subopt_result_f)(const char *stucture, float energy, void *data)
#include <ViennaRNA/subopt.h> Callback for vrna_subopt_cb()

Notes on Callback Functions:
This function will be called for each suboptimal secondary structure that is successfully back-
traced.

See also:
vrna_subopt_cb()

Param structure
The suboptimal secondary structure in dot-bracket notation

Param energy
The free energy of the secondary structure in kcal/mol

Param data
Some arbitrary, auxiliary data address as passed to vrna_subopt_cb()

7.6. Suboptimals and Representative Structures 421

ViennaRNA, Release 2.6.4

Functions

vrna_subopt_solution_t *vrna_subopt(vrna_fold_compound_t *fc, int delta, int sorted, FILE *fp)
#include <ViennaRNA/subopt.h> Returns list of subopt structures or writes to fp.

This function produces all suboptimal secondary structures within ‘delta’ * 0.01 kcal/mol of the opti-
mum, see Wuchty et al. [1999] . The results are either directly written to a ‘fp’ (if ‘fp’ is not NULL),
or (fp==NULL) returned in a vrna_subopt_solution_t * list terminated by an entry were the ‘structure’
member is NULL.

SWIG Wrapper Notes:
This function is attached as method subopt() to objects of type fold_compound. See, e.g. RNA.
fold_compound.subopt() in the Python API .

See also:
vrna_subopt_cb(), vrna_subopt_zuker()

Note: This function requires all multibranch loop DP matrices for unique multibranch loop back-
tracing. Therefore, the supplied vrna_fold_compound_t fc (argument 1) must be initialized with
vrna_md_t.uniq_ML = 1, for instance like this:

vrna_md_t md;
vrna_md_set_default(&md);
md.uniq_ML = 1;

vrna_fold_compound_t *fc=vrna_fold_compound("GGGGGGAAAAAACCCCCC", &md, VRNA_
→˓OPTION_DEFAULT);

Parameters
• fc –

• delta –

• sorted – Sort results by energy in ascending order

• fp –

Returns

void vrna_subopt_cb(vrna_fold_compound_t *fc, int delta, vrna_subopt_result_f cb, void *data)
#include <ViennaRNA/subopt.h> Generate suboptimal structures within an energy band arround the
MFE.

This is the most generic implementation of the suboptimal structure generator according to Wuchty et
al. [1999] . Identical to vrna_subopt(), it computes all secondary structures within an energy band
delta arround the MFE. However, this function does not print the resulting structures and their cor-
responding free energies to a file pointer, or returns them as a list. Instead, it calls a user-provided
callback function which it passes the structure in dot-bracket format, the corresponding free energy in
kcal/mol, and a user-provided data structure each time a structure was backtracked successfully. This
function indicates the final output, i.e. the end of the backtracking procedure by passing NULL instead
of an actual dot-bracket string to the callback.

SWIG Wrapper Notes:
This function is attached as method subopt_cb() to objects of type fold_compound. See, e.g.
RNA.fold_compound.subopt_cb() in the Python API .

422 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_subopt_result_f , vrna_subopt(), vrna_subopt_zuker()

Note: This function requires all multibranch loop DP matrices for unique multibranch loop back-
tracing. Therefore, the supplied vrna_fold_compound_t fc (argument 1) must be initialized with
vrna_md_t.uniq_ML = 1, for instance like this:

vrna_md_t md;
vrna_md_set_default(&md);
md.uniq_ML = 1;

vrna_fold_compound_t *fc=vrna_fold_compound("GGGGGGAAAAAACCCCCC", &md, VRNA_
→˓OPTION_DEFAULT);

Parameters
• fc – fold compount with the sequence data

• delta – Energy band arround the MFE in 10cal/mol, i.e. deka-calories

• cb – Pointer to a callback function that handles the backtracked structure and its free
energy in kcal/mol

• data – Pointer to some data structure that is passed along to the callback

SOLUTION *subopt(char *seq, char *structure, int delta, FILE *fp)
#include <ViennaRNA/subopt.h> Returns list of subopt structures or writes to fp.

This function produces all suboptimal secondary structures within ‘delta’ * 0.01 kcal/mol of the opti-
mum. The results are either directly written to a ‘fp’ (if ‘fp’ is not NULL), or (fp==NULL) returned
in a SOLUTION * list terminated by an entry were the ‘structure’ pointer is NULL.

Parameters
• seq –

• structure –

• delta –

• fp –

Returns
SOLUTION *subopt_par(char *seq, char *structure, vrna_param_t *parameters, int delta, int

is_constrained, int is_circular, FILE *fp)
#include <ViennaRNA/subopt.h> Returns list of subopt structures or writes to fp.

SOLUTION *subopt_circ(char *seq, char *sequence, int delta, FILE *fp)
#include <ViennaRNA/subopt.h> Returns list of circular subopt structures or writes to fp.

This function is similar to subopt() but calculates secondary structures assuming the RNA sequence to
be circular instead of linear

Parameters
• seq –

• sequence –

• delta –

• fp –

Returns

7.6. Suboptimals and Representative Structures 423

ViennaRNA, Release 2.6.4

Variables

double print_energy
printing threshold for use with logML

int subopt_sorted
Sort output by energy.

7.6.3 Random Structure Samples from the Ensemble

Functions to draw random structure samples from the ensemble according to their equilibrium probability.

Defines

VRNA_PBACKTRACK_DEFAULT

#include <ViennaRNA/boltzmann_sampling.h> Boltzmann sampling flag indicating default backtrac-
ing mode.

See also:
vrna_pbacktrack5_num(), vrna_pbacktrack5_cb(), vrna_pbacktrack5_resume(),
vrna_pbacktrack5_resume_cb(), vrna_pbacktrack_num(), vrna_pbacktrack_cb(),
vrna_pbacktrack_resume(), vrna_pbacktrack_resume_cb()

VRNA_PBACKTRACK_NON_REDUNDANT

#include <ViennaRNA/boltzmann_sampling.h> Boltzmann sampling flag indicating non-redundant
backtracing mode.

This flag will turn the Boltzmann sampling into non-redundant backtracing mode along the lines of
Michálik et al. [2017]

See also:
vrna_pbacktrack5_num(), vrna_pbacktrack5_cb(), vrna_pbacktrack5_resume(),
vrna_pbacktrack5_resume_cb(), vrna_pbacktrack_num(), vrna_pbacktrack_cb(),
vrna_pbacktrack_resume(), vrna_pbacktrack_resume_cb()

Typedefs

typedef void (*vrna_bs_result_f)(const char *structure, void *data)
#include <ViennaRNA/boltzmann_sampling.h> Callback for Boltzmann sampling.

Notes on Callback Functions:
This function will be called for each secondary structure that has been successfully backtraced
from the partition function DP matrices.

424 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_pbacktrack5_cb(), vrna_pbacktrack_cb(), vrna_pbacktrack5_resume_cb(),
vrna_pbacktrack_resume_cb()

Param structure
The secondary structure in dot-bracket notation

Param data
Some arbitrary, auxiliary data address as provided to the calling function

void() vrna_boltzmann_sampling_callback (const char *structure, void *data)

#include <ViennaRNA/boltzmann_sampling.h>

typedef struct vrna_pbacktrack_memory_s *vrna_pbacktrack_mem_t
#include <ViennaRNA/boltzmann_sampling.h> Boltzmann sampling memory data structure.

This structure is required for properly resuming a previous sampling round in specialized Boltzmann
sampling, such as non-redundant backtracking.

Initialize with NULL and pass its address to the corresponding functions vrna_pbacktrack5_resume(),
etc.

See also:
vrna_pbacktrack5_resume(), vrna_pbacktrack_resume(), vrna_pbacktrack5_resume_cb(),
vrna_pbacktrack_resume_cb(), vrna_pbacktrack_mem_free()

Note: Do not forget to release memory occupied by this data structure before losing its context! Use
vrna_pbacktrack_mem_free().

Functions

char *vrna_pbacktrack5(vrna_fold_compound_t *fc, unsigned int length)
#include <ViennaRNA/boltzmann_sampling.h> Sample a secondary structure of a subsequence from
the Boltzmann ensemble according its probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a secondary
structure. The parameter length specifies the length of the substructure starting from the 5’ end.

The structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according to
its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack5() to objects of type
fold_compound. See, e.g. RNA.fold_compound.pbacktrack5() in the Python API and the
Boltzmann Sampling Python examples .

7.6. Suboptimals and Representative Structures 425

ViennaRNA, Release 2.6.4

See also:
vrna_pbacktrack5_num(), vrna_pbacktrack5_cb(), vrna_pbacktrack()

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Parameters
• fc – The fold compound data structure

• length – The length of the subsequence to consider (starting with 5’ end)

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
A sampled secondary structure in dot-bracket notation (or NULL on error)

char **vrna_pbacktrack5_num(vrna_fold_compound_t *fc, unsigned int num_samples, unsigned int
length, unsigned int options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples for a sub-
sequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures. The parameter length specifies the length of the substructure
starting from the 5’ end.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack5() to objects of type
fold_compoundwith optional last argument options = VRNA_PBACKTRACK_DEFAULT . See,
e.g. RNA.fold_compound.pbacktrack5() in the Python API and the Boltzmann Sampling
Python examples .

See also:
vrna_pbacktrack5(), vrna_pbacktrack5_cb(), vrna_pbacktrack_num(),
VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

426 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• length – The length of the subsequence to consider (starting with 5’ end)

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
A set of secondary structure samples in dot-bracket notation terminated by NULL (or
NULL on error)

unsigned int vrna_pbacktrack5_cb(vrna_fold_compound_t *fc, unsigned int num_samples, unsigned
int length, vrna_bs_result_f cb, void *data, unsigned int options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples for a sub-
sequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures. The parameter length specifies the length of the substructure
starting from the 5’ end.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

In contrast to vrna_pbacktrack5() and vrna_pbacktrack5_num() this function yields the structure sam-
ples through a callback mechanism.

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack5() to objects of type
fold_compoundwith optional last argument options = VRNA_PBACKTRACK_DEFAULT . See,
e.g. RNA.fold_compound.pbacktrack5() in the Python API and the Boltzmann Sampling
Python examples .

See also:
vrna_pbacktrack5(), vrna_pbacktrack5_num(), vrna_pbacktrack_cb(),
VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT

7.6. Suboptimals and Representative Structures 427

ViennaRNA, Release 2.6.4

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• length – The length of the subsequence to consider (starting with 5’ end)

• cb – The callback that receives the sampled structure

• data – A data structure passed through to the callback cb

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
The number of structures actually backtraced

char **vrna_pbacktrack5_resume(vrna_fold_compound_t *fc, unsigned int num_samples, unsigned
int length, vrna_pbacktrack_mem_t *nr_mem, unsigned int
options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples for a sub-
sequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures. The parameter length specifies the length of the substructure
starting from the 5’ end.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

In contrast to vrna_pbacktrack5_cb() this function allows for resuming a previous sampling round
in specialized Boltzmann sampling, such as non-redundant backtracking. For that purpose, the user
passes the address of a Boltzmann sampling data structure (vrna_pbacktrack_mem_t) which will be
re-used in each round of sampling, i.e. each successive call to vrna_pbacktrack5_resume_cb() or
vrna_pbacktrack5_resume().

428 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

A successive sample call to this function may look like:

vrna_pbacktrack_mem_t nonredundant_memory = NULL;

// sample the first 100 structures
vrna_pbacktrack5_resume(fc,

100,
fc->length,
&nonredundant_memory,
options);

// sample another 500 structures
vrna_pbacktrack5_resume(fc,

500,
fc->length,
&nonredundant_memory,
options);

// release memory occupied by the non-redundant memory data structure
vrna_pbacktrack_mem_free(nonredundant_memory);

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack5() to objects of type
fold_compound with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In
addition to the list of structures, this function also returns the nr_mem data structure as first return
value. See, e.g. RNA.fold_compound.pbacktrack5() in the Python API and the Boltzmann
Sampling Python examples .

See also:
vrna_pbacktrack5_resume_cb(), vrna_pbacktrack5_cb(), vrna_pbacktrack_resume(),
vrna_pbacktrack_mem_t, VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT ,
vrna_pbacktrack_mem_free

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• length – The length of the subsequence to consider (starting with 5’ end)

• nr_mem – The address of the Boltzmann sampling memory data structure

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing

7.6. Suboptimals and Representative Structures 429

ViennaRNA, Release 2.6.4

vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
A set of secondary structure samples in dot-bracket notation terminated by NULL (or
NULL on error)

unsigned int vrna_pbacktrack5_resume_cb(vrna_fold_compound_t *fc, unsigned int num_samples,
unsigned int length, vrna_bs_result_f cb, void *data,
vrna_pbacktrack_mem_t *nr_mem, unsigned int options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples for a sub-
sequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures. The parameter length specifies the length of the substructure
starting from the 5’ end.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

In contrast to vrna_pbacktrack5_resume() this function yields the structure samples through a callback
mechanism.

A successive sample call to this function may look like:

vrna_pbacktrack_mem_t nonredundant_memory = NULL;

// sample the first 100 structures
vrna_pbacktrack5_resume_cb(fc,

100,
fc->length,
&callback_function,
(void *)&callback_data,
&nonredundant_memory,
options);

// sample another 500 structures
vrna_pbacktrack5_resume_cb(fc,

500,
fc->length,
&callback_function,
(void *)&callback_data,
&nonredundant_memory,
options);

// release memory occupied by the non-redundant memory data structure
vrna_pbacktrack_mem_free(nonredundant_memory);

430 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack5() to objects of type
fold_compound with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In
addition to the number of structures backtraced, this function also returns the nr_mem data struc-
ture as first return value. See, e.g. RNA.fold_compound.pbacktrack5() in the Python API and
the Boltzmann Sampling Python examples .

See also:
vrna_pbacktrack5_resume(), vrna_pbacktrack5_cb(), vrna_pbacktrack_resume_cb(),
vrna_pbacktrack_mem_t, VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT ,
vrna_pbacktrack_mem_free

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• length – The length of the subsequence to consider (starting with 5’ end)

• cb – The callback that receives the sampled structure

• data – A data structure passed through to the callback cb

• nr_mem – The address of the Boltzmann sampling memory data structure

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
The number of structures actually backtraced

char *vrna_pbacktrack(vrna_fold_compound_t *fc)
#include <ViennaRNA/boltzmann_sampling.h> Sample a secondary structure from the Boltzmann en-
semble according its probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a secondary
structure.

The structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according to
its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

7.6. Suboptimals and Representative Structures 431

ViennaRNA, Release 2.6.4

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack() to objects of type
fold_compound. See, e.g. RNA.fold_compound.pbacktrack() in the Python API and
the Boltzmann Sampling Python examples .

See also:
vrna_pbacktrack5(), vrna_pbacktrack_num, vrna_pbacktrack_cb()

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Parameters
• fc – The fold compound data structure

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
A sampled secondary structure in dot-bracket notation (or NULL on error)

char **vrna_pbacktrack_num(vrna_fold_compound_t *fc, unsigned int num_samples, unsigned int
options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples from the
Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . See, e.g. RNA.
fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling Python exam-
ples .

432 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_pbacktrack(), vrna_pbacktrack_cb(), vrna_pbacktrack5_num(),
VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
A set of secondary structure samples in dot-bracket notation terminated by NULL (or
NULL on error)

unsigned int vrna_pbacktrack_cb(vrna_fold_compound_t *fc, unsigned int num_samples,
vrna_bs_result_f cb, void *data, unsigned int options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples from the
Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

In contrast to vrna_pbacktrack() and vrna_pbacktrack_num() this function yields the structure samples
through a callback mechanism.

7.6. Suboptimals and Representative Structures 433

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . See, e.g. RNA.
fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling Python exam-
ples .

See also:
vrna_pbacktrack(), vrna_pbacktrack_num(), vrna_pbacktrack5_cb(),
VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• cb – The callback that receives the sampled structure

• data – A data structure passed through to the callback cb

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
The number of structures actually backtraced

char **vrna_pbacktrack_resume(vrna_fold_compound_t *fc, unsigned int num_samples,
vrna_pbacktrack_mem_t *nr_mem, unsigned int options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples from the
Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

434 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

In contrast to vrna_pbacktrack_cb() this function allows for resuming a previous sampling round in
specialized Boltzmann sampling, such as non-redundant backtracking. For that purpose, the user
passes the address of a Boltzmann sampling data structure (vrna_pbacktrack_mem_t) which will be
re-used in each round of sampling, i.e. each successive call to vrna_pbacktrack_resume_cb() or
vrna_pbacktrack_resume().

A successive sample call to this function may look like:

vrna_pbacktrack_mem_t nonredundant_memory = NULL;

// sample the first 100 structures
vrna_pbacktrack_resume(fc,

100,
&nonredundant_memory,
options);

// sample another 500 structures
vrna_pbacktrack_resume(fc,

500,
&nonredundant_memory,
options);

// release memory occupied by the non-redundant memory data structure
vrna_pbacktrack_mem_free(nonredundant_memory);

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In addition to the list
of structures, this function also returns the nr_mem data structure as first return value. See, e.g.
RNA.fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling Python
examples .

See also:
vrna_pbacktrack_resume_cb(), vrna_pbacktrack_cb(), vrna_pbacktrack5_resume(),
vrna_pbacktrack_mem_t, VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT ,
vrna_pbacktrack_mem_free

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

7.6. Suboptimals and Representative Structures 435

ViennaRNA, Release 2.6.4

• nr_mem – The address of the Boltzmann sampling memory data structure

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
A set of secondary structure samples in dot-bracket notation terminated by NULL (or
NULL on error)

unsigned int vrna_pbacktrack_resume_cb(vrna_fold_compound_t *fc, unsigned int num_samples,
vrna_bs_result_f cb, void *data, vrna_pbacktrack_mem_t
*nr_mem, unsigned int options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples from the
Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

In contrast to vrna_pbacktrack5_resume() this function yields the structure samples through a callback
mechanism.

A successive sample call to this function may look like:

vrna_pbacktrack_mem_t nonredundant_memory = NULL;

// sample the first 100 structures
vrna_pbacktrack5_resume_cb(fc,

100,
&callback_function,
(void *)&callback_data,
&nonredundant_memory,
options);

// sample another 500 structures
vrna_pbacktrack5_resume_cb(fc,

500,
&callback_function,
(void *)&callback_data,
&nonredundant_memory,
options);

// release memory occupied by the non-redundant memory data structure
vrna_pbacktrack_mem_free(nonredundant_memory);

436 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In addition to the
number of structures backtraced, this function also returns the nr_mem data structure as first re-
turn value. See, e.g. RNA.fold_compound.pbacktrack() in the Python API and the Boltzmann
Sampling Python examples .

See also:
vrna_pbacktrack_resume(), vrna_pbacktrack_cb(), vrna_pbacktrack5_resume_cb(),
vrna_pbacktrack_mem_t, VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT ,
vrna_pbacktrack_mem_free

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• cb – The callback that receives the sampled structure

• data – A data structure passed through to the callback cb

• nr_mem – The address of the Boltzmann sampling memory data structure

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
The number of structures actually backtraced

char *vrna_pbacktrack_sub(vrna_fold_compound_t *fc, unsigned int start, unsigned int end)
#include <ViennaRNA/boltzmann_sampling.h> Sample a secondary structure of a subsequence from
the Boltzmann ensemble according its probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a secondary
structure. The parameters start and end specify the interval [𝑠𝑡𝑎𝑟𝑡 : 𝑒𝑛𝑑] of the subsequence with
1 ≤ 𝑠𝑡𝑎𝑟𝑡 < 𝑒𝑛𝑑 ≤ 𝑛 for sequence length 𝑛, the structure 𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 should be drawn from.

The resulting substructure 𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 with free energy 𝐸(𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑) is picked from the Boltzmann
distributed sub ensemble of all structures within the interval [𝑠𝑡𝑎𝑟𝑡 : 𝑒𝑛𝑑] according to its probability

𝑝(𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑) =
𝑒𝑥𝑝(−𝐸(𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑)/𝑘𝑇)

𝑍𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑

7.6. Suboptimals and Representative Structures 437

ViennaRNA, Release 2.6.4

with partition function 𝑍𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 =
∑︀

𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑
𝑒𝑥𝑝(−𝐸(𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑)/𝑘𝑇), Boltzmann constant 𝑘 and

thermodynamic temperature 𝑇 .

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack_sub() to objects of type
fold_compound. See, e.g. RNA.fold_compound.pbacktrack_sub() in the Python API and
the Boltzmann Sampling Python examples .

See also:
vrna_pbacktrack_sub_num(), vrna_pbacktrack_sub_cb(), vrna_pbacktrack()

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Parameters
• fc – The fold compound data structure

• start – The start of the subsequence to consider, i.e. 5’-end position(1-based)

• end – The end of the subsequence to consider, i.e. 3’-end position (1-based)

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
A sampled secondary structure in dot-bracket notation (or NULL on error)

char **vrna_pbacktrack_sub_num(vrna_fold_compound_t *fc, unsigned int num_samples, unsigned
int start, unsigned int end, unsigned int options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples for a sub-
sequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures. The parameter length specifies the length of the substructure
starting from the 5’ end.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack_sub() to objects of type
fold_compoundwith optional last argument options = VRNA_PBACKTRACK_DEFAULT . See,

438 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

e.g. RNA.fold_compound.pbacktrack_sub() in the Python API and the Boltzmann Sampling
Python examples .

See also:
vrna_pbacktrack_sub(), vrna_pbacktrack_sub_cb(), vrna_pbacktrack_num(),
VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• start – The start of the subsequence to consider, i.e. 5’-end position(1-based)

• end – The end of the subsequence to consider, i.e. 3’-end position (1-based)

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
A set of secondary structure samples in dot-bracket notation terminated by NULL (or
NULL on error)

unsigned int vrna_pbacktrack_sub_cb(vrna_fold_compound_t *fc, unsigned int num_samples,
unsigned int start, unsigned int end, vrna_bs_result_f cb, void
*data, unsigned int options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples for a sub-
sequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures. The parameter length specifies the length of the substructure
starting from the 5’ end.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

7.6. Suboptimals and Representative Structures 439

ViennaRNA, Release 2.6.4

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

In contrast to vrna_pbacktrack5() and vrna_pbacktrack5_num() this function yields the structure sam-
ples through a callback mechanism.

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . See, e.g. RNA.
fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling Python exam-
ples .

See also:
vrna_pbacktrack5(), vrna_pbacktrack5_num(), vrna_pbacktrack_cb(),
VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• start – The start of the subsequence to consider, i.e. 5’-end position(1-based)

• end – The end of the subsequence to consider, i.e. 3’-end position (1-based)

• cb – The callback that receives the sampled structure

• data – A data structure passed through to the callback cb

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
The number of structures actually backtraced

char **vrna_pbacktrack_sub_resume(vrna_fold_compound_t *fc, unsigned int num_samples,
unsigned int start, unsigned int end, vrna_pbacktrack_mem_t
*nr_mem, unsigned int options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples for a sub-
sequence from the Boltzmann ensemble according their probability.

440 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures. The parameter length specifies the length of the substructure
starting from the 5’ end.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

In contrast to vrna_pbacktrack5_cb() this function allows for resuming a previous sampling round
in specialized Boltzmann sampling, such as non-redundant backtracking. For that purpose, the user
passes the address of a Boltzmann sampling data structure (vrna_pbacktrack_mem_t) which will be
re-used in each round of sampling, i.e. each successive call to vrna_pbacktrack5_resume_cb() or
vrna_pbacktrack5_resume().

A successive sample call to this function may look like:

vrna_pbacktrack_mem_t nonredundant_memory = NULL;

// sample the first 100 structures
vrna_pbacktrack5_resume(fc,

100,
fc->length,
&nonredundant_memory,
options);

// sample another 500 structures
vrna_pbacktrack5_resume(fc,

500,
fc->length,
&nonredundant_memory,
options);

// release memory occupied by the non-redundant memory data structure
vrna_pbacktrack_mem_free(nonredundant_memory);

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack_sub() to objects of type
fold_compound with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In
addition to the list of structures, this function also returns the nr_mem data structure as first return
value. See, e.g. RNA.fold_compound.pbacktrack_sub() in the Python API and the Boltz-
mann Sampling Python examples .

See also:
vrna_pbacktrack5_resume_cb(), vrna_pbacktrack5_cb(), vrna_pbacktrack_resume(),
vrna_pbacktrack_mem_t, VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT ,
vrna_pbacktrack_mem_free

7.6. Suboptimals and Representative Structures 441

ViennaRNA, Release 2.6.4

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• start – The start of the subsequence to consider, i.e. 5’-end position(1-based)

• end – The end of the subsequence to consider, i.e. 3’-end position (1-based)

• nr_mem – The address of the Boltzmann sampling memory data structure

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
A set of secondary structure samples in dot-bracket notation terminated by NULL (or
NULL on error)

unsigned int vrna_pbacktrack_sub_resume_cb(vrna_fold_compound_t *fc, unsigned int
num_samples, unsigned int start, unsigned int end,
vrna_bs_result_f cb, void *data,
vrna_pbacktrack_mem_t *nr_mem, unsigned int
options)

#include <ViennaRNA/boltzmann_sampling.h> Obtain a set of secondary structure samples for a sub-
sequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of
num_samples secondary structures. The parameter length specifies the length of the substructure
starting from the 5’ end.

Any structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according
to its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Using the options flag one can switch between regular (VRNA_PBACKTRACK_DEFAULT) backtrac-
ing mode, and non-redundant sampling (VRNA_PBACKTRACK_NON_REDUNDANT) along the lines
of Michálik et al. [2017] .

In contrast to vrna_pbacktrack5_resume() this function yields the structure samples through a callback
mechanism.

442 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

A successive sample call to this function may look like:

vrna_pbacktrack_mem_t nonredundant_memory = NULL;

// sample the first 100 structures
vrna_pbacktrack5_resume_cb(fc,

100,
fc->length,
&callback_function,
(void *)&callback_data,
&nonredundant_memory,
options);

// sample another 500 structures
vrna_pbacktrack5_resume_cb(fc,

500,
fc->length,
&callback_function,
(void *)&callback_data,
&nonredundant_memory,
options);

// release memory occupied by the non-redundant memory data structure
vrna_pbacktrack_mem_free(nonredundant_memory);

SWIG Wrapper Notes:
This function is attached as overloaded method pbacktrack_sub() to objects of type
fold_compound with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In
addition to the number of structures backtraced, this function also returns the nr_mem data struc-
ture as first return value. See, e.g. RNA.fold_compound.pbacktrack_sub() in the Python API
and the Boltzmann Sampling Python examples .

See also:
vrna_pbacktrack5_resume(), vrna_pbacktrack5_cb(), vrna_pbacktrack_resume_cb(),
vrna_pbacktrack_mem_t, VRNA_PBACKTRACK_DEFAULT , VRNA_PBACKTRACK_NON_REDUNDANT ,
vrna_pbacktrack_mem_free

Note: This function is polymorphic. It accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE, and VRNA_FC_TYPE_COMPARATIVE.

Warning: In non-redundant sampling mode (VRNA_PBACKTRACK_NON_REDUNDANT), this
function may not yield the full number of requested samples. This may happen if a) the number
of requested structures is larger than the total number of structuresin the ensemble, b) numeric
instabilities prevent the backtracking function to enumerate structures with high free energies, or
c) any other error occurs.

Parameters
• fc – The fold compound data structure

• num_samples – The size of the sample set, i.e. number of structures

• start – The start of the subsequence to consider, i.e. 5’-end position(1-based)

• end – The end of the subsequence to consider, i.e. 3’-end position (1-based)

7.6. Suboptimals and Representative Structures 443

ViennaRNA, Release 2.6.4

• cb – The callback that receives the sampled structure

• data – A data structure passed through to the callback cb

• nr_mem – The address of the Boltzmann sampling memory data structure

• options – A bitwise OR-flag indicating the backtracing mode.

Pre
Unique multiloop decomposition has to be active upon creation of fc with
vrna_fold_compound() or similar. This can be done easily by passing
vrna_fold_compound() a model details parameter with vrna_md_t.uniq_ML =
1.vrna_pf() has to be called first to fill the partition function matrices

Returns
The number of structures actually backtraced

void vrna_pbacktrack_mem_free(vrna_pbacktrack_mem_t s)
#include <ViennaRNA/boltzmann_sampling.h> Release memory occupied by a Boltzmann sampling
memory data structure.

See also:
vrna_pbacktrack_mem_t, vrna_pbacktrack5_resume(), vrna_pbacktrack5_resume_cb(),
vrna_pbacktrack_resume(), vrna_pbacktrack_resume_cb()

Parameters
• s – The non-redundancy memory data structure

Deprecated API

Functions

char *pbacktrack(char *sequence)
#include <ViennaRNA/part_func.h> Sample a secondary structure from the Boltzmann ensemble ac-
cording its probability.

Parameters
• sequence – The RNA sequence

Pre
st_back has to be set to 1 before calling pf_fold() or pf_fold_par()pf_fold_par() or
pf_fold() have to be called first to fill the partition function matrices

Returns
A sampled secondary structure in dot-bracket notation

char *pbacktrack5(char *sequence, int length)
#include <ViennaRNA/part_func.h> Sample a sub-structure from the Boltzmann ensemble according
its probability.

char *pbacktrack_circ(char *sequence)
#include <ViennaRNA/part_func.h> Sample a secondary structure of a circular RNA from the Boltz-
mann ensemble according its probability.

This function does the same as pbacktrack() but assumes the RNA molecule to be circular

444 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Deprecated:
Use vrna_pbacktrack() instead.

Pre
st_back has to be set to 1 before calling pf_fold() or pf_fold_par()pf_fold_par() or
pf_circ_fold() have to be called first to fill the partition function matrices

Parameters
• sequence – The RNA sequence

Returns
A sampled secondary structure in dot-bracket notation

Variables

int st_back
Flag indicating that auxilary arrays are needed throughout the computations. This is essential for
stochastic backtracking.

Set this variable to 1 prior to a call of pf_fold() to ensure that all matrices needed for stochastic back-
tracking are filled in the forward recursions

Deprecated:
set the uniq_ML flag in vrna_md_t before passing it to vrna_fold_compound().

See also:
pbacktrack(), pbacktrack_circ

7.6.4 Compute the Structure with Maximum Expected Accuracy (MEA)

Functions

char *vrna_MEA(vrna_fold_compound_t *fc, double gamma, float *mea)
#include <ViennaRNA/MEA.h> Compute a MEA (maximum expected accuracy) structure.

The algorithm maximizes the expected accuracy

𝐴(𝑆) =
∑︁

(𝑖,𝑗)∈𝑆

2𝛾𝑝𝑖𝑗 +
∑︁
𝑖/∈𝑆

𝑝𝑢𝑖

Higher values of 𝛾 result in more base pairs of lower probability and thus higher sensitivity. Low values
of 𝛾 result in structures containing only highly likely pairs (high specificity). The code of the MEA
function also demonstrates the use of sparse dynamic programming scheme to reduce the time and
memory complexity of folding.

7.6. Suboptimals and Representative Structures 445

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is attached as overloaded method MEA(gamma = 1.) to objects of type
fold_compound. Note, that it returns the MEA structure and MEA value as a tuple
(MEA_structure, MEA). See, e.g. RNA.fold_compound.MEA() in the Python API .

Parameters
• fc – The fold compound data structure with pre-filled base pair probability matrix

• gamma – The weighting factor for base pairs vs. unpaired nucleotides

• mea – A pointer to a variable where the MEA value will be written to

Pre
vrna_pf() must be executed on input parameter fc

Returns
An MEA structure (or NULL on any error)

char *vrna_MEA_from_plist(vrna_ep_t *plist, const char *sequence, double gamma, vrna_md_t *md,
float *mea)

#include <ViennaRNA/MEA.h> Compute a MEA (maximum expected accuracy) structure from a list
of probabilities.

The algorithm maximizes the expected accuracy

𝐴(𝑆) =
∑︁

(𝑖,𝑗)∈𝑆

2𝛾𝑝𝑖𝑗 +
∑︁
𝑖/∈𝑆

𝑝𝑢𝑖

Higher values of 𝛾 result in more base pairs of lower probability and thus higher sensitivity. Low values
of 𝛾 result in structures containing only highly likely pairs (high specificity). The code of the MEA
function also demonstrates the use of sparse dynamic programming scheme to reduce the time and
memory complexity of folding.

SWIG Wrapper Notes:
This function is available as overloaded function MEA_from_plist(gamma = 1., md = NULL).
Note, that it returns the MEA structure and MEA value as a tuple (MEA_structure, MEA). See,
e.g. RNA.MEA_from_plist() in the Python API .

Note: The unpaired probabilities 𝑝𝑢𝑖 = 1−
∑︀

𝑗 ̸=𝑖 𝑝𝑖𝑗 are usually computed from the supplied pairing
probabilities 𝑝𝑖𝑗 as stored in plist entries of type VRNA_PLIST_TYPE_BASEPAIR. To overwrite
individual 𝑝𝑢𝑜 values simply add entries with type VRNA_PLIST_TYPE_UNPAIRED To include G-
Quadruplex support, the corresponding field in md must be set.

Parameters
• plist – A list of base pair probabilities the MEA structure is computed from

• sequence – The RNA sequence that corresponds to the list of probability values

• gamma – The weighting factor for base pairs vs. unpaired nucleotides

• md – A model details data structure (maybe NULL)

• mea – A pointer to a variable where the MEA value will be written to

Returns
An MEA structure (or NULL on any error)

446 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

float MEA(plist *p, char *structure, double gamma)
#include <ViennaRNA/MEA.h> Computes a MEA (maximum expected accuracy) structure.

The algorithm maximizes the expected accuracy

𝐴(𝑆) =
∑︁

(𝑖,𝑗)∈𝑆

2𝛾𝑝𝑖𝑗 +
∑︁
𝑖/∈𝑆

𝑝𝑢𝑖

Higher values of 𝛾 result in more base pairs of lower probability and thus higher sensitivity. Low values
of 𝛾 result in structures containing only highly likely pairs (high specificity). The code of the MEA
function also demonstrates the use of sparse dynamic programming scheme to reduce the time and
memory complexity of folding.

Deprecated:
Use vrna_MEA() or vrna_MEA_from_plist() instead!

7.6.5 Compute the Centroid Structure

Functions

char *vrna_centroid(vrna_fold_compound_t *fc, double *dist)
#include <ViennaRNA/centroid.h> Get the centroid structure of the ensemble.

The centroid is the structure with the minimal average distance to all other structures < 𝑑(𝑆) >=∑︀
(𝑖,𝑗)∈𝑆(1 − 𝑝𝑖𝑗) +

∑︀
(𝑖,𝑗)/∈𝑆 𝑝𝑖𝑗 Thus, the centroid is simply the structure containing all pairs with

𝑝𝑖𝑗 > 0.5 The distance of the centroid to the ensemble is written to the memory adressed by dist.

Parameters
• fc – [in] The fold compound data structure

• dist – [out] A pointer to the distance variable where the centroid distance will be
written to

Returns
The centroid structure of the ensemble in dot-bracket notation (NULL on error)

char *vrna_centroid_from_plist(int length, double *dist, vrna_ep_t *pl)
#include <ViennaRNA/centroid.h> Get the centroid structure of the ensemble.

This function is a threadsafe replacement for centroid() with a vrna_ep_t input

The centroid is the structure with the minimal average distance to all other structures < 𝑑(𝑆) >=∑︀
(𝑖,𝑗)∈𝑆(1 − 𝑝𝑖𝑗) +

∑︀
(𝑖,𝑗)/∈𝑆 𝑝𝑖𝑗 Thus, the centroid is simply the structure containing all pairs with

𝑝𝑖𝑗 > 0.5 The distance of the centroid to the ensemble is written to the memory adressed by dist.

Parameters
• length – [in] The length of the sequence

• dist – [out] A pointer to the distance variable where the centroid distance will be
written to

• pl – [in] A pair list containing base pair probability information about the ensemble

Returns
The centroid structure of the ensemble in dot-bracket notation (NULL on error)

7.6. Suboptimals and Representative Structures 447

ViennaRNA, Release 2.6.4

char *vrna_centroid_from_probs(int length, double *dist, FLT_OR_DBL *probs)
#include <ViennaRNA/centroid.h> Get the centroid structure of the ensemble.

This function is a threadsafe replacement for centroid() with a probability array input

The centroid is the structure with the minimal average distance to all other structures < 𝑑(𝑆) >=∑︀
(𝑖,𝑗)∈𝑆(1 − 𝑝𝑖𝑗) +

∑︀
(𝑖,𝑗)/∈𝑆 𝑝𝑖𝑗 Thus, the centroid is simply the structure containing all pairs with

𝑝𝑖𝑗 > 0.5 The distance of the centroid to the ensemble is written to the memory adressed by dist.

Parameters
• length – [in] The length of the sequence

• dist – [out] A pointer to the distance variable where the centroid distance will be
written to

• probs – [in] An upper triangular matrix containing base pair probabilities (access via
iindx vrna_idx_row_wise())

Returns
The centroid structure of the ensemble in dot-bracket notation (NULL on error)

7.7 RNA-RNA Interaction

The function of an RNA molecule often depends on its interaction with other RNAs. The following routines
therefore allows one to predict structures formed by two RNA molecules upon hybridization.

7.7.1 Partition Function for Two Hybridized Sequences

To simplify the implementation the partition function computation is done internally in a null model that does not
include the duplex initiation energy, i.e. the entropic penalty for producing a dimer from two monomers). The
resulting free energies and pair probabilities are initially relative to that null model. In a second step the free
energies can be corrected to include the dimerization penalty, and the pair probabilities can be divided into the
conditional pair probabilities given that a re dimer is formed or not formed. See Bernhart et al. [2006] for further
details.

As for folding one RNA molecule, this computes the partition function of all possible structures and the base pair
probabilities. Uses the same global #pf_scale variable to avoid overflows.

After computing the partition functions of all possible dimeres one can compute the probabilities of base pairs, the
concentrations out of start concentrations and sofar and soaway.

Dimer formation is inherently concentration dependent. Given the free energies of the monomers A and B and
dimers AB, AA, and BB one can compute the equilibrium concentrations, given input concentrations of A and B,
see e.g. Dimitrov & Zuker (2004)

typedef struct vrna_dimer_conc_s vrna_dimer_conc_t
#include <ViennaRNA/concentrations.h> Typename for the data structure that stores the dimer concentra-
tions, vrna_dimer_conc_s, as required by vrna_pf_dimer_concentration()

typedef struct vrna_dimer_conc_s ConcEnt
#include <ViennaRNA/concentrations.h> Backward compatibility typedef for vrna_dimer_conc_s.

vrna_dimer_conc_t *vrna_pf_dimer_concentrations(double FcAB, double FcAA, double FcBB, double
FEA, double FEB, const double *startconc, const
vrna_exp_param_t *exp_params)

448 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

#include <ViennaRNA/concentrations.h> Given two start monomer concentrations a and b, compute the
concentrations in thermodynamic equilibrium of all dimers and the monomers.

This function takes an array ‘startconc’ of input concentrations with alternating entries for the initial concen-
trations of molecules A and B (terminated by two zeroes), then computes the resulting equilibrium concen-
trations from the free energies for the dimers. Dimer free energies should be the dimer-only free energies,
i.e. the FcAB entries from the vrna_dimer_pf_t struct.

Parameters
• FcAB – Free energy of AB dimer (FcAB entry)

• FcAA – Free energy of AA dimer (FcAB entry)

• FcBB – Free energy of BB dimer (FcAB entry)

• FEA – Free energy of monomer A

• FEB – Free energy of monomer B

• startconc – List of start concentrations [a0],[b0],[a1],[b1],. . . ,[an][bn],[0],[0]

• exp_params – The precomputed Boltzmann factors

Returns
vrna_dimer_conc_t array containing the equilibrium energies and start concentrations

double *vrna_equilibrium_constants(const double *dG_complexes, const double *dG_strands, const
unsigned int **A, double kT, size_t strands, size_t complexes)

#include <ViennaRNA/concentrations.h>

vrna_dimer_pf_t vrna_pf_co_fold(const char *seq, char *structure, vrna_ep_t **pl)
#include <ViennaRNA/part_func.h> Calculate partition function and base pair probabilities of nucleic
acid/nucleic acid dimers.

This simplified interface to vrna_pf_dimer() computes the partition function and, if required, base pair prob-
abilities for an RNA-RNA interaction using default options. Memory required for dynamic programming
(DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the recursively
filled matrices are not available any more for any post-processing.

See also:
vrna_pf_dimer()

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you require
other conditions than specified by the default model details, use vrna_pf_dimer(), and the data structure
vrna_fold_compound_t instead.

Parameters
• seq – Two concatenated RNA sequences with a delimiting ‘&’ in between

• structure – A pointer to the character array where position-wise pairing propensity
will be stored. (Maybe NULL)

• pl – A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)

Returns
vrna_dimer_pf_t structure containing a set of energies needed for concentration computa-
tions.

7.7. RNA-RNA Interaction 449

ViennaRNA, Release 2.6.4

typedef struct vrna_dimer_pf_s vrna_dimer_pf_t
#include <ViennaRNA/part_func.h> Typename for the data structure that stores the dimer partition func-
tions, vrna_dimer_pf_s, as returned by vrna_pf_dimer()

typedef struct vrna_dimer_pf_s cofoldF
#include <ViennaRNA/part_func.h> Backward compatibility typedef for vrna_dimer_pf_s.

int mirnatog
Toggles no intrabp in 2nd mol.

double F_monomer[2]
Free energies of the two monomers.

7.7.2 RNA-RNA interaction as a stepwise process

In this approach to cofolding the interaction between two RNA molecules is seen as a stepwise process. In a first
step, the target molecule has to adopt a structure in which a binding site is accessible. In a second step, the ligand
molecule will hybridize with a region accessible to an interaction. Consequently the algorithm is designed as a
two step process: The first step is the calculation of the probability that a region within the target is unpaired, or
equivalently, the calculation of the free energy needed to expose a region. In the second step we compute the free
energy of an interaction for every possible binding site.

Functions

pu_contrib *pf_unstru(char *sequence, int max_w)
#include <ViennaRNA/part_func_up.h> Calculate the partition function over all unpaired regions of a
maximal length.

You have to call function pf_fold() providing the same sequence before calling pf_unstru(). If you want
to calculate unpaired regions for a constrained structure, set variable ‘structure’ in function ‘pf_fold()’
to the constrain string. It returns a pu_contrib struct containing four arrays of dimension [i = 1 to
length(sequence)][j = 0 to u-1] containing all possible contributions to the probabilities of unpaired
regions of maximum length u. Each array in pu_contrib contains one of the contributions to the total
probability of being unpaired: The probability of being unpaired within an exterior loop is in array
pu_contrib->E, the probability of being unpaired within a hairpin loop is in array pu_contrib->H, the
probability of being unpaired within an interior loop is in array pu_contrib->I and probability of being
unpaired within a multi-loop is in array pu_contrib->M. The total probability of being unpaired is the
sum of the four arrays of pu_contrib.

This function frees everything allocated automatically. To free the output structure call
free_pu_contrib().

Parameters
• sequence –

• max_w –

Returns
interact *pf_interact(const char *s1, const char *s2, pu_contrib *p_c, pu_contrib *p_c2, int max_w,

char *cstruc, int incr3, int incr5)
#include <ViennaRNA/part_func_up.h> Calculates the probability of a local interaction between two
sequences.

450 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

The function considers the probability that the region of interaction is unpaired within ‘s1’ and ‘s2’.
The longer sequence has to be given as ‘s1’. The shorter sequence has to be given as ‘s2’. Function
pf_unstru() has to be called for ‘s1’ and ‘s2’, where the probabilities of being unpaired have to be given
in ‘p_c’ and ‘p_c2’, respectively. If you do not want to include the probabilities of being unpaired for
‘s2’ set ‘p_c2’ to NULL. If variable ‘cstruc’ is not NULL, constrained folding is done: The available
constrains for intermolecular interaction are: ‘.’ (no constrain), ‘x’ (the base has no intermolecular
interaction) and ‘|’ (the corresponding base has to be paired intermolecularily).

The parameter ‘w’ determines the maximal length of the interaction. The parameters ‘incr5’ and ‘incr3’
allows inclusion of unpaired residues left (‘incr5’) and right (‘incr3’) of the region of interaction in ‘s1’.
If the ‘incr’ options are used, function pf_unstru() has to be called with w=w+incr5+incr3 for the longer
sequence ‘s1’.

It returns a structure of type interact which contains the probability of the best local interaction includ-
ing residue i in Pi and the minimum free energy in Gi, where i is the position in sequence ‘s1’. The
member Gikjl of structure interact is the best interaction between region [k,i] k<i in longer sequence
‘s1’ and region [j,l] j<l in ‘s2’. Gikjl_wo is Gikjl without the probability of beeing unpaired.

Use free_interact() to free the returned structure, all other stuff is freed inside pf_interact().

Parameters
• s1 –

• s2 –

• p_c –

• p_c2 –

• max_w –

• cstruc –

• incr3 –

• incr5 –

Returns
void free_interact(interact *pin)

#include <ViennaRNA/part_func_up.h> Frees the output of function pf_interact().

int Up_plot(pu_contrib *p_c, pu_contrib *p_c_sh, interact *pint, char *ofile, int **unpaired_values, char
*select_contrib, char *head, unsigned int mode)

#include <ViennaRNA/part_func_up.h>

pu_contrib *get_pu_contrib_struct(unsigned int n, unsigned int w)
#include <ViennaRNA/part_func_up.h>

void free_pu_contrib_struct(pu_contrib *pu)
#include <ViennaRNA/part_func_up.h> Frees the output of function pf_unstru().

void free_pu_contrib(pu_contrib *pu)
#include <ViennaRNA/part_func_up.h>

7.7. RNA-RNA Interaction 451

ViennaRNA, Release 2.6.4

7.7.3 Concatenating RNA sequences

One approach to co-folding two RNAs consists of concatenating the two sequences and keeping track of the con-
catenation point in all energy evaluations. Correspondingly, many of the cofold() and co_pf_fold() routines take
one sequence string as argument and use the the global variable #cut_point to mark the concatenation point. Note
that while the RNAcofold program uses the & character to mark the chain break in its input.

7.7.4 RNA-RNA interaction as a Stepwise Process

In a second approach to co-folding two RNAs, cofolding is seen as a stepwise process. In the first step the probability
of an unpaired region is calculated and in a second step this probability of an unpaired region is multiplied with
the probability of an interaction between the two RNAs. This approach is implemented for the interaction between
a long target sequence and a short ligand RNA. Function pf_unstru() calculates the partition function over all
unpaired regions in the input sequence. Function pf_interact(), which calculates the partition function over all
possible interactions between two sequences, needs both sequence as separate strings as input.

7.7.5 RNA-RNA Interaction API

7.8 Classified Dynamic Programming Variants

Usually, thermodynamic properties using the basic recursions for Minimum Free Energy (MFE) Algorithms, Par-
tition Function and Equilibrium Properties, and so forth, are computed over the entire structure space. However,
sometimes it is desired to partition the structure space a priori and compute the above properties for each of the
resulting partitions. This approach directly leads to Classified Dynamic Programming.

7.8.1 Distance Based Partitioning of the Secondary Structure Space

The secondary structure space is divided into partitions according to the base pair distance to two given reference
structures and all relevant properties are calculated for each of the resulting partitions.

See also. . .
For further details, we refer to Lorenz et al. [2009]

Table of Contents

• General

• MFE Variants

• Partition Function Variants

• Stochastic Backtracking

452 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

General

MFE Variants

Compute the minimum free energy (MFE) and secondary structures for a partitioning of the secondary structure
space according to the base pair distance to two fixed reference structures basepair distance to two fixed reference
structures.

Defines

TwoDfold_solution

#include <ViennaRNA/2Dfold.h>

Functions

vrna_sol_TwoD_t *vrna_mfe_TwoD(vrna_fold_compound_t *fc, int distance1, int distance2)
#include <ViennaRNA/2Dfold.h> Compute MFE’s and representative for distance partitioning.

This function computes the minimum free energies and a representative secondary structure for each
distance class according to the two references specified in the datastructure ‘vars’. The maximum
basepair distance to each of both references may be set by the arguments ‘distance1’ and ‘distance2’,
respectively. If both distance arguments are set to ‘-1’, no restriction is assumed and the calculation is
performed for each distance class possible.

The returned list contains an entry for each distance class. If a maximum basepair distance to either of
the references was passed, an entry with k=l=-1 will be appended in the list, denoting the class where
all structures exceeding the maximum will be thrown into. The end of the list is denoted by an attribute
value of INF in the k-attribute of the list entry.

See also:
vrna_fold_compound_TwoD(), vrna_fold_compound_free(), vrna_pf_TwoD()
vrna_backtrack5_TwoD(), vrna_sol_TwoD_t, vrna_fold_compound_t

Parameters
• fc – The datastructure containing all precomputed folding attributes

• distance1 – maximum distance to reference1 (-1 means no restriction)

• distance2 – maximum distance to reference2 (-1 means no restriction)

Returns
A list of minimum free energies (and corresponding structures) for each distance class

char *vrna_backtrack5_TwoD(vrna_fold_compound_t *fc, int k, int l, unsigned int j)
#include <ViennaRNA/2Dfold.h> Backtrack a minimum free energy structure from a 5’ section of
specified length.

This function allows one to backtrack a secondary structure beginning at the 5’ end, a specified length
and residing in a specific distance class. If the argument ‘k’ gets a value of -1, the structure that is

7.8. Classified Dynamic Programming Variants 453

ViennaRNA, Release 2.6.4

backtracked is assumed to reside in the distance class where all structures exceeding the maximum
basepair distance specified in vrna_mfe_TwoD() belong to.

See also:
vrna_mfe_TwoD()

Note: The argument ‘vars’ must contain precalculated energy values in the energy matrices, i.e. a call
to vrna_mfe_TwoD() preceding this function is mandatory!

Parameters
• fc – The datastructure containing all precomputed folding attributes

• j – The length in nucleotides beginning from the 5’ end

• k – distance to reference1 (may be -1)

• l – distance to reference2

TwoDfold_vars *get_TwoDfold_variables(const char *seq, const char *structure1, const char
*structure2, int circ)

#include <ViennaRNA/2Dfold.h> Get a structure of type TwoDfold_vars prefilled with current global
settings.

This function returns a datastructure of type TwoDfold_vars. The data fields inside the TwoDfold_vars
are prefilled by global settings and all memory allocations necessary to start a computation are already
done for the convenience of the user

Deprecated:
Use the new API that relies on vrna_fold_compound_t and the corresponding functions
vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), and vrna_fold_compound_free() instead!

Note: Make sure that the reference structures are compatible with the sequence according to Watson-
Crick- and Wobble-base pairing

Parameters
• seq – The RNA sequence

• structure1 – The first reference structure in dot-bracket notation

• structure2 – The second reference structure in dot-bracket notation

• circ – A switch to indicate the assumption to fold a circular instead of linear RNA
(0=OFF, 1=ON)

Returns
A datastructure prefilled with folding options and allocated memory

void destroy_TwoDfold_variables(TwoDfold_vars *our_variables)
#include <ViennaRNA/2Dfold.h> Destroy a TwoDfold_vars datastructure without memory loss.

This function free’s all allocated memory that depends on the datastructure given.

454 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Deprecated:
Use the new API that relies on vrna_fold_compound_t and the corresponding functions
vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), and vrna_fold_compound_free() instead!

Parameters
• our_variables – A pointer to the datastructure to be destroyed

vrna_sol_TwoD_t *TwoDfoldList(TwoDfold_vars *vars, int distance1, int distance2)
#include <ViennaRNA/2Dfold.h> Compute MFE’s and representative for distance partitioning.

This function computes the minimum free energies and a representative secondary structure for each
distance class according to the two references specified in the datastructure ‘vars’. The maximum
basepair distance to each of both references may be set by the arguments ‘distance1’ and ‘distance2’,
respectively. If both distance arguments are set to ‘-1’, no restriction is assumed and the calculation is
performed for each distance class possible.

The returned list contains an entry for each distance class. If a maximum basepair distance to either of
the references was passed, an entry with k=l=-1 will be appended in the list, denoting the class where
all structures exceeding the maximum will be thrown into. The end of the list is denoted by an attribute
value of INF in the k-attribute of the list entry.

Deprecated:
Use the new API that relies on vrna_fold_compound_t and the corresponding functions
vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), and vrna_fold_compound_free() instead!

Parameters
• vars – the datastructure containing all predefined folding attributes

• distance1 – maximum distance to reference1 (-1 means no restriction)

• distance2 – maximum distance to reference2 (-1 means no restriction)

char *TwoDfold_backtrack_f5(unsigned int j, int k, int l, TwoDfold_vars *vars)
#include <ViennaRNA/2Dfold.h> Backtrack a minimum free energy structure from a 5’ section of
specified length.

This function allows one to backtrack a secondary structure beginning at the 5’ end, a specified length
and residing in a specific distance class. If the argument ‘k’ gets a value of -1, the structure that is
backtracked is assumed to reside in the distance class where all structures exceeding the maximum
basepair distance specified in TwoDfold() belong to.

Deprecated:
Use the new API that relies on vrna_fold_compound_t and the corresponding func-
tions vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), vrna_backtrack5_TwoD(), and
vrna_fold_compound_free() instead!

Note: The argument ‘vars’ must contain precalculated energy values in the energy matrices, i.e. a call
to TwoDfold() preceding this function is mandatory!

Parameters
• j – The length in nucleotides beginning from the 5’ end

• k – distance to reference1 (may be -1)

• l – distance to reference2

7.8. Classified Dynamic Programming Variants 455

ViennaRNA, Release 2.6.4

• vars – the datastructure containing all predefined folding attributes

vrna_sol_TwoD_t **TwoDfold(TwoDfold_vars *our_variables, int distance1, int distance2)
#include <ViennaRNA/2Dfold.h>

struct vrna_sol_TwoD_t
#include <ViennaRNA/2Dfold.h> Solution element returned from vrna_mfe_TwoD()

This element contains free energy and structure for the appropriate kappa (k), lambda (l) neighborhood
The datastructure contains two integer attributes ‘k’ and ‘l’ as well as an attribute ‘en’ of type float rep-
resenting the free energy in kcal/mol and an attribute ‘s’ of type char* containg the secondary structure
representative,

A value of INF in k denotes the end of a list

See also:
vrna_mfe_TwoD()

Public Members

int k
Distance to first reference.

int l
Distance to second reference.

float en
Free energy in kcal/mol.

char *s
MFE representative structure in dot-bracket notation.

struct TwoDfold_vars
#include <ViennaRNA/2Dfold.h> Variables compound for 2Dfold MFE folding.

Deprecated:
This data structure will be removed from the library soon! Use vrna_fold_compound_t
and the corresponding functions vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), and
vrna_fold_compound_free() instead!

Public Members

vrna_param_t *P
Precomputed energy parameters and model details.

int do_backtrack
Flag whether to do backtracing of the structure(s) or not.

456 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

char *ptype
Precomputed array of pair types.

char *sequence
The input sequence

short *S

short *S1
The input sequences in numeric form.

unsigned int maxD1
Maximum allowed base pair distance to first reference.

unsigned int maxD2
Maximum allowed base pair distance to second reference.

unsigned int *mm1
Maximum matching matrix, reference struct 1 disallowed.

unsigned int *mm2
Maximum matching matrix, reference struct 2 disallowed.

int *my_iindx
Index for moving in quadratic distancy dimensions.

double temperature

unsigned int *referenceBPs1
Matrix containing number of basepairs of reference structure1 in interval [i,j].

unsigned int *referenceBPs2
Matrix containing number of basepairs of reference structure2 in interval [i,j].

unsigned int *bpdist
Matrix containing base pair distance of reference structure 1 and 2 on interval [i,j].

short *reference_pt1

short *reference_pt2

int circ

int dangles

unsigned int seq_length

7.8. Classified Dynamic Programming Variants 457

ViennaRNA, Release 2.6.4

int ***E_F5

int ***E_F3

int ***E_C

int ***E_M

int ***E_M1

int ***E_M2

int **E_Fc

int **E_FcH

int **E_FcI

int **E_FcM

int **l_min_values

int **l_max_values

int *k_min_values

int *k_max_values

int **l_min_values_m

int **l_max_values_m

int *k_min_values_m

int *k_max_values_m

int **l_min_values_m1

int **l_max_values_m1

int *k_min_values_m1

int *k_max_values_m1

int **l_min_values_f

458 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int **l_max_values_f

int *k_min_values_f

int *k_max_values_f

int **l_min_values_f3

int **l_max_values_f3

int *k_min_values_f3

int *k_max_values_f3

int **l_min_values_m2

int **l_max_values_m2

int *k_min_values_m2

int *k_max_values_m2

int *l_min_values_fc

int *l_max_values_fc

int k_min_values_fc

int k_max_values_fc

int *l_min_values_fcH

int *l_max_values_fcH

int k_min_values_fcH

int k_max_values_fcH

int *l_min_values_fcI

int *l_max_values_fcI

int k_min_values_fcI

int k_max_values_fcI

7.8. Classified Dynamic Programming Variants 459

ViennaRNA, Release 2.6.4

int *l_min_values_fcM

int *l_max_values_fcM

int k_min_values_fcM

int k_max_values_fcM

int *E_F5_rem

int *E_F3_rem

int *E_C_rem

int *E_M_rem

int *E_M1_rem

int *E_M2_rem

int E_Fc_rem

int E_FcH_rem

int E_FcI_rem

int E_FcM_rem

vrna_fold_compound_t *compatibility

Partition Function Variants

Compute the partition function and stochastically sample secondary structures for a partitioning of the secondary
structure space according to the base pair distance to two fixed reference structures.

Functions

vrna_sol_TwoD_pf_t *vrna_pf_TwoD(vrna_fold_compound_t *fc, int maxDistance1, int maxDistance2)
#include <ViennaRNA/2Dpfold.h> Compute the partition function for all distance classes.

This function computes the partition functions for all distance classes according the two reference struc-
tures specified in the datastructure ‘vars’. Similar to vrna_mfe_TwoD() the arguments maxDistance1
and maxDistance2 specify the maximum distance to both reference structures. A value of ‘-1’ in ei-
ther of them makes the appropriate distance restrictionless, i.e. all basepair distancies to the reference
are taken into account during computation. In case there is a restriction, the returned solution con-
tains an entry where the attribute k=l=-1 contains the partition function for all structures exceeding the
restriction. A value of INF in the attribute ‘k’ of the returned list denotes the end of the list

460 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_fold_compound_TwoD(), vrna_fold_compound_free(), vrna_fold_compound
vrna_sol_TwoD_pf_t

Parameters
• fc – The datastructure containing all necessary folding attributes and matrices

• maxDistance1 – The maximum basepair distance to reference1 (may be -1)

• maxDistance2 – The maximum basepair distance to reference2 (may be -1)

Returns
A list of partition funtions for the corresponding distance classes

struct vrna_sol_TwoD_pf_t
#include <ViennaRNA/2Dpfold.h> Solution element returned from vrna_pf_TwoD()

This element contains the partition function for the appropriate kappa (k), lambda (l) neighborhood The
datastructure contains two integer attributes ‘k’ and ‘l’ as well as an attribute ‘q’ of type FLT_OR_DBL

A value of INF in k denotes the end of a list

See also:
vrna_pf_TwoD()

Public Members

int k
Distance to first reference.

int l
Distance to second reference.

FLT_OR_DBL q
partition function

Stochastic Backtracking

Functions related to stochastic backtracking from a specified distance class.

7.8. Classified Dynamic Programming Variants 461

ViennaRNA, Release 2.6.4

Functions

char *vrna_pbacktrack_TwoD(vrna_fold_compound_t *fc, int d1, int d2)
#include <ViennaRNA/2Dpfold.h> Sample secondary structure representatives from a set of distance
classes according to their Boltzmann probability.

If the argument ‘d1’ is set to ‘-1’, the structure will be backtracked in the distance class where all
structures exceeding the maximum basepair distance to either of the references reside.

See also:
vrna_pf_TwoD()

Parameters
• fc – [inout] The vrna_fold_compound_t datastructure containing all necessary folding

attributes and matrices

• d1 – [in] The distance to reference1 (may be -1)

• d2 – [in] The distance to reference2

Pre
The argument ‘vars’ must contain precalculated partition function matrices, i.e. a call to
vrna_pf_TwoD() preceding this function is mandatory!

Returns
A sampled secondary structure in dot-bracket notation

char *vrna_pbacktrack5_TwoD(vrna_fold_compound_t *fc, int d1, int d2, unsigned int length)
#include <ViennaRNA/2Dpfold.h> Sample secondary structure representatives with a specified length
from a set of distance classes according to their Boltzmann probability.

This function does essentially the same as vrna_pbacktrack_TwoD() with the only difference that par-
tial structures, i.e. structures beginning from the 5’ end with a specified length of the sequence, are
backtracked

See also:
vrna_pbacktrack_TwoD(), vrna_pf_TwoD()

Note: This function does not work (since it makes no sense) for circular RNA sequences!

Parameters
• fc – [inout] The vrna_fold_compound_t datastructure containing all necessary folding

attributes and matrices

• d1 – [in] The distance to reference1 (may be -1)

• d2 – [in] The distance to reference2

• length – [in] The length of the structure beginning from the 5’ end

Pre
The argument ‘vars’ must contain precalculated partition function matrices, i.e. a call to
vrna_pf_TwoD() preceding this function is mandatory!

Returns
A sampled secondary structure in dot-bracket notation

462 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.8.2 Density of States

Variables

int density_of_states[MAXDOS + 1]
The Density of States.

This array contains the density of states for an RNA sequences after a call to subopt_par(), subopt() or
subopt_circ().

See also:
subopt_par(), subopt(), subopt_circ()

Pre
Call one of the functions subopt_par(), subopt() or subopt_circ() prior accessing the con-
tents of this array

group Classified Dynamic Programming Variants

7.9 Inverse Folding (Design)

RNA sequence design.

Functions

float inverse_fold(char *start, const char *target)
#include <ViennaRNA/inverse.h> Find sequences with predefined structure.

This function searches for a sequence with minimum free energy structure provided in the parameter
‘target’, starting with sequence ‘start’. It returns 0 if the search was successful, otherwise a structure
distance in terms of the energy difference between the search result and the actual target ‘target’ is
returned. The found sequence is returned in ‘start’. If give_up is set to 1, the function will return as
soon as it is clear that the search will be unsuccessful, this speeds up the algorithm if you are only
interested in exact solutions.

Parameters
• start – The start sequence

• target – The target secondary structure in dot-bracket notation

Returns
The distance to the target in case a search was unsuccessful, 0 otherwise

float inverse_pf_fold(char *start, const char *target)
#include <ViennaRNA/inverse.h> Find sequence that maximizes probability of a predefined structure.

This function searches for a sequence with maximum probability to fold into the provided structure
‘target’ using the partition function algorithm. It returns −𝑘𝑇 · log(𝑝) where 𝑝 is the frequency of
‘target’ in the ensemble of possible structures. This is usually much slower than inverse_fold().

7.9. Inverse Folding (Design) 463

ViennaRNA, Release 2.6.4

Parameters
• start – The start sequence

• target – The target secondary structure in dot-bracket notation

Returns
The distance to the target in case a search was unsuccessful, 0 otherwise

Variables

char *symbolset
This global variable points to the allowed bases, initially “AUGC”. It can be used to design sequences
from reduced alphabets.

float final_cost
when to stop inverse_pf_fold()

int give_up
default 0: try to minimize structure distance even if no exact solution can be found

int inv_verbose
print out substructure on which inverse_fold() fails

7.10 Experimental Structure Probing Data

7.10.1 SHAPE Reactivity Data

Incorporate SHAPE reactivity structure probing data into the folding recursions by means of soft constraints.

Details for our implementation to incorporate SHAPE reactivity data to guide secondary structure prediction can
be found in Lorenz et al. [2016].

Functions

void vrna_constraints_add_SHAPE(vrna_fold_compound_t *fc, const char *shape_file, const char
*shape_method, const char *shape_conversion, int verbose,
unsigned int constraint_type)

#include <ViennaRNA/constraints/SHAPE.h>

void vrna_constraints_add_SHAPE_ali(vrna_fold_compound_t *fc, const char *shape_method, const
char **shape_files, const int *shape_file_association, int
verbose, unsigned int constraint_type)

#include <ViennaRNA/constraints/SHAPE.h>

int vrna_sc_add_SHAPE_deigan(vrna_fold_compound_t *fc, const double *reactivities, double m,
double b, unsigned int options)

#include <ViennaRNA/constraints/SHAPE.h> Add SHAPE reactivity data as soft constraints (Deigan
et al. method)

This approach of SHAPE directed RNA folding uses the simple linear ansatz

464 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

∆𝐺SHAPE(𝑖) = 𝑚 ln(SHAPE reactivity(𝑖) + 1) + 𝑏

to convert SHAPE reactivity values to pseudo energies whenever a nucleotide 𝑖 contributes to a stacked
pair. A positive slope𝑚 penalizes high reactivities in paired regions, while a negative intercept 𝑏 results
in a confirmatory `bonus’ free energy for correctly predicted base pairs. Since the energy evaluation of
a base pair stack involves two pairs, the pseudo energies are added for all four contributing nucleotides.
Consequently, the energy term is applied twice for pairs inside a helix and only once for pairs adja-
cent to other structures. For all other loop types the energy model remains unchanged even when the
experimental data highly disagrees with a certain motif.

SWIG Wrapper Notes:
This function is attached as method sc_add_SHAPE_deigan() to objects of type
fold_compound. See, e.g. RNA.fold_compound.sc_add_SHAPE_deigan() in the Python
API .

See also:
vrna_sc_remove(), vrna_sc_add_SHAPE_zarringhalam(), vrna_sc_minimize_pertubation()

Note: For further details, we refer to Deigan et al. [2009] .

Parameters
• fc – The vrna_fold_compound_t the soft constraints are associated with

• reactivities – A vector of normalized SHAPE reactivities

• m – The slope of the conversion function

• b – The intercept of the conversion function

• options – The options flag indicating how/where to store the soft constraints

Returns
1 on successful extraction of the method, 0 on errors

int vrna_sc_add_SHAPE_deigan_ali(vrna_fold_compound_t *fc, const char **shape_files, const int
*shape_file_association, double m, double b, unsigned int
options)

#include <ViennaRNA/constraints/SHAPE.h> Add SHAPE reactivity data from files as soft constraints
for consensus structure prediction (Deigan et al. method)

SWIG Wrapper Notes:
This function is attached as method sc_add_SHAPE_deigan_ali() to objects of type
fold_compound. See, e.g. RNA.fold_compound.sc_add_SHAPE_deigan_ali() in the
Python API .

Parameters
• fc – The vrna_fold_compound_t the soft constraints are associated with

• shape_files – A set of filenames that contain normalized SHAPE reactivity data

• shape_file_association – An array of integers that associate the files with se-
quences in the alignment

• m – The slope of the conversion function

7.10. Experimental Structure Probing Data 465

ViennaRNA, Release 2.6.4

• b – The intercept of the conversion function

• options – The options flag indicating how/where to store the soft constraints

Returns
1 on successful extraction of the method, 0 on errors

int vrna_sc_add_SHAPE_zarringhalam(vrna_fold_compound_t *fc, const double *reactivities, double
b, double default_value, const char *shape_conversion,
unsigned int options)

#include <ViennaRNA/constraints/SHAPE.h> Add SHAPE reactivity data as soft constraints (Zarring-
halam et al. method)

This method first converts the observed SHAPE reactivity of nucleotide 𝑖 into a probability 𝑞𝑖 that
position 𝑖 is unpaired by means of a non-linear map. Then pseudo-energies of the form

∆𝐺SHAPE(𝑥, 𝑖) = 𝛽 |𝑥𝑖 − 𝑞𝑖|

are computed, where 𝑥𝑖 = 0 if position 𝑖 is unpaired and 𝑥𝑖 = 1 if 𝑖 is paired in a given secondary
structure. The parameter 𝛽 serves as scaling factor. The magnitude of discrepancy between prediction
and experimental observation is represented by |𝑥𝑖 − 𝑞𝑖|.

SWIG Wrapper Notes:
This function is attached as method sc_add_SHAPE_zarringhalam() to objects of type
fold_compound. See, e.g. RNA.fold_compound.sc_add_SHAPE_zarringhalam() in the
Python API .

See also:
vrna_sc_remove(), vrna_sc_add_SHAPE_deigan(), vrna_sc_minimize_pertubation()

Note: For further details, we refer to Zarringhalam et al. [2012]

Parameters
• fc – The vrna_fold_compound_t the soft constraints are associated with

• reactivities – A vector of normalized SHAPE reactivities

• b – The scaling factor 𝛽 of the conversion function

• default_value – The default value for a nucleotide where reactivity data is missing
for

• shape_conversion – A flag that specifies how to convert reactivities to probabilities

• options – The options flag indicating how/where to store the soft constraints

Returns
1 on successful extraction of the method, 0 on errors

int vrna_sc_SHAPE_to_pr(const char *shape_conversion, double *values, int length, double
default_value)

#include <ViennaRNA/constraints/SHAPE.h> Convert SHAPE reactivity values to probabilities for
being unpaired.

This function parses the informations from a given file and stores the result in the preallocated string
sequence and the FLT_OR_DBL array values.

466 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_file_SHAPE_read()

Parameters
• shape_conversion – String definining the method used for the conversion process

• values – Pointer to an array of SHAPE reactivities

• length – Length of the array of SHAPE reactivities

• default_value – Result used for position with invalid/missing reactivity values

7.10.2 Generate Soft Constraints from Data

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing
probabilities and the amount of neccessary adjustments.

Defines

VRNA_OBJECTIVE_FUNCTION_QUADRATIC

#include <ViennaRNA/perturbation_fold.h> Use the sum of squared aberrations as objective function.

𝐹 (⃗𝜖) =
∑︀𝑛

𝑖=1
𝜖2𝑖
𝜏2 +

∑︀𝑛
𝑖=1

(𝑝𝑖 (⃗𝜖)−𝑞𝑖)
2

𝜎2 → 𝑚𝑖𝑛

VRNA_OBJECTIVE_FUNCTION_ABSOLUTE

#include <ViennaRNA/perturbation_fold.h> Use the sum of absolute aberrations as objective function.

𝐹 (⃗𝜖) =
∑︀𝑛

𝑖=1
|𝜖𝑖|
𝜏2 +

∑︀𝑛
𝑖=1

|𝑝𝑖 (⃗𝜖)−𝑞𝑖|
𝜎2 → 𝑚𝑖𝑛

VRNA_MINIMIZER_DEFAULT

#include <ViennaRNA/perturbation_fold.h> Use a custom implementation of the gradient descent al-
gorithm to minimize the objective function.

VRNA_MINIMIZER_CONJUGATE_FR

#include <ViennaRNA/perturbation_fold.h> Use the GNU Scientific Library implementation of the
Fletcher-Reeves conjugate gradient algorithm to minimize the objective function.

Please note that this algorithm can only be used when the GNU Scientific Library is available on your
system

VRNA_MINIMIZER_CONJUGATE_PR

#include <ViennaRNA/perturbation_fold.h> Use the GNU Scientific Library implementation of the
Polak-Ribiere conjugate gradient algorithm to minimize the objective function.

Please note that this algorithm can only be used when the GNU Scientific Library is available on your
system

VRNA_MINIMIZER_VECTOR_BFGS

#include <ViennaRNA/perturbation_fold.h> Use the GNU Scientific Library implementation of the
vector Broyden-Fletcher-Goldfarb-Shanno algorithm to minimize the objective function.

Please note that this algorithm can only be used when the GNU Scientific Library is available on your
system

7.10. Experimental Structure Probing Data 467

ViennaRNA, Release 2.6.4

VRNA_MINIMIZER_VECTOR_BFGS2

#include <ViennaRNA/perturbation_fold.h> Use the GNU Scientific Library implementation of the
vector Broyden-Fletcher-Goldfarb-Shanno algorithm to minimize the objective function.

Please note that this algorithm can only be used when the GNU Scientific Library is available on your
system

VRNA_MINIMIZER_STEEPEST_DESCENT

#include <ViennaRNA/perturbation_fold.h> Use the GNU Scientific Library implementation of the
steepest descent algorithm to minimize the objective function.

Please note that this algorithm can only be used when the GNU Scientific Library is available on your
system

Typedefs

typedef void (*progress_callback)(int iteration, double score, double *epsilon)
#include <ViennaRNA/perturbation_fold.h> Callback for following the progress of the minimization
process.

Param iteration
The number of the current iteration

Param score
The score of the objective function

Param epsilon
The perturbation vector yielding the reported score

Functions

void vrna_sc_minimize_pertubation(vrna_fold_compound_t *fc, const double *q_prob_unpaired, int
objective_function, double sigma_squared, double tau_squared,
int algorithm, int sample_size, double *epsilon, double
initialStepSize, double minStepSize, double minImprovement,
double minimizerTolerance, progress_callback callback)

#include <ViennaRNA/perturbation_fold.h> Find a vector of perturbation energies that minimizes the
discripancies between predicted and observed pairing probabilities and the amount of neccessary ad-
justments.

Use an iterative minimization algorithm to find a vector of perturbation energies whose incorporation
as soft constraints shifts the predicted pairing probabilities closer to the experimentally observed prob-
abilities. The algorithm aims to minimize an objective function that penalizes discripancies between
predicted and observed pairing probabilities and energy model adjustments, i.e. an appropriate vector
of perturbation energies satisfies

𝐹 (⃗𝜖) =
∑︁
𝜇

𝜖2𝜇
𝜏2

+

𝑛∑︁
𝑖=1

(𝑝𝑖(⃗𝜖) − 𝑞𝑖)
2

𝜎2
→ min .

An initialized fold compound and an array containing the observed probability for each nucleotide
to be unbound are required as input data. The parameters objective_function, sigma_squared and
tau_squared are responsible for adjusting the aim of the objective function. Dependend on which type
of objective function is selected, either squared or absolute aberrations are contributing to the objective
function. The ratio of the parameters sigma_squared and tau_squared can be used to adjust the algo-
rithm to find a solution either close to the thermodynamic prediction (sigma_squared >> tau_squared)

468 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

or close to the experimental data (tau_squared >> sigma_squared). The minimization can be performed
by makeing use of a custom gradient descent implementation or using one of the minimizing algorithms
provided by the GNU Scientific Library. All algorithms require the evaluation of the gradient of the
objective function, which includes the evaluation of conditional pairing probabilites. Since an exact
evaluation is expensive, the probabilities can also be estimated from sampling by setting an appropriate
sample size. The found vector of perturbation energies will be stored in the array epsilon. The progress
of the minimization process can be tracked by implementing and passing a callback function.

See also:
For further details we refer to Washietl et al. [2012] .

Parameters
• fc – Pointer to a fold compound

• q_prob_unpaired – Pointer to an array containing the probability to be unpaired for
each nucleotide

• objective_function – The type of objective function to
be used (VRNA_OBJECTIVE_FUNCTION_QUADRATIC /
VRNA_OBJECTIVE_FUNCTION_LINEAR)

• sigma_squared – A factor used for weighting the objective function. More weight
on this factor will lead to a solution close to the null vector.

• tau_squared – A factor used for weighting the objective function. More weight on
this factor will lead to a solution close to the data provided in q_prob_unpaired.

• algorithm – The minimization algorithm (VRNA_MINIMIZER_*)

• sample_size – The number of sampled sequences used for estimating the pairing
probabilities. A value <= 0 will lead to an exact evaluation.

• epsilon – A pointer to an array used for storing the calculated vector of perturbation
energies

• callback – A pointer to a callback function used for reporting the current minimiza-
tion progress

Include Experimental Structure Probing Data to Guide Structure Predictions.

7.11 Ligands Binding to RNA Structures

In our library, we provide two different ways to incorporate binding of small molecules and proteins to specific
RNA structures:

• Ligands Binding to Unstructured Domains, and

• Incorporating Ligands Binding to Specific Sequence/Structure Motifs

The first approach is implemented as an actual extension of the folding grammar. It adds auxiliary derivation rules
for each case when consecutive unpaired nucleotides are evaluated. Therefore, this model is applicable to ligand
binding to any loop context.

The second approach, on the other hand, uses the soft-constraints feature to change the energy evaluation of hairpin-
or interior-loops. Hence, it can only be appleid when a ligand binds to a hairpin-like, or interior-loop like motif.

7.11. Ligands Binding to RNA Structures 469

ViennaRNA, Release 2.6.4

7.11.1 Ligands Binding to Unstructured Domains

Add ligand binding to loop regions using the Unstructured Domains feature.

Sometime, certain ligands, like single strand binding (SSB) proteins, compete with intramolecular base pairing of
the RNA. In situations, where the dissociation constant of the ligand is known and the ligand binds to a consecu-
tive stretch of single-stranded nucleotides we can use the Unstructured Domains functionality to extend the RNA
folding grammar. This module provides a convenience default implementation that covers most of the application
scenarios.

The function vrna_ud_add_motif() attaches a ligands sequence motif and corresponding binding free energy
to the list of known ligand motifs within the domains_up attribute of vrna_fold_compound_t. The first call to
this function initializes the Unstructured Domains feature with our default implementation. Subsequent calls of
secondary structure prediction algorithms with the modified vrna_fold_compound_t then directly include the
competition of the ligand with regules base pairing. Since we utilize the unstructured domain extension, The ligand
binding model can be removed again using the vrna_ud_remove() function.

7.11.2 Incorporating Ligands Binding to Specific Sequence/Structure Motifs

Ligand binding to specific hairpin/interior loop like motifs using the Soft Constraints feature.

Typedefs

typedef struct vrna_sc_motif_s vrna_sc_motif_t
#include <ViennaRNA/constraints/ligand.h> Type definition for soft constraint motif.

Functions

int vrna_sc_add_hi_motif(vrna_fold_compound_t *fc, const char *seq, const char *structure,
FLT_OR_DBL energy, unsigned int options)

#include <ViennaRNA/constraints/ligand.h> Add soft constraints for hairpin or interior loop binding
motif.

Here is an example that adds a theophylline binding motif. Free energy contribution is derived from
𝑘𝑑 = 0.1𝜇𝑀 , taken from Jenison et al. 1994. At 1𝑀 concentration the corresponding binding free
energy amounts to −9.93 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙.

470 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

vrna_sc_add_hi_motif(fc,
"GAUACCAG&CCCUUGGCAGC",
"(...((((&)...)))...)",
-9.93, VRNA_OPTION_DEFAULT);

SWIG Wrapper Notes:
This function is attached as method sc_add_hi_motif() to objects of type fold_compound.
The last parameter is optional an defaults to options = VRNA_OPTION_DEFAULT . See, e.g.
RNA.fold_compound.sc_add_hi_motif() in the Python API .

Parameters
• fc – The vrna_fold_compound_t the motif is applied to

• seq – The sequence motif (may be interspaced by ‘&’ character

• structure – The structure motif (may be interspaced by ‘&’ character

• energy – The free energy of the motif (e.g. binding free energy)

• options – Options

Returns
non-zero value if application of the motif using soft constraints was successful

vrna_sc_motif_t *vrna_sc_ligand_detect_motifs(vrna_fold_compound_t *fc, const char *structure)
#include <ViennaRNA/constraints/ligand.h>

vrna_sc_motif_t *vrna_sc_ligand_get_all_motifs(vrna_fold_compound_t *fc)
#include <ViennaRNA/constraints/ligand.h>

struct vrna_sc_motif_s

7.11. Ligands Binding to RNA Structures 471

ViennaRNA, Release 2.6.4

Public Members

int i

int j

int k

int l

int number

group Ligands Binding to RNA Structures
Simple Extensions to Model Ligand Binding to RNA Structures.

7.12 Structure Modules and Pseudoknots

7.12.1 Pseudoknots

Implementations to predict pseudoknotted structures.

Typedefs

typedef int (*vrna_pk_plex_score_f)(const short *pt, int start_5, int end_5, int start_3, int end_3, void
*data)

#include <ViennaRNA/pk_plex.h> Pseudoknot loop scoring function prototype.

This function is used to evaluate a formed pseudoknot (PK) interaction in vrna_pk_plex(). It is sup-
posed to take a PK-free secondary structure as input and coordinates of an additional interaction site.
From this data, the energy (penalty) to score the PK loop is derived and returned in decakal/mol. Upon
passing zero in any of the interaction site coordinates (start_5, end_5, start_3, end_3) or a NULL
pointer in pt, the function must return a PK loop score. This minimum PK loop score is used in the
first phase of the heuristic implemented in vrna_pk_plex() to assess whether a particular interaction is
further taken into account in a later, more thorough evaluation step.

The simplest scoring function would simply return a constant score for any PK loop, no matter what
type of loop is formed and how large the loop is. This is the default if vrna_pk_plex_opt_defaults() or
vrna_pk_plex_opt() is used to generate options for vrna_pk_plex().

See also:
vrna_pk_plex_opt_fun(), vrna_pk_plex()

Param pt
The secondary structure (without pseudoknot) in pair table notation

Param start_5
The start coordinate of the 5’ site of the pseudoknot interaction

472 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Param end_5
The end coordinate of the 5’ site of the pseudoknot interaction

Param start_3
The start coordinate of the 3’ site of the pseudoknot interaction

Param end_3
The end coordinate of the 3’ site of the pseudoknot interaction

Param data
An arbitrary data structure passed from the calling function

Return
The energy (penalty) of the resulting pseudoknot

int() vrna_callback_pk_plex_score (const short *pt, int start_5, int end_5,
int start_3, int end_3, void *data)

#include <ViennaRNA/pk_plex.h>

typedef struct vrna_pk_plex_option_s *vrna_pk_plex_opt_t
#include <ViennaRNA/pk_plex.h> RNA PKplex options object.

See also:
vrna_pk_plex_opt_defaults(), vrna_pk_plex_opt(), vrna_pk_plex_opt_fun(), vrna_pk_plex(),
vrna_pk_plex_score_f

typedef struct vrna_pk_plex_result_s vrna_pk_plex_t
#include <ViennaRNA/pk_plex.h> Convenience typedef for results of the RNA PKplex prediction.

See also:
#vrna_pk_plex_results_s, vrna_pk_plex()

Functions

vrna_pk_plex_t *vrna_pk_plex(vrna_fold_compound_t *fc, const int **accessibility,
vrna_pk_plex_opt_t options)

#include <ViennaRNA/pk_plex.h> Predict Pseudoknot interactions in terms of a two-step folding pro-
cess.

Computes simple pseudoknot interactions according to the PKplex algorithm. This simple heuristic
first compiles a list of potential interaction sites that may form a pseudoknot. The resulting candidate
interactions are then fixed and an PK-free MFE structure for the remainder of the sequence is computed.

The accessibility argument is a list of opening energies for potential interaction sites. It is used
in the first step of the algorithm to identify potential interactions. Upon passing NULL, the opening
energies are determined automatically based on the current model settings.

Depending on the options, the function can return the MFE (incl. PK loops) or suboptimal structures
within an energy band around the MFE. The PK loop is internally scored by a scoring function that in
the simplest cases assigns a constant value for each PK loop. More complicated scoring functions can
be passed as well, see vrna_pk_plex_score_f and vrna_pk_plex_opt_fun().

The function returns NULL on any error. Otherwise, a list of structures and interaction coordinates
with corresponding energy contributions is returned. If no PK-interaction that satisfies the options is
found, the list only consists of the PK-free MFE structure.

Parameters

7.12. Structure Modules and Pseudoknots 473

ViennaRNA, Release 2.6.4

• fc – fold compound with the input sequence and model settings

• accessibility – An array of opening energies for the implemented heuristic (maybe
NULL)

• options – An vrna_pk_plex_opt_t options data structure that determines the algo-
rithm parameters

Returns
A list of potentially pseudoknotted structures (Last element in the list indicated by NULL
value in vrna_pk_plex_result_s.structure)

int **vrna_pk_plex_accessibility(const char *sequence, unsigned int unpaired, double cutoff)
#include <ViennaRNA/pk_plex.h> Obtain a list of opening energies suitable for PKplex computations.

See also:
vrna_pk_plex()

Parameters
• sequence – The RNA sequence

• unpaired – The maximum number of unpaired nucleotides, i.e. length of interaction

• cutoff – A cutoff value for unpaired probabilities

Returns
Opening energies as required for vrna_pk_plex()

vrna_pk_plex_opt_t vrna_pk_plex_opt_defaults(void)
#include <ViennaRNA/pk_plex.h> Default options for PKplex algorithm.

See also:
vrna_pk_plex(), vrna_pk_plex_opt(), vrna_pk_plex_opt_fun()

Returns
An options data structure suitabe for PKplex computations

vrna_pk_plex_opt_t vrna_pk_plex_opt(unsigned int delta, unsigned int max_interaction_length, int
pk_penalty)

#include <ViennaRNA/pk_plex.h> Simple options for PKplex algorithm.

See also:
vrna_pk_plex(), vrna_pk_plex_opt_defaults(), vrna_pk_plex_opt_fun()

Parameters
• delta – Size of energy band around MFE for suboptimal results in dekacal/mol

• max_interaction_length – Maximum length of interaction

• pk_penalty – Energy constant to score the PK forming loop

Returns
An options data structure suitabe for PKplex computations

474 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

vrna_pk_plex_opt_t vrna_pk_plex_opt_fun(unsigned int delta, unsigned int max_interaction_length,
vrna_pk_plex_score_f scoring_function, void
*scoring_data)

#include <ViennaRNA/pk_plex.h> Simple options for PKplex algorithm.

See also:
vrna_pk_plex(), vrna_pk_plex_opt_defaults(), vrna_pk_plex_opt(), vrna_pk_plex_score_f

Parameters
• delta – Size of energy band around MFE for suboptimal results in dekacal/mol

• max_interaction_length – Maximum length of interaction

• scoring_function – Energy evaluating function to score the PK forming loop

• scoring_data – An arbitrary data structure passed to the scoring function (maybe
NUL)

Returns
An options data structure suitabe for PKplex computations

struct vrna_pk_plex_result_s
#include <ViennaRNA/pk_plex.h> A result of the RNA PKplex interaction prediction.

See also:
vrna_pk_plex_t

Public Members

char *structure
Secondary Structure in dot-bracket notation.

double energy
Net free energy in kcal/mol.

double dGpk
Free energy of PK loop in kcal/mol.

double dGint
Free energy of PK forming duplex interaction.

double dG1
Opening energy for the 5’ interaction site used in the heuristic.

double dG2
Opening energy for the 3’ interaction site used in the heuristic.

unsigned int start_5
Start coordinate of the 5’ interaction site.

7.12. Structure Modules and Pseudoknots 475

ViennaRNA, Release 2.6.4

unsigned int end_5
End coordinate of the 5’ interaction site.

unsigned int start_3
Start coordinate of the 3’ interaction site.

unsigned int end_3
End coordinate of the 3’ interaction site.

7.12.2 G-Quadruplexes

Various functions related to G-quadruplex computations.

Functions

int E_gquad(int L, int l[3], vrna_param_t *P)
#include <ViennaRNA/gquad.h>

FLT_OR_DBL exp_E_gquad(int L, int l[3], vrna_exp_param_t *pf)
#include <ViennaRNA/gquad.h>

void E_gquad_ali_en(int i, int L, int l[3], const short **S, unsigned int **a2s, unsigned int n_seq,
vrna_param_t *P, int en[2])

#include <ViennaRNA/gquad.h>

int *get_gquad_matrix(short *S, vrna_param_t *P)
#include <ViennaRNA/gquad.h> Get a triangular matrix prefilled with minimum free energy contri-
butions of G-quadruplexes.

At each position ij in the matrix, the minimum free energy of any G-quadruplex delimited by i and j is
stored. If no G-quadruplex formation is possible, the matrix element is set to INF. Access the elements
in the matrix via matrix[indx[j]+i]. To get the integer array indx see get_jindx().

See also:
get_jindx(), encode_sequence()

Parameters
• S – The encoded sequence

• P – A pointer to the data structure containing the precomputed energy contributions

Returns
A pointer to the G-quadruplex contribution matrix

int *get_gquad_ali_matrix(unsigned int n, short *S_cons, short **S, unsigned int **a2s, int n_seq,
vrna_param_t *P)

#include <ViennaRNA/gquad.h>

FLT_OR_DBL *get_gquad_pf_matrix(short *S, FLT_OR_DBL *scale, vrna_exp_param_t *pf)
#include <ViennaRNA/gquad.h>

476 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

FLT_OR_DBL *get_gquad_pf_matrix_comparative(unsigned int n, short *S_cons, short **S,
unsigned int **a2s, FLT_OR_DBL *scale,
unsigned int n_seq, vrna_exp_param_t *pf)

#include <ViennaRNA/gquad.h>

int **get_gquad_L_matrix(short *S, int start, int maxdist, int n, int **g, vrna_param_t *P)
#include <ViennaRNA/gquad.h>

void vrna_gquad_mx_local_update(vrna_fold_compound_t *fc, int start)
#include <ViennaRNA/gquad.h>

void get_gquad_pattern_mfe(short *S, int i, int j, vrna_param_t *P, int *L, int l[3])
#include <ViennaRNA/gquad.h>

void get_gquad_pattern_exhaustive(short *S, int i, int j, vrna_param_t *P, int *L, int *l, int
threshold)

#include <ViennaRNA/gquad.h>

void get_gquad_pattern_pf(short *S, int i, int j, vrna_exp_param_t *pf, int *L, int l[3])
#include <ViennaRNA/gquad.h>

plist *get_plist_gquad_from_pr(short *S, int gi, int gj, FLT_OR_DBL *G, FLT_OR_DBL *probs,
FLT_OR_DBL *scale, vrna_exp_param_t *pf)

#include <ViennaRNA/gquad.h>

plist *get_plist_gquad_from_pr_max(short *S, int gi, int gj, FLT_OR_DBL *G, FLT_OR_DBL
*probs, FLT_OR_DBL *scale, int *L, int l[3],
vrna_exp_param_t *pf)

#include <ViennaRNA/gquad.h>

plist *get_plist_gquad_from_db(const char *structure, float pr)
#include <ViennaRNA/gquad.h>

plist *vrna_get_plist_gquad_from_pr(vrna_fold_compound_t *fc, int gi, int gj)
#include <ViennaRNA/gquad.h>

plist *vrna_get_plist_gquad_from_pr_max(vrna_fold_compound_t *fc, int gi, int gj, int *Lmax, int
lmax[3])

#include <ViennaRNA/gquad.h>

int get_gquad_count(short *S, int i, int j)
#include <ViennaRNA/gquad.h>

int get_gquad_layer_count(short *S, int i, int j)
#include <ViennaRNA/gquad.h>

void get_gquad_pattern_mfe_ali(short **S, unsigned int **a2s, short *S_cons, int n_seq, int i, int j,
vrna_param_t *P, int *L, int l[3])

#include <ViennaRNA/gquad.h>

int parse_gquad(const char *struc, int *L, int l[3])
#include <ViennaRNA/gquad.h> given a dot-bracket structure (possibly) containing gquads encoded
by ‘+’ signs, find first gquad, return end position or 0 if none found Upon return L and l[] con-
tain the number of stacked layers, as well as the lengths of the linker regions. To parse a string
with many gquads, call parse_gquad repeatedly e.g. end1 = parse_gquad(struc, &L, l); . . . ; end2
= parse_gquad(struc+end1, &L, l); end2+=end1; . . . ; end3 = parse_gquad(struc+end2, &L, l);
end3+=end2; . . . ;

static int backtrack_GQuad_IntLoop(int c, int i, int j, int type, short *S, int *ggg, int *index, int *p, int
*q, vrna_param_t *P)

#include <ViennaRNA/gquad.h> backtrack an interior loop like enclosed g-quadruplex with closing
pair (i,j)

7.12. Structure Modules and Pseudoknots 477

ViennaRNA, Release 2.6.4

Parameters
• c – The total contribution the loop should resemble

• i – position i of enclosing pair

• j – position j of enclosing pair

• type – base pair type of enclosing pair (must be reverse type)

• S – integer encoded sequence

• ggg – triangular matrix containing g-quadruplex contributions

• index – the index for accessing the triangular matrix

• p – here the 5’ position of the gquad is stored

• q – here the 3’ position of the gquad is stored

• P – the datastructure containing the precalculated contibutions

Returns
1 on success, 0 if no gquad found

static int backtrack_GQuad_IntLoop_comparative(int c, int i, int j, unsigned int *type, short *S_cons,
short **S5, short **S3, unsigned int **a2s, int
*ggg, int *index, int *p, int *q, int n_seq,
vrna_param_t *P)

#include <ViennaRNA/gquad.h>

static int backtrack_GQuad_IntLoop_L(int c, int i, int j, int type, short *S, int **ggg, int maxdist, int *p,
int *q, vrna_param_t *P)

#include <ViennaRNA/gquad.h> backtrack an interior loop like enclosed g-quadruplex with closing
pair (i,j) with underlying Lfold matrix

Parameters
• c – The total contribution the loop should resemble

• i – position i of enclosing pair

• j – position j of enclosing pair

• type – base pair type of enclosing pair (must be reverse type)

• S – integer encoded sequence

• ggg – triangular matrix containing g-quadruplex contributions

• p – here the 5’ position of the gquad is stored

• q – here the 3’ position of the gquad is stored

• P – the datastructure containing the precalculated contibutions

Returns
1 on success, 0 if no gquad found

static int vrna_BT_gquad_int(vrna_fold_compound_t *fc, int i, int j, int en, vrna_bp_stack_t *bp_stack,
int *stack_count)

#include <ViennaRNA/gquad.h>

static int vrna_BT_gquad_mfe(vrna_fold_compound_t *fc, int i, int j, vrna_bp_stack_t *bp_stack, int
*stack_count)

#include <ViennaRNA/gquad.h>

478 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

static int backtrack_GQuad_IntLoop_L_comparative(int c, int i, int j, unsigned int *type, short
*S_cons, short **S5, short **S3, unsigned int
**a2s, int **ggg, int *p, int *q, int n_seq,
vrna_param_t *P)

#include <ViennaRNA/gquad.h>

static int E_GQuad_IntLoop(int i, int j, int type, short *S, int *ggg, int *index, vrna_param_t *P)
#include <ViennaRNA/gquad.h>

static int E_GQuad_IntLoop_comparative(int i, int j, unsigned int *tt, short *S_cons, short **S5, short
**S3, unsigned int **a2s, int *ggg, int *index, int n_seq,
vrna_param_t *P)

#include <ViennaRNA/gquad.h>

static int E_GQuad_IntLoop_L_comparative(int i, int j, unsigned int *tt, short *S_cons, short **S5,
short **S3, unsigned int **a2s, int **ggg, int n_seq,
vrna_param_t *P)

#include <ViennaRNA/gquad.h>

static int *E_GQuad_IntLoop_exhaustive(int i, int j, int **p_p, int **q_p, int type, short *S, int *ggg,
int threshold, int *index, vrna_param_t *P)

#include <ViennaRNA/gquad.h>

static int E_GQuad_IntLoop_L(int i, int j, int type, short *S, int **ggg, int maxdist, vrna_param_t *P)
#include <ViennaRNA/gquad.h>

static FLT_OR_DBL exp_E_GQuad_IntLoop(int i, int j, int type, short *S, FLT_OR_DBL *G,
FLT_OR_DBL *scale, int *index, vrna_exp_param_t *pf)

#include <ViennaRNA/gquad.h>

static FLT_OR_DBL exp_E_GQuad_IntLoop_comparative(int i, int j, unsigned int *tt, short *S_cons,
short **S5, short **S3, unsigned int **a2s,
FLT_OR_DBL *G, FLT_OR_DBL *scale,
int *index, int n_seq, vrna_exp_param_t
*pf)

#include <ViennaRNA/gquad.h>

7.13 Post-transcriptional Base Modifications

Energy parameter corrections for modified bases.

Many RNAs are known to be (heavily) modified post-trasnciptionaly. The best known examples are tRNAs and
rRNAs. To-date, more than 150 different modifications are listed in the MODOMICS database (http://genesilico.
pl/modomics/) [Boccaletto et al., 2022].

Many of the modified bases change the pairing behavior compared to their unmodified version, affecting not only
the pairing partner preference, but also the resulting stability of the loops the base pairs may form.

Here, we provide a simple soft constraints callback implementation to correct for some well known modified bases
where energy parameters are available for. This mechanism also supports arbitrary new modified base energy
parameters supplied in JSON format (see Modified Bases for details).

Support of modified bases in secondary structure prediction.

7.13. Post-transcriptional Base Modifications 479

http://genesilico.pl/modomics/
http://genesilico.pl/modomics/

ViennaRNA, Release 2.6.4

Defines

VRNA_SC_MOD_CHECK_FALLBACK

#include <ViennaRNA/constraints/soft_special.h> Check for sequence positions whether they resem-
ble the fallback base.

This flag can be used to enable a sanity check within the vrna_sc_mod*() functions to see whether
a supposedly modified position actually resembles the fallback base as specified in the modification
parameters

See also:
vrna_sc_mod_json(), vrna_sc_mod_jsonfile(), vrna_sc_mod(), vrna_sc_mod_m6A(),
vrna_sc_mod_pseudouridine(), vrna_sc_mod_inosine(), vrna_sc_mod_7DA(),
vrna_sc_mod_purine(), vrna_sc_mod_dihydrouridine(), VRNA_SC_MOD_CHECK_UNMOD,
VRNA_SC_MOD_DEFAULT

VRNA_SC_MOD_CHECK_UNMOD

#include <ViennaRNA/constraints/soft_special.h> Check for sequence positions whether they resem-
ble the unmodified base.

This flag can be used to enable a sanity check within the vrna_sc_mod*() functions to see whether a
supposedly modified position actually resembles the unmodified base as specified in the modification
parameters

See also:
vrna_sc_mod_json(), vrna_sc_mod_jsonfile(), vrna_sc_mod(), vrna_sc_mod_m6A(),
vrna_sc_mod_pseudouridine(), vrna_sc_mod_inosine(), vrna_sc_mod_7DA(),
vrna_sc_mod_purine(), vrna_sc_mod_dihydrouridine(), VRNA_SC_MOD_CHECK_FALLBACK ,
VRNA_SC_MOD_DEFAULT

VRNA_SC_MOD_SILENT

#include <ViennaRNA/constraints/soft_special.h> Do not produce any warnings within the
vrna_sc_mod*() functions.

See also:
vrna_sc_mod_json(), vrna_sc_mod_jsonfile(), vrna_sc_mod(), vrna_sc_mod_m6A(),
vrna_sc_mod_pseudouridine(), vrna_sc_mod_inosine(), vrna_sc_mod_7DA(),
vrna_sc_mod_purine(), vrna_sc_mod_dihydrouridine()

VRNA_SC_MOD_DEFAULT

#include <ViennaRNA/constraints/soft_special.h> Default settings for the vrna_sc_mod*() functions.

See also:
vrna_sc_mod_json(), vrna_sc_mod_jsonfile(), vrna_sc_mod(), vrna_sc_mod_m6A(),
vrna_sc_mod_pseudouridine(), vrna_sc_mod_inosine(), vrna_sc_mod_7DA(),
vrna_sc_mod_purine(), vrna_sc_mod_dihydrouridine(), VRNA_SC_MOD_CHECK_FALLBACK ,
VRNA_SC_MOD_CHECK_UNMOD, VRNA_SC_MOD_SILENT

480 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Typedefs

typedef struct vrna_sc_mod_param_s *vrna_sc_mod_param_t
#include <ViennaRNA/constraints/soft_special.h> Modified base parameter data structure.

See also:
vrna_sc_mod_read_from_jsonfile(), vrna_sc_mod_read_from_json(), vrna_sc_mod()

Functions

vrna_sc_mod_param_t vrna_sc_mod_read_from_jsonfile(const char *filename, vrna_md_t *md)
#include <ViennaRNA/constraints/soft_special.h> Parse and extract energy parameters for a modified
base from a JSON file.

SWIG Wrapper Notes:
This function is available as an overloaded function sc_mod_read_from_jsonfile()
where the md parameter may be omitted and defaults to NULL. See, e.g. RNA.
sc_mod_read_from_jsonfile() in the Python API .

See also:
vrna_sc_mod_read_from_json(), vrna_sc_mod_parameters_free(), vrna_sc_mod(), modified-bases-
params

Parameters
• filename – The JSON file containing the specifications of the modified base

• md – A model-details data structure (for look-up of canonical base pairs)

Returns
Parameters of the modified base

vrna_sc_mod_param_t vrna_sc_mod_read_from_json(const char *json, vrna_md_t *md)
#include <ViennaRNA/constraints/soft_special.h> Parse and extract energy parameters for a modified
base from a JSON string.

SWIG Wrapper Notes:
This function is available as an overloaded function sc_mod_read_from_json() where the md
parameter may be omitted and defaults to NULL. See, e.g. RNA.sc_mod_read_from_json() in
the Python API .

See also:
vrna_sc_mod_read_from_jsonfile(), vrna_sc_mod_parameters_free(), vrna_sc_mod(), modified-
bases-params

Parameters
• filename – The JSON file containing the specifications of the modified base

• md – A model-details data structure (for look-up of canonical base pairs)

Returns
Parameters of the modified base

7.13. Post-transcriptional Base Modifications 481

ViennaRNA, Release 2.6.4

void vrna_sc_mod_parameters_free(vrna_sc_mod_param_t params)
#include <ViennaRNA/constraints/soft_special.h> Release memory occupied by a modified base pa-
rameter data structure.

Properly free a vrna_sc_mod_param_t data structure

Parameters
• params – The data structure to free

int vrna_sc_mod_json(vrna_fold_compound_t *fc, const char *json, const unsigned int
*modification_sites, unsigned int options)

#include <ViennaRNA/constraints/soft_special.h> Prepare soft constraint callbacks for modified base
as specified in JSON string.

This function prepares all requirements to acknowledge modified bases as specified in the provided
json string. All subsequent predictions will treat each modification site special and adjust energy
contributions if necessary.

SWIG Wrapper Notes:
This function is attached as overloaded method sc_mod_json() to objects of type
fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_json() in the Python API .

See also:
vrna_sc_mod_jsonfile(), vrna_sc_mod(), vrna_sc_mod_m6A(), vrna_sc_mod_pseudouridine(),
vrna_sc_mod_inosine(), vrna_sc_mod_7DA(), vrna_sc_mod_purine(),
vrna_sc_mod_dihydrouridine(), VRNA_SC_MOD_CHECK_FALLBACK ,
VRNA_SC_MOD_CHECK_UNMOD, VRNA_SC_MOD_SILENT , VRNA_SC_MOD_DEFAULT ,
modified-bases-params

Parameters
• fc – The fold_compound the corrections should be bound to

• json – The JSON formatted string with the modified base parameters

• modification_sites – A list of modification site, i.e. positions that contain the
modified base (1-based, last element in the list indicated by 0)

• options – A bitvector of options how to handle the input, e.g.
VRNA_SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

int vrna_sc_mod_jsonfile(vrna_fold_compound_t *fc, const char *json_file, const unsigned int
*modification_sites, unsigned int options)

#include <ViennaRNA/constraints/soft_special.h> Prepare soft constraint callbacks for modified base
as specified in JSON string.

Similar to vrna_sc_mod_json(), this function prepares all requirements to acknowledge modified bases
as specified in the provided json file. All subsequent predictions will treat each modification site
special and adjust energy contributions if necessary.

SWIG Wrapper Notes:
This function is attached as overloaded method sc_mod_jsonfile() to objects of type
fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_jsonfile() in the Python API .

482 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_sc_mod_json(), vrna_sc_mod(), vrna_sc_mod_m6A(), vrna_sc_mod_pseudouridine(),
vrna_sc_mod_inosine(), vrna_sc_mod_7DA(), vrna_sc_mod_purine(),
vrna_sc_mod_dihydrouridine(), VRNA_SC_MOD_CHECK_FALLBACK ,
VRNA_SC_MOD_CHECK_UNMOD, VRNA_SC_MOD_SILENT , VRNA_SC_MOD_DEFAULT ,
modified-bases-params

Parameters
• fc – The fold_compound the corrections should be bound to

• json – The JSON formatted string with the modified base parameters

• modification_sites – A list of modification site, i.e. positions that contain the
modified base (1-based, last element in the list indicated by 0)

Returns
Number of sequence positions modified base parameters will be used for

int vrna_sc_mod(vrna_fold_compound_t *fc, const vrna_sc_mod_param_t params, const unsigned int
*modification_sites, unsigned int options)

#include <ViennaRNA/constraints/soft_special.h> Prepare soft constraint callbacks for modified base
as specified in JSON string.

This function takes a vrna_sc_mod_param_t data structure as obtained from
vrna_sc_mod_read_from_json() or vrna_sc_mod_read_from_jsonfile() and prepares all require-
ments to acknowledge modified bases as specified in the provided params data structure. All
subsequent predictions will treat each modification site special and adjust energy contributions if
necessary.

SWIG Wrapper Notes:
This function is attached as overloaded method sc_mod() to objects of type fold_compoundwith
default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.fold_compound.sc_mod() in
the Python API .

See also:
vrna_sc_mod_read_from_json(), vrna_sc_mod_read_from_jsonfile(), vrna_sc_mod_json(),
vrna_sc_mod_jsonfile(), vrna_sc_mod_m6A(), vrna_sc_mod_pseudouridine(),
vrna_sc_mod_inosine(), vrna_sc_mod_7DA(), vrna_sc_mod_purine(),
vrna_sc_mod_dihydrouridine() VRNA_SC_MOD_CHECK_FALLBACK ,
VRNA_SC_MOD_CHECK_UNMOD, VRNA_SC_MOD_SILENT , VRNA_SC_MOD_DEFAULT

Parameters
• fc – The fold_compound the corrections should be bound to

• json – The JSON formatted string with the modified base parameters

• modification_sites – A list of modification site, i.e. positions that contain the
modified base (1-based, last element in the list indicated by 0)

• options – A bitvector of options how to handle the input, e.g.
VRNA_SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

int vrna_sc_mod_m6A(vrna_fold_compound_t *fc, const unsigned int *modification_sites, unsigned int
options)

7.13. Post-transcriptional Base Modifications 483

ViennaRNA, Release 2.6.4

#include <ViennaRNA/constraints/soft_special.h> Add soft constraint callbacks for N6-methyl-
adenosine (m6A)

This is a convenience wrapper to add support for m6A using the soft constraint callback mechanism.
Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections
are derived from Kierzek et al. [2022] .

SWIG Wrapper Notes:
This function is attached as overloaded method sc_mod_m6A() to objects of type fold_compound
with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.fold_compound.
sc_mod_m6A() in the Python API .

See also:
VRNA_SC_MOD_CHECK_FALLBACK , VRNA_SC_MOD_CHECK_UNMOD,
VRNA_SC_MOD_SILENT , VRNA_SC_MOD_DEFAULT

Parameters
• fc – The fold_compound the corrections should be bound to

• modification_sites – A list of modification site, i.e. positions that contain the
modified base (1-based, last element in the list indicated by 0)

• options – A bitvector of options how to handle the input, e.g.
VRNA_SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

int vrna_sc_mod_pseudouridine(vrna_fold_compound_t *fc, const unsigned int *modification_sites,
unsigned int options)

#include <ViennaRNA/constraints/soft_special.h> Add soft constraint callbacks for Pseudouridine.

This is a convenience wrapper to add support for pseudouridine using the soft constraint callback mech-
anism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter
corrections are derived from Hudson et al. [2013] .

SWIG Wrapper Notes:
This function is attached as overloaded method sc_mod_pseudouridine() to objects of
type fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_pseudouridine() in the Python API .

See also:
VRNA_SC_MOD_CHECK_FALLBACK , VRNA_SC_MOD_CHECK_UNMOD,
VRNA_SC_MOD_SILENT , VRNA_SC_MOD_DEFAULT

Parameters
• fc – The fold_compound the corrections should be bound to

• modification_sites – A list of modification site, i.e. positions that contain the
modified base (1-based, last element in the list indicated by 0)

• options – A bitvector of options how to handle the input, e.g.
VRNA_SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

484 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int vrna_sc_mod_inosine(vrna_fold_compound_t *fc, const unsigned int *modification_sites, unsigned
int options)

#include <ViennaRNA/constraints/soft_special.h> Add soft constraint callbacks for Inosine.

This is a convenience wrapper to add support for inosine using the soft constraint callback mechanism.
Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections
are derived from Wright et al. [2007] and Wright et al. [2018] .

SWIG Wrapper Notes:
This function is attached as overloaded method sc_mod_inosine() to objects of type
fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_inosine() in the Python API .

See also:
VRNA_SC_MOD_CHECK_FALLBACK , VRNA_SC_MOD_CHECK_UNMOD,
VRNA_SC_MOD_SILENT , VRNA_SC_MOD_DEFAULT

Parameters
• fc – The fold_compound the corrections should be bound to

• modification_sites – A list of modification site, i.e. positions that contain the
modified base (1-based, last element in the list indicated by 0)

• options – A bitvector of options how to handle the input, e.g.
VRNA_SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

int vrna_sc_mod_7DA(vrna_fold_compound_t *fc, const unsigned int *modification_sites, unsigned int
options)

#include <ViennaRNA/constraints/soft_special.h> Add soft constraint callbacks for 7-deaza-adenosine
(7DA)

This is a convenience wrapper to add support for 7-deaza-adenosine using the soft constraint callback
mechanism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter
corrections are derived from Richardson and Znosko [2016] .

SWIG Wrapper Notes:
This function is attached as overloaded method sc_mod_7DA() to objects of type fold_compound
with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.fold_compound.
sc_mod_7DA() in the Python API .

See also:
VRNA_SC_MOD_CHECK_FALLBACK , VRNA_SC_MOD_CHECK_UNMOD,
VRNA_SC_MOD_SILENT , VRNA_SC_MOD_DEFAULT

Parameters
• fc – The fold_compound the corrections should be bound to

• modification_sites – A list of modification site, i.e. positions that contain the
modified base (1-based, last element in the list indicated by 0)

• options – A bitvector of options how to handle the input, e.g.
VRNA_SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

7.13. Post-transcriptional Base Modifications 485

ViennaRNA, Release 2.6.4

int vrna_sc_mod_purine(vrna_fold_compound_t *fc, const unsigned int *modification_sites, unsigned
int options)

#include <ViennaRNA/constraints/soft_special.h> Add soft constraint callbacks for Purine (a.k.a. neb-
ularine)

This is a convenience wrapper to add support for Purine using the soft constraint callback mechanism.
Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections
are derived from Jolley and Znosko [2017] .

SWIG Wrapper Notes:
This function is attached as overloaded method sc_mod_purine() to objects of type
fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_purine() in the Python API .

See also:
VRNA_SC_MOD_CHECK_FALLBACK , VRNA_SC_MOD_CHECK_UNMOD,
VRNA_SC_MOD_SILENT , VRNA_SC_MOD_DEFAULT

Parameters
• fc – The fold_compound the corrections should be bound to

• modification_sites – A list of modification site, i.e. positions that contain the
modified base (1-based, last element in the list indicated by 0)

• options – A bitvector of options how to handle the input, e.g.
VRNA_SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

int vrna_sc_mod_dihydrouridine(vrna_fold_compound_t *fc, const unsigned int *modification_sites,
unsigned int options)

#include <ViennaRNA/constraints/soft_special.h> Add soft constraint callbacks for dihydrouridine.

This is a convenience wrapper to add support for dihydrouridine using the soft constraint callback
mechanism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter
corrections are derived from Rosetta/RECESS predictions.

SWIG Wrapper Notes:
This function is attached as overloaded method sc_mod_dihydrouridine() to objects of
type fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_dihydrouridine() in the Python API .

See also:
VRNA_SC_MOD_CHECK_FALLBACK , VRNA_SC_MOD_CHECK_UNMOD,
VRNA_SC_MOD_SILENT , VRNA_SC_MOD_DEFAULT

Parameters
• fc – The fold_compound the corrections should be bound to

• modification_sites – A list of modification site, i.e. positions that contain the
modified base (1-based, last element in the list indicated by 0)

• options – A bitvector of options how to handle the input, e.g.
VRNA_SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

486 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.14 Utilities

7.14.1 Utilities to deal with Nucleotide Alphabets

Functions to cope with various aspects related to the nucleotide sequence alphabet.

Defines

VRNA_SEQUENCE_RNA

#include <ViennaRNA/sequence.h>

VRNA_SEQUENCE_DNA

#include <ViennaRNA/sequence.h>

Typedefs

typedef struct vrna_sequence_s vrna_seq_t
#include <ViennaRNA/sequence.h> Typename for nucleotide sequence representation data structure
vrna_sequence_s.

typedef struct vrna_alignment_s vrna_msa_t
#include <ViennaRNA/sequence.h>

Enums

enum vrna_seq_type_e
A enumerator used in vrna_sequence_s to distinguish different nucleotide sequences.

Values:

enumerator VRNA_SEQ_UNKNOWN
Nucleotide sequence represents an Unkown type.

enumerator VRNA_SEQ_RNA
Nucleotide sequence represents an RNA type.

enumerator VRNA_SEQ_DNA
Nucleotide sequence represents a DNA type.

7.14. Utilities 487

ViennaRNA, Release 2.6.4

Functions

unsigned int vrna_sequence_length_max(unsigned int options)
#include <ViennaRNA/alphabet.h>

int vrna_nucleotide_IUPAC_identity(char a, char b)
#include <ViennaRNA/alphabet.h>

void vrna_ptypes_prepare(vrna_fold_compound_t *fc, unsigned int options)
#include <ViennaRNA/alphabet.h>

char *vrna_ptypes(const short *S, vrna_md_t *md)
#include <ViennaRNA/alphabet.h> Get an array of the numerical encoding for each possible base pair
(i,j)

See also:
vrna_idx_col_wise(), vrna_fold_compound_t

Note: This array is always indexed in column-wise order, in contrast to previously different indexing
between mfe and pf variants!

short *vrna_seq_encode(const char *sequence, vrna_md_t *md)
#include <ViennaRNA/alphabet.h> Get a numerical representation of the nucleotide sequence.

SWIG Wrapper Notes:
In the target scripting language, this function is wrapped as overloaded function seq_encode()
where the last parameter, the model_details data structure, is optional. If it is omitted, default
model settings are applied, i.e. default nucleotide letter conversion. The wrapped function returns
a list/tuple of integer representations of the input sequence. See, e.g. RNA.seq_encode() in the
Python API .

Parameters
• sequence – The input sequence in upper-case letters

• md – A pointer to a vrna_md_t data structure that specifies the conversion type

Returns
A list of integer encodings for each sequence letter (1-based). Position 0 denotes the
length of the list

short *vrna_seq_encode_simple(const char *sequence, vrna_md_t *md)
#include <ViennaRNA/alphabet.h> Get a numerical representation of the nucleotide sequence (simple
version)

int vrna_nucleotide_encode(char c, vrna_md_t *md)
#include <ViennaRNA/alphabet.h> Encode a nucleotide character to numerical value.

This function encodes a nucleotide character to its numerical representation as required by many func-
tions in RNAlib.

See also:
vrna_nucleotide_decode(), vrna_seq_encode()

Parameters

488 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• c – The nucleotide character to encode

• md – The model details that determine the kind of encoding

Returns
The encoded nucleotide

char vrna_nucleotide_decode(int enc, vrna_md_t *md)
#include <ViennaRNA/alphabet.h> Decode a numerical representation of a nucleotide back into nu-
cleotide alphabet.

This function decodes a numerical representation of a nucleotide character back into nucleotide alpha-
bet

See also:
vrna_nucleotide_encode(), vrna_seq_encode()

Parameters
• enc – The encoded nucleotide

• md – The model details that determine the kind of decoding

Returns
The decoded nucleotide character

void vrna_aln_encode(const char *sequence, short **S_p, short **s5_p, short **s3_p, char **ss_p,
unsigned int **as_p, vrna_md_t *md)

#include <ViennaRNA/alphabet.h>

unsigned int vrna_get_ptype_md(int i, int j, vrna_md_t *md)
#include <ViennaRNA/alphabet.h>

unsigned int vrna_get_ptype(int ij, char *ptype)
#include <ViennaRNA/alphabet.h>

unsigned int vrna_get_ptype_window(int i, int j, char **ptype)
#include <ViennaRNA/alphabet.h>

vrna_seq_t *vrna_sequence(const char *string, unsigned int options)
#include <ViennaRNA/sequence.h>

int vrna_sequence_add(vrna_fold_compound_t *fc, const char *string, unsigned int options)
#include <ViennaRNA/sequence.h>

int vrna_sequence_remove(vrna_fold_compound_t *fc, unsigned int i)
#include <ViennaRNA/sequence.h>

void vrna_sequence_remove_all(vrna_fold_compound_t *fc)
#include <ViennaRNA/sequence.h>

void vrna_sequence_prepare(vrna_fold_compound_t *fc)
#include <ViennaRNA/sequence.h>

int vrna_sequence_order_update(vrna_fold_compound_t *fc, const unsigned int *order)
#include <ViennaRNA/sequence.h>

int vrna_msa_add(vrna_fold_compound_t *fc, const char **alignment, const char **names, const
unsigned char *orientation, const unsigned long long *start, const unsigned long long
*genome_size, unsigned int options)

#include <ViennaRNA/sequence.h>

7.14. Utilities 489

ViennaRNA, Release 2.6.4

struct vrna_sequence_s
#include <ViennaRNA/sequence.h> Data structure representing a nucleotide sequence.

Public Members

vrna_seq_type_e type
The type of sequence.

char *name

char *string
The string representation of the sequence.

short *encoding
The integer representation of the sequence.

short *encoding5

short *encoding3

unsigned int length
The length of the sequence.

struct vrna_alignment_s

Public Members

unsigned int n_seq

vrna_seq_t *sequences

char **gapfree_seq

unsigned int *gapfree_size

unsigned long long *genome_size

unsigned long long *start

unsigned char *orientation

unsigned int **a2s

490 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.14.2 (Nucleic Acid Sequence) String Utilitites

Functions to parse, convert, manipulate, create, and compare (nucleic acid sequence) strings.

Defines

XSTR(s)
#include <ViennaRNA/utils/strings.h> Stringify a macro after expansion.

STR(s)
#include <ViennaRNA/utils/strings.h> Stringify a macro argument.

FILENAME_MAX_LENGTH

#include <ViennaRNA/utils/strings.h> Maximum length of filenames that are generated by our pro-
grams.

This definition should be used throughout the complete ViennaRNA package wherever a static array
holding filenames of output files is declared.

FILENAME_ID_LENGTH

#include <ViennaRNA/utils/strings.h> Maximum length of id taken from fasta header for filename
generation.

this has to be smaller than FILENAME_MAX_LENGTH since in most cases, some suffix will be
appended to the ID

VRNA_TRIM_LEADING

#include <ViennaRNA/utils/strings.h> Trim only characters leading the string.

See also:
vrna_strtrim()

VRNA_TRIM_TRAILING

#include <ViennaRNA/utils/strings.h> Trim only characters trailing the string.

See also:
vrna_strtrim()

VRNA_TRIM_IN_BETWEEN

#include <ViennaRNA/utils/strings.h> Trim only characters within the string.

See also:
vrna_strtrim()

VRNA_TRIM_SUBST_BY_FIRST

#include <ViennaRNA/utils/strings.h> Replace remaining characters after trimming with the first de-
limiter in list.

7.14. Utilities 491

ViennaRNA, Release 2.6.4

See also:
vrna_strtrim()

VRNA_TRIM_DEFAULT

#include <ViennaRNA/utils/strings.h> Default settings for trimming, i.e. trim leading and trailing.

See also:
vrna_strtrim()

VRNA_TRIM_ALL

#include <ViennaRNA/utils/strings.h> Trim characters anywhere in the string.

See also:
vrna_strtrim()

Functions

char *vrna_strdup_printf(const char *format, ...)
#include <ViennaRNA/utils/strings.h> Safely create a formatted string.

This function is a safe implementation for creating a formatted character array, similar to sprintf. Inter-
nally, it uses the asprintf function if available to dynamically allocate a large enough character array
to store the supplied content. If asprintf is not available, mimic it’s behavior using vsnprintf.

See also:
vrna_strdup_vprintf(), vrna_strcat_printf()

Note: The returned pointer of this function should always be passed to free() to release the allocated
memory

Parameters
• format – The format string (See also asprintf)

• ... – The list of variables used to fill the format string

Returns
The formatted, null-terminated string, or NULL if something has gone wrong

char *vrna_strdup_vprintf(const char *format, va_list argp)
#include <ViennaRNA/utils/strings.h> Safely create a formatted string.

This function is the va_list version of vrna_strdup_printf()

See also:
vrna_strdup_printf(), vrna_strcat_printf(), vrna_strcat_vprintf()

Note: The returned pointer of this function should always be passed to free() to release the allocated
memory

492 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Parameters
• format – The format string (See also asprintf)

• argp – The list of arguments to fill the format string

Returns
The formatted, null-terminated string, or NULL if something has gone wrong

int vrna_strcat_printf(char **dest, const char *format, ...)
#include <ViennaRNA/utils/strings.h> Safely append a formatted string to another string.

This function is a safe implementation for appending a formatted character array, similar to a cobination
of strcat and sprintf. The function automatically allocates enough memory to store both, the previous
content stored at dest and the appended format string. If the dest pointer is NULL, the function allo-
cate memory only for the format string. The function returns the number of characters in the resulting
string or -1 in case of an error.

See also:
vrna_strcat_vprintf(), vrna_strdup_printf(), vrna_strdup_vprintf()

Parameters
• dest – The address of a char *pointer where the formatted string is to be appended

• format – The format string (See also sprintf)

• ... – The list of variables used to fill the format string

Returns
The number of characters in the final string, or -1 on error

int vrna_strcat_vprintf(char **dest, const char *format, va_list args)
#include <ViennaRNA/utils/strings.h> Safely append a formatted string to another string.

This function is the va_list version of vrna_strcat_printf()

See also:
vrna_strcat_printf(), vrna_strdup_printf(), vrna_strdup_vprintf()

Parameters
• dest – The address of a char *pointer where the formatted string is to be appended

• format – The format string (See also sprintf)

• args – The list of argument to fill the format string

Returns
The number of characters in the final string, or -1 on error

unsigned int vrna_strtrim(char *string, const char *delimiters, unsigned int keep, unsigned int options)
#include <ViennaRNA/utils/strings.h> Trim a string by removing (multiple) occurences of a particular
character.

This function removes (multiple) consecutive occurences of a set of characters (delimiters) within
an input string. It may be used to remove leading and/or trailing whitespaces or to restrict the maximum
number of consecutive occurences of the delimiting characters delimiters. Setting keep=0 removes
all occurences, while other values reduce multiple consecutive occurences to at most keep delimiters.
This might be useful if one would like to reduce multiple whitespaces to a single one, or to remove
empty fields within a comma-separated value string.

7.14. Utilities 493

ViennaRNA, Release 2.6.4

The parameter delimiters may be a pointer to a 0-terminated char string containing a set of any
ASCII character. If NULL is passed as delimiter set or an empty char string, all whitespace characters
are trimmed. The options parameter is a bit vector that specifies which part of the string should
undergo trimming. The implementation distinguishes the leading (VRNA_TRIM_LEADING), trailing
(VRNA_TRIM_TRAILING), and in-between (VRNA_TRIM_IN_BETWEEN) part with respect to the
delimiter set. Combinations of these parts can be specified by using logical-or operator.

The following example code removes all leading and trailing whitespace characters from the input
string:

char string[20] = " \t blablabla ";
unsigned int r = vrna_strtrim(&(string[0]),

NULL,
0,
VRNA_TRIM_DEFAULT);

SWIG Wrapper Notes:

Since many scripting languages treat strings as immutable objects, this function does not modify
the input string directly. Instead, it returns the modified string as second return value, together
with the number of removed delimiters.

The scripting language interface provides an overloaded version of this function, with default
parameters delimiters=NULL, keep=0, and options=VRNA_TRIM_DEFAULT. See, e.g. RNA.
strtrim() in the Python API .

See also:
VRNA_TRIM_LEADING, VRNA_TRIM_TRAILING, VRNA_TRIM_IN_BETWEEN ,
VRNA_TRIM_SUBST_BY_FIRST , VRNA_TRIM_DEFAULT , VRNA_TRIM_ALL

Note: The delimiter always consists of a single character from the set of characters provided. In case
of alternative delimiters and non-null keep parameter, the first keep delimiters are preserved within
the string. Use VRNA_TRIM_SUBST_BY_FIRST to substitute all remaining delimiting characters with
the first from the delimiters list.

Parameters
• string – The ‘\0’-terminated input string to trim

• delimiters – The delimiter characters as 0-terminated char array (or NULL)

• keep – The maximum number of consecutive occurences of the delimiter in the output
string

• options – The option bit vector specifying the mode of operation

Returns
The number of delimiters removed from the string

char **vrna_strsplit(const char *string, const char *delimiter)
#include <ViennaRNA/utils/strings.h> Split a string into tokens using a delimiting character.

This function splits a string into an array of strings using a single character that delimits the elements
within the string. The default delimiter is the ampersand '&' and will be used when NULL is passed as
a second argument. The returned list is NULL terminated, i.e. the last element is NULL. If the delimiter
is not found, the returned list contains exactly one element: the input string.

For instance, the following code:

494 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

char **tok = vrna_strsplit("GGGG&CCCC&AAAAA", NULL);

for (char **ptr = tok; *ptr; ptr++) {
printf("%s\n", *ptr);
free(*ptr);

}
free(tok);

produces this output:

* GGGG
* CCCC
* AAAAA
*

and properly free’s the memory occupied by the returned element array.

See also:
vrna_strtrim()

Note: This function internally uses strtok_r() and is therefore considered to be thread-safe. Also note,
that it is the users responsibility to free the memory of the array and that of the individual element
strings!

In case the input string consists of consecutive delimiters, starts or ends with one or multiple delimiters,
empty strings are produced in the output list, indicating the empty fields of data resulting from the split.
Use vrna_strtrim() prior to a call to this function to remove any leading, trailing, or in-between empty
fields.

Parameters
• string – The input string that should be split into elements

• delimiter – The delimiting character. If NULL, the delimiter is "&"

Returns
A NULL terminated list of the elements in the string

char *vrna_strjoin(const char **strings, const char *delimiter)
#include <ViennaRNA/utils/strings.h>

char *vrna_random_string(int l, const char symbols[])
#include <ViennaRNA/utils/strings.h> Create a random string using characters from a specified symbol
set.

Parameters
• l – The length of the sequence

• symbols – The symbol set

Returns
A random string of length ‘l’ containing characters from the symbolset

int vrna_hamming_distance(const char *s1, const char *s2)
#include <ViennaRNA/utils/strings.h> Calculate hamming distance between two sequences.

Parameters

7.14. Utilities 495

ViennaRNA, Release 2.6.4

• s1 – The first sequence

• s2 – The second sequence

Returns
The hamming distance between s1 and s2

int vrna_hamming_distance_bound(const char *s1, const char *s2, int n)
#include <ViennaRNA/utils/strings.h> Calculate hamming distance between two sequences up to a
specified length.

This function is similar to vrna_hamming_distance() but instead of comparing both sequences up to
their actual length only the first ‘n’ characters are taken into account

Parameters
• s1 – The first sequence

• s2 – The second sequence

• n – The length of the subsequences to consider (starting from the 5’ end)

Returns
The hamming distance between s1 and s2

void vrna_seq_toRNA(char *sequence)
#include <ViennaRNA/utils/strings.h> Convert an input sequence (possibly containing DNA alphabet
characters) to RNA alphabet.

This function substitudes T and t with U and u, respectively

Parameters
• sequence – The sequence to be converted

void vrna_seq_toupper(char *sequence)
#include <ViennaRNA/utils/strings.h> Convert an input sequence to uppercase.

Parameters
• sequence – The sequence to be converted

void vrna_seq_reverse(char *sequence)
#include <ViennaRNA/utils/strings.h> Reverse a string in-place.

This function reverses a character string in the form of an array of characters in-place, i.e. it changes
the input parameter.

See also:
vrna_DNA_complement()

Parameters
• sequence – The string to reverse

Post
After execution, the input sequence consists of the reverse string prior to the execution.

char *vrna_DNA_complement(const char *sequence)
#include <ViennaRNA/utils/strings.h> Retrieve a DNA sequence which resembles the complement of
the input sequence.

This function returns a mew DNA string which is the complement of the input, i.e. the nucleotide
letters A,C,G, and T are substituted by their complements T,G,C, and A, respectively.

Any characters not belonging to the alphabet of the 4 canonical bases of DNA are not altered.

496 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_seq_reverse()

Note: This function also handles lower-case input sequences and treats U of the RNA alphabet equally
to T

Parameters
• sequence – the input DNA sequence

Returns
The complement of the input DNA sequence

char *vrna_seq_ungapped(const char *sequence)
#include <ViennaRNA/utils/strings.h> Remove gap characters from a nucleotide sequence.

Parameters
• sequence – The original, null-terminated nucleotide sequence

Returns
A copy of the input sequence with all gap characters removed

char *vrna_cut_point_insert(const char *string, int cp)
#include <ViennaRNA/utils/strings.h> Add a separating ‘&’ character into a string according to cut-
point position.

If the cut-point position is less or equal to zero, this function just returns a copy of the provided string.
Otherwise, the cut-point character is set at the corresponding position

Parameters
• string – The original string

• cp – The cut-point position

Returns
A copy of the provided string including the cut-point character

char *vrna_cut_point_remove(const char *string, int *cp)
#include <ViennaRNA/utils/strings.h> Remove a separating ‘&’ character from a string.

This function removes the cut-point indicating ‘&’ character from a string and memorizes its position
in a provided integer variable. If not ‘&’ is found in the input, the integer variable is set to -1. The
function returns a copy of the input string with the ‘&’ being sliced out.

Parameters
• string – The original string

• cp – The cut-point position

Returns
A copy of the input string with the ‘&’ being sliced out

size_t *vrna_strchr(const char *string, int c, size_t n)
#include <ViennaRNA/utils/strings.h> Find (all) occurrences of a character within a string.

string The C string to be scanned

c The character to be searched for

n The maximum number of occurences to search for (or 0 for all occurrences)

7.14. Utilities 497

ViennaRNA, Release 2.6.4

Returns
An 1-based array of positions(0-based) or NULL on error. Position 0 specifies the num-
ber of occurrences found.

7.14.3 Secondary Structure Utilities

Functions to create, parse, convert, manipulate, and compare secondary structure representations.

Dot-Bracket Notation of Secondary Structures

Defines

VRNA_BRACKETS_ALPHA

#include <ViennaRNA/utils/structures.h> Bitflag to indicate secondary structure notations using up-
percase/lowercase letters from the latin alphabet.

See also:
vrna_ptable_from_string()

VRNA_BRACKETS_RND

#include <ViennaRNA/utils/structures.h> Bitflag to indicate secondary structure notations using round
brackets (parenthesis), ()

See also:
vrna_ptable_from_string(), vrna_db_flatten(), vrna_db_flatten_to()

VRNA_BRACKETS_CLY

#include <ViennaRNA/utils/structures.h> Bitflag to indicate secondary structure notations using curly
brackets, {}

See also:
vrna_ptable_from_string(), vrna_db_flatten(), vrna_db_flatten_to()

VRNA_BRACKETS_ANG

#include <ViennaRNA/utils/structures.h> Bitflag to indicate secondary structure notations using an-
gular brackets, <>

See also:
vrna_ptable_from_string(), vrna_db_flatten(), vrna_db_flatten_to()

498 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_BRACKETS_SQR

#include <ViennaRNA/utils/structures.h> Bitflag to indicate secondary structure notations using
square brackets, []

See also:
vrna_ptable_from_string(), vrna_db_flatten(), vrna_db_flatten_to()

VRNA_BRACKETS_DEFAULT

#include <ViennaRNA/utils/structures.h> Default bitmask to indicate secondary structure notation us-
ing any pair of brackets.

This set of matching brackets/parenthesis is always nested, i.e. pseudo-knot free, in WUSS format.
However, in general different kinds of brackets are mostly used for annotating pseudo-knots. Thus
special care has to be taken to remove pseudo-knots if this bitmask is used in functions that return
secondary structures without pseudo-knots!

See also:
vrna_ptable_from_string(), vrna_db_flatten(), vrna_db_flatten_to(), vrna_db_pk_remove()
vrna_pt_pk_remove()

VRNA_BRACKETS_ANY

#include <ViennaRNA/utils/structures.h> Bitmask to indicate secondary structure notation using any
pair of brackets or uppercase/lowercase alphabet letters.

See also:
vrna_ptable_from_string(), vrna_db_pk_remove(), vrna_db_flatten(), vrna_db_flatten_to()

Functions

char *vrna_db_pack(const char *struc)
#include <ViennaRNA/utils/structures.h> Pack secondary secondary structure, 5:1 compression using
base 3 encoding.

Returns a binary string encoding of the secondary structure using a 5:1 compression scheme. The
string is NULL terminated and can therefore be used with standard string functions such as strcmp().
Useful for programs that need to keep many structures in memory.

See also:
vrna_db_unpack()

Parameters
• struc – The secondary structure in dot-bracket notation

Returns
The binary encoded structure

7.14. Utilities 499

ViennaRNA, Release 2.6.4

char *vrna_db_unpack(const char *packed)
#include <ViennaRNA/utils/structures.h> Unpack secondary structure previously packed with
vrna_db_pack()

Translate a compressed binary string produced by vrna_db_pack() back into the familiar dot-bracket
notation.

See also:
vrna_db_pack()

Parameters
• packed – The binary encoded packed secondary structure

Returns
The unpacked secondary structure in dot-bracket notation

void vrna_db_flatten(char *structure, unsigned int options)
#include <ViennaRNA/utils/structures.h> Substitute pairs of brackets in a string with parenthesis.

This function can be used to replace brackets of unusual types, such as angular brackets <> , to dot-
bracket format. The options parameter is used tpo specify which types of brackets will be replaced
by round parenthesis () .

SWIG Wrapper Notes:

This function flattens an input structure string in-place! The second parameter is optional and
defaults to VRNA_BRACKETS_DEFAULT .

An overloaded version of this function exists, where an additional second parameter can be
passed to specify the target brackets, i.e. the type of matching pair characters all brackets will
be flattened to. Therefore, in the scripting language interface this function is a replacement for
vrna_db_flatten_to(). See, e.g. RNA.db_flatten() in the Python API .

See also:
vrna_db_flatten_to(), VRNA_BRACKETS_RND, VRNA_BRACKETS_ANG, VRNA_BRACKETS_CLY ,
VRNA_BRACKETS_SQR, VRNA_BRACKETS_DEFAULT

Parameters
• structure – The structure string where brackets are flattened in-place

• options – A bitmask to specify which types of brackets should be flattened out

void vrna_db_flatten_to(char *string, const char target[3], unsigned int options)
#include <ViennaRNA/utils/structures.h> Substitute pairs of brackets in a string with another type of
pair characters.

This function can be used to replace brackets in a structure annotation string, such as square brackets
[] , to another type of pair characters, e.g. angular brackets <> .

The target array must contain a character for the ‘pair open’ annotation at position 0, and one for ‘pair
close’ at position 1. Toptions parameter is used to specify which types of brackets will be replaced
by the new pairs.

SWIG Wrapper Notes:
This function is available as an overloaded version of vrna_db_flatten(). See, e.g. RNA.
db_flatten() in the Python API .

500 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_db_flatten(), VRNA_BRACKETS_RND, VRNA_BRACKETS_ANG, VRNA_BRACKETS_CLY ,
VRNA_BRACKETS_SQR, VRNA_BRACKETS_DEFAULT

Parameters
• string – The structure string where brackets are flattened in-place

• target – The new pair characters the string will be flattened to

• options – A bitmask to specify which types of brackets should be flattened out

char *vrna_db_from_ptable(const short *pt)
#include <ViennaRNA/utils/structures.h> Convert a pair table into dot-parenthesis notation.

This function also converts pair table formatted structures that contain pseudoknots. Non-nested base
pairs result in additional pairs of parenthesis and brackets within the resulting dot-parenthesis string.
The following pairs are awailable: (), []. {}. <>, as well as pairs of matching upper-/lower-case char-
acters from the alphabet A-Z.

Note: In cases where the level of non-nested base pairs exceeds the maximum number of 30 different
base pair indicators (4 parenthesis/brackets, 26 matching characters), a warning is printed and the
remaining base pairs are left out from the conversion.

Parameters
• pt – The pair table to be copied

Returns
A char pointer to the dot-bracket string

char *vrna_db_from_plist(vrna_ep_t *pairs, unsigned int n)
#include <ViennaRNA/utils/structures.h> Convert a list of base pairs into dot-bracket notation.

See also:
vrna_plist()

Parameters
• pairs – A vrna_ep_t containing the pairs to be included in the dot-bracket string

• n – The length of the structure (number of nucleotides)

Returns
The dot-bracket string containing the provided base pairs

char *vrna_db_to_element_string(const char *structure)
#include <ViennaRNA/utils/structures.h> Convert a secondary structure in dot-bracket notation to a
nucleotide annotation of loop contexts.

Parameters
• structure – The secondary structure in dot-bracket notation

Returns
A string annotating each nucleotide according to it’s structural context

7.14. Utilities 501

ViennaRNA, Release 2.6.4

char *vrna_db_pk_remove(const char *structure, unsigned int options)
#include <ViennaRNA/utils/structures.h> Remove pseudo-knots from an input structure.

This function removes pseudo-knots from an input structure by determining the minimum number of
base pairs that need to be removed to make the structure pseudo-knot free.

To accomplish that, we use a dynamic programming algorithm similar to the Nussinov maxmimum
matching approach.

The input structure must be in a dot-bracket string like form where crossing base pairs are denoted
by the use of additional types of matching brackets, e.g. <>, {}, [], {}. Furthermore, crossing pairs
may be annotated by matching uppercase/lowercase letters from the alphabet A-Z. For the latter, the
uppercase letter must be the 5’ and the lowercase letter the 3’ nucleotide of the base pair. The actual
type of brackets to be recognized by this function must be specifed through the options parameter.

SWIG Wrapper Notes:
This function is available as an overloaded function db_pk_remove() where the optional second
parameter options defaults to VRNA_BRACKETS_ANY . See, e.g. RNA.db_pk_remove() in the
Python API .

See also:
vrna_pt_pk_remove(), vrna_db_flatten(), VRNA_BRACKETS_RND, VRNA_BRACKETS_ANG,
VRNA_BRACKETS_CLY , VRNA_BRACKETS_SQR, VRNA_BRACKETS_ALPHA,
VRNA_BRACKETS_DEFAULT , VRNA_BRACKETS_ANY

Note: Brackets in the input structure string that are not covered by the options bitmask will be
silently ignored!

Parameters
• structure – Input structure in dot-bracket format that may include pseudo-knots

• options – A bitmask to specify which types of brackets should be processed

Returns
The input structure devoid of pseudo-knots in dot-bracket notation

Washington University Secondary Structure (WUSS) notation

Functions

char *vrna_db_from_WUSS(const char *wuss)
#include <ViennaRNA/utils/structures.h> Convert a WUSS annotation string to dot-bracket format.

Note: This function flattens all brackets, and treats pseudo-knots annotated by matching pairs of
upper/lowercase letters as unpaired nucleotides

Parameters
• wuss – The input string in WUSS notation

Returns
A dot-bracket notation of the input secondary structure

502 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Pair Table Representation of Secondary Structures

Functions

short *vrna_ptable(const char *structure)
#include <ViennaRNA/utils/structures.h> Create a pair table from a dot-bracket notation of a secondary
structure.

Returns a newly allocated table, such that table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains
the length of the structure.

SWIG Wrapper Notes:
This functions is wrapped as overloaded function ptable() that takes an optional argument
options to specify which type of matching brackets should be considered during conversion.
The default set is round brackets, i.e. VRNA_BRACKETS_RND. See, e.g. RNA.ptable() in the
Python API .

See also:
vrna_ptable_from_string(), vrna_db_from_ptable()

Parameters
• structure – The secondary structure in dot-bracket notation

Returns
A pointer to the created pair_table

short *vrna_ptable_from_string(const char *structure, unsigned int options)
#include <ViennaRNA/utils/structures.h> Create a pair table for a secondary structure string.

This function takes an input string of a secondary structure annotation in dot-bracket-notation or dot-
bracket-ext-notation, and converts it into a pair table representation.

SWIG Wrapper Notes:
This functions is wrapped as overloaded function ptable() that takes an optional argument
options to specify which type of matching brackets should be considered during conversion.
The default set is round brackets, i.e. VRNA_BRACKETS_RND. See, e.g. RNA.ptable() in the
Python API .

See also:
vrna_ptable(), vrna_db_from_ptable(), vrna_db_flatten_to(), vrna_pt_pk_remove()
VRNA_BRACKETS_RND, VRNA_BRACKETS_ANG, VRNA_BRACKETS_CLY ,
VRNA_BRACKETS_SQR, VRNA_BRACKETS_ALPHA, VRNA_BRACKETS_DEFAULT ,
VRNA_BRACKETS_ANY

Note: This function also extracts crossing base pairs, i.e. pseudo-knots if more than a single matching
bracket type is allowed through the bitmask options.

Parameters
• structure – Secondary structure in dot-bracket-ext-notation

7.14. Utilities 503

ViennaRNA, Release 2.6.4

• options – A bitmask to specify which brackets are recognized during conversion to
pair table

Returns
A pointer to a new pair table of the provided secondary structure

short *vrna_pt_pk_get(const char *structure)
#include <ViennaRNA/utils/structures.h> Create a pair table of a secondary structure (pseudo-knot
version)

Returns a newly allocated table, such that table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains
the length of the structure.

In contrast to vrna_ptable() this function also recognizes the base pairs denoted by ‘[’ and ‘]’ brackets.
Thus, this function behaves like

vrna_ptable_from_string(structure, VRNA_BRACKETS_RND | VRNA_BRACKETS_SQR)

See also:
vrna_ptable_from_string()

Parameters
• structure – The secondary structure in (extended) dot-bracket notation

Returns
A pointer to the created pair_table

short *vrna_ptable_copy(const short *pt)
#include <ViennaRNA/utils/structures.h> Get an exact copy of a pair table.

Parameters
• pt – The pair table to be copied

Returns
A pointer to the copy of ‘pt’

short *vrna_pt_ali_get(const char *structure)
#include <ViennaRNA/utils/structures.h> Create a pair table of a secondary structure (snoop align
version)

short *vrna_pt_snoop_get(const char *structure)
#include <ViennaRNA/utils/structures.h> Create a pair table of a secondary structure (snoop version)

returns a newly allocated table, such that: table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains
the length of the structure. The special pseudoknotted H/ACA-mRNA structure is taken into account.

short *vrna_pt_pk_remove(const short *ptable, unsigned int options)
#include <ViennaRNA/utils/structures.h> Remove pseudo-knots from a pair table.

This function removes pseudo-knots from an input structure by determining the minimum number of
base pairs that need to be removed to make the structure pseudo-knot free.

To accomplish that, we use a dynamic programming algorithm similar to the Nussinov maxmimum
matching approach.

See also:
vrna_db_pk_remove()

Parameters

504 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• ptable – Input structure that may include pseudo-knots

• options –

Returns
The input structure devoid of pseudo-knots

Pair List Representation of Secondary Structures

Defines

VRNA_PLIST_TYPE_BASEPAIR

#include <ViennaRNA/utils/structures.h> A Base Pair element.

VRNA_PLIST_TYPE_GQUAD

#include <ViennaRNA/utils/structures.h> A G-Quadruplex element.

VRNA_PLIST_TYPE_H_MOTIF

#include <ViennaRNA/utils/structures.h> A Hairpin loop motif element.

VRNA_PLIST_TYPE_I_MOTIF

#include <ViennaRNA/utils/structures.h> An Internal loop motif element.

VRNA_PLIST_TYPE_UD_MOTIF

#include <ViennaRNA/utils/structures.h> An Unstructured Domain motif element.

VRNA_PLIST_TYPE_STACK

#include <ViennaRNA/utils/structures.h> A Base Pair stack element.

VRNA_PLIST_TYPE_UNPAIRED

#include <ViennaRNA/utils/structures.h> An unpaired base.

VRNA_PLIST_TYPE_TRIPLE

#include <ViennaRNA/utils/structures.h> One pair of a base triplet.

Typedefs

typedef struct vrna_elem_prob_s vrna_ep_t
#include <ViennaRNA/utils/structures.h> Convenience typedef for data structure vrna_elem_prob_s.

7.14. Utilities 505

ViennaRNA, Release 2.6.4

Functions

vrna_ep_t *vrna_plist(const char *struc, float pr)
#include <ViennaRNA/utils/structures.h> Create a vrna_ep_t from a dot-bracket string.

The dot-bracket string is parsed and for each base pair an entry in the plist is created. The probability
of each pair in the list is set by a function parameter.

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be
used to stop looping over its entries

Parameters
• struc – The secondary structure in dot-bracket notation

• pr – The probability for each base pair used in the plist

Returns
The plist array

struct vrna_elem_prob_s
#include <ViennaRNA/utils/structures.h> Data structure representing a single entry of an element
probability list (e.g. list of pair probabilities)

VRNA_PLIST_TYPE_BASEPAIR, VRNA_PLIST_TYPE_GQUAD, VRNA_PLIST_TYPE_H_MOTIF,
VRNA_PLIST_TYPE_I_MOTIF, VRNA_PLIST_TYPE_UD_MOTIF, VRNA_PLIST_TYPE_STACK

See also:
vrna_plist(), vrna_plist_from_probs(), vrna_db_from_plist(),

Public Members

int i
Start position (usually 5’ nucleotide that starts the element, e.g. base pair)

int j
End position (usually 3’ nucleotide that ends the element, e.g. base pair)

float p
Probability of the element.

int type
Type of the element.

Abstract Shapes Representation of Secondary Structures

506 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Functions

char *vrna_abstract_shapes(const char *structure, unsigned int level)
#include <ViennaRNA/utils/structures.h> Convert a secondary structure in dot-bracket notation to its
abstract shapes representation.

This function converts a secondary structure into its abstract shapes representation as presented by
Giegerich et al. [2004] .

SWIG Wrapper Notes:
This function is available as an overloaded function abstract_shapes() where the optional
second parameter level defaults to 5. See, e.g. RNA.abstract_shapes() in the Python API .

See also:
vrna_abstract_shapes_pt()

Parameters
• structure – A secondary structure in dot-bracket notation

• level – The abstraction level (integer in the range of 0 to 5)

Returns
The secondary structure in abstract shapes notation

char *vrna_abstract_shapes_pt(const short *pt, unsigned int level)
#include <ViennaRNA/utils/structures.h> Convert a secondary structure to its abstract shapes repre-
sentation.

This function converts a secondary structure into its abstract shapes representation as presented by
Giegerich et al. [2004] . This function is equivalent to vrna_db_to_shapes(), but requires a pair table
input instead of a dot-bracket structure.

SWIG Wrapper Notes:
This function is available as an overloaded function abstract_shapes() where the optional
second parameter level defaults to 5. See, e.g. RNA.abstract_shapes() in the Python API .

See also:
vrna_abstract_shapes()

Note: The length of the structure must be present at pt[0]!

Parameters
• pt – A secondary structure in pair table format

• level – The abstraction level (integer in the range of 0 to 5)

Returns
The secondary structure in abstract shapes notation

7.14. Utilities 507

ViennaRNA, Release 2.6.4

Helix List Representation of Secondary Structures

typedef struct vrna_hx_s vrna_hx_t
#include <ViennaRNA/utils/structures.h> Convenience typedef for data structure vrna_hx_s.

vrna_hx_t *vrna_hx_from_ptable(short *pt)
#include <ViennaRNA/utils/structures.h> Convert a pair table representation of a secondary structure into
a helix list.

Parameters
• pt – The secondary structure in pair table representation

Returns
The secondary structure represented as a helix list

vrna_hx_t *vrna_hx_merge(const vrna_hx_t *list, int maxdist)
#include <ViennaRNA/utils/structures.h> Create a merged helix list from another helix list.

struct vrna_hx_s
#include <ViennaRNA/utils/structures.h> Data structure representing an entry of a helix list.

Public Members

unsigned int start

unsigned int end

unsigned int length

unsigned int up5

unsigned int up3

Tree Representation of Secondary Structures

Defines

VRNA_STRUCTURE_TREE_HIT

#include <ViennaRNA/utils/structures.h> Homeomorphically Irreducible Tree (HIT) representation of
a secondary structure.

See also:
vrna_db_to_tree_string()

508 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_STRUCTURE_TREE_SHAPIRO_SHORT

#include <ViennaRNA/utils/structures.h> (short) Coarse Grained representation of a secondary struc-
ture

See also:
vrna_db_to_tree_string()

VRNA_STRUCTURE_TREE_SHAPIRO

#include <ViennaRNA/utils/structures.h> (full) Coarse Grained representation of a secondary structure

See also:
vrna_db_to_tree_string()

VRNA_STRUCTURE_TREE_SHAPIRO_EXT

#include <ViennaRNA/utils/structures.h> (extended) Coarse Grained representation of a secondary
structure

See also:
vrna_db_to_tree_string()

VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT

#include <ViennaRNA/utils/structures.h> (weighted) Coarse Grained representation of a secondary
structure

See also:
vrna_db_to_tree_string()

VRNA_STRUCTURE_TREE_EXPANDED

#include <ViennaRNA/utils/structures.h> Expanded Tree representation of a secondary structure.

See also:
vrna_db_to_tree_string()

Functions

char *vrna_db_to_tree_string(const char *structure, unsigned int type)
#include <ViennaRNA/utils/structures.h> Convert a Dot-Bracket structure string into tree string rep-
resentation.

This function allows one to convert a secondary structure in dot-bracket notation into one of the vari-
ous tree representations for secondary structures. The resulting tree is then represented as a string of
parenthesis and node symbols, similar to to the Newick format.

Currently we support conversion into the following formats, denoted by the value of parameter type:

• VRNA_STRUCTURE_TREE_HIT - Homeomorphically Irreducible Tree (HIT) representation of
a secondary structure. (See also Fontana et al. [1993])

7.14. Utilities 509

ViennaRNA, Release 2.6.4

• VRNA_STRUCTURE_TREE_SHAPIRO_SHORT - (short) Coarse Grained representation of a sec-
ondary structure (same as Shapiro [1988] , but with root node R and without S nodes for the stems)

• VRNA_STRUCTURE_TREE_SHAPIRO - (full) Coarse Grained representation of a secondary
structure (See also Shapiro [1988])

• VRNA_STRUCTURE_TREE_SHAPIRO_EXT - (extended) Coarse Grained representation of a
secondary structure (same as Shapiro [1988] , but external nodes denoted as E)

• VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT - (weighted) Coarse Grained representation of
a secondary structure (same as VRNA_STRUCTURE_TREE_SHAPIRO_EXT but with additional
weights for number of unpaired nucleotides in loop, and number of pairs in stems)

• VRNA_STRUCTURE_TREE_EXPANDED - Expanded Tree representation of a secondary struc-
ture.

See also:
sec_structure_representations_tree

Parameters
• structure – The null-terminated dot-bracket structure string

• type – A switch to determine the type of tree string representation

Returns
A tree representation of the input structure

char *vrna_tree_string_unweight(const char *structure)
#include <ViennaRNA/utils/structures.h> Remove weights from a linear string tree representation of
a secondary structure.

This function strips the weights of a linear string tree representation such as HIT, or Coarse Grained
Tree sensu Shapiro [1988]

See also:
vrna_db_to_tree_string()

Parameters
• structure – A linear string tree representation of a secondary structure with weights

Returns
A linear string tree representation of a secondary structure without weights

char *vrna_tree_string_to_db(const char *tree)
#include <ViennaRNA/utils/structures.h> Convert a linear tree string representation of a secondary
structure back to Dot-Bracket notation.

See also:
vrna_db_to_tree_string(), VRNA_STRUCTURE_TREE_EXPANDED,
VRNA_STRUCTURE_TREE_HIT , sec_structure_representations_tree

Warning: This function only accepts Expanded and HIT tree representations!

Parameters

510 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• tree – A linear tree string representation of a secondary structure

Returns
A dot-bracket notation of the secondary structure provided in tree

Distance measures between Secondary Structures

Functions

int vrna_bp_distance_pt(const short *pt1, const short *pt2)
#include <ViennaRNA/utils/structures.h> Compute the “base pair” distance between two pair tables
pt1 and pt2 of secondary structures.

The pair tables should have the same length. dist = number of base pairs in one structure but not in the
other same as edit distance with open-pair close-pair as move-set

SWIG Wrapper Notes:
This function is available as an overloaded method bp_distance(). See, e.g. RNA.bp_distance()
in the Python API .

See also:
vrna_bp_distance()

Parameters
• pt1 – First structure in dot-bracket notation

• pt2 – Second structure in dot-bracket notation

Returns
The base pair distance between pt1 and pt2

int vrna_bp_distance(const char *str1, const char *str2)
#include <ViennaRNA/utils/structures.h> Compute the “base pair” distance between two secondary
structures s1 and s2.

This is a wrapper around vrna_bp_distance_pt(). The sequences should have the same length. dist =
number of base pairs in one structure but not in the other same as edit distance with open-pair close-pair
as move-set

SWIG Wrapper Notes:
This function is available as an overloaded method bp_distance(). Note that the SWIG
wrapper takes two structure in dot-bracket notation and converts them into pair tables us-
ing vrna_ptable_from_string(). The resulting pair tables are then internally passed to
vrna_bp_distance_pt(). To control which kind of matching brackets will be used dur-
ing conversion, the optional argument options can be used. See also the description of
vrna_ptable_from_string() for available options. (default: VRNA_BRACKETS_RND). See, e.g.
RNA.bp_distance() in the Python API .

See also:
vrna_bp_distance_pt()

Parameters

7.14. Utilities 511

ViennaRNA, Release 2.6.4

• str1 – First structure in dot-bracket notation

• str2 – Second structure in dot-bracket notation

Returns
The base pair distance between str1 and str2

double vrna_dist_mountain(const char *str1, const char *str2, unsigned int p)
#include <ViennaRNA/utils/structures.h>

Deprecated Interface for Secondary Structure Utilities

Defines

STRUC

#include <ViennaRNA/RNAstruct.h>

Functions

char *b2HIT(const char *structure)
#include <ViennaRNA/RNAstruct.h> Converts the full structure from bracket notation to the HIT no-
tation including root.

Deprecated:
See vrna_db_to_tree_string() and VRNA_STRUCTURE_TREE_HIT for a replacement

Parameters
• structure –

Returns

char *b2C(const char *structure)
#include <ViennaRNA/RNAstruct.h> Converts the full structure from bracket notation to the a coarse
grained notation using the ‘H’ ‘B’ ‘I’ ‘M’ and ‘R’ identifiers.

Deprecated:
See vrna_db_to_tree_string() and VRNA_STRUCTURE_TREE_SHAPIRO_SHORT for a replace-
ment

Parameters
• structure –

Returns

char *b2Shapiro(const char *structure)
#include <ViennaRNA/RNAstruct.h> Converts the full structure from bracket notation to the weighted
coarse grained notation using the ‘H’ ‘B’ ‘I’ ‘M’ ‘S’ ‘E’ and ‘R’ identifiers.

512 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Deprecated:
See vrna_db_to_tree_string() and VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT for a re-
placement

Parameters
• structure –

Returns

char *add_root(const char *structure)
#include <ViennaRNA/RNAstruct.h> Adds a root to an un-rooted tree in any except bracket notation.

Parameters
• structure –

Returns
char *expand_Shapiro(const char *coarse)

#include <ViennaRNA/RNAstruct.h> Inserts missing ‘S’ identifiers in unweighted coarse grained struc-
tures as obtained from b2C().

Parameters
• coarse –

Returns
char *expand_Full(const char *structure)

#include <ViennaRNA/RNAstruct.h> Convert the full structure from bracket notation to the expanded
notation including root.

Parameters
• structure –

Returns
char *unexpand_Full(const char *ffull)

#include <ViennaRNA/RNAstruct.h> Restores the bracket notation from an expanded full or HIT tree,
that is any tree using only identifiers ‘U’ ‘P’ and ‘R’.

Parameters
• ffull –

Returns
char *unweight(const char *wcoarse)

#include <ViennaRNA/RNAstruct.h> Strip weights from any weighted tree.

Parameters
• wcoarse –

Returns
void unexpand_aligned_F(char *align[2])

#include <ViennaRNA/RNAstruct.h> Converts two aligned structures in expanded notation.

Takes two aligned structures as produced by tree_edit_distance() function back to bracket notation with
‘_’ as the gap character. The result overwrites the input.

Parameters
• align –

7.14. Utilities 513

ViennaRNA, Release 2.6.4

void parse_structure(const char *structure)
#include <ViennaRNA/RNAstruct.h> Collects a statistic of structure elements of the full structure in
bracket notation.

The function writes to the following global variables: loop_size, loop_degree, helix_size, loops, pairs,
unpaired

Parameters
• structure –

char *pack_structure(const char *struc)
#include <ViennaRNA/utils/structures.h> Pack secondary secondary structure, 5:1 compression using
base 3 encoding.

Returns a binary string encoding of the secondary structure using a 5:1 compression scheme. The
string is NULL terminated and can therefore be used with standard string functions such as strcmp().
Useful for programs that need to keep many structures in memory.

Deprecated:
Use vrna_db_pack() as a replacement

Parameters
• struc – The secondary structure in dot-bracket notation

Returns
The binary encoded structure

char *unpack_structure(const char *packed)
#include <ViennaRNA/utils/structures.h> Unpack secondary structure previously packed with
pack_structure()

Translate a compressed binary string produced by pack_structure() back into the familiar dot-bracket
notation.

Deprecated:
Use vrna_db_unpack() as a replacement

Parameters
• packed – The binary encoded packed secondary structure

Returns
The unpacked secondary structure in dot-bracket notation

short *make_pair_table(const char *structure)
#include <ViennaRNA/utils/structures.h> Create a pair table of a secondary structure.

Returns a newly allocated table, such that table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains
the length of the structure.

Deprecated:
Use vrna_ptable() instead

Parameters
• structure – The secondary structure in dot-bracket notation

514 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Returns
A pointer to the created pair_table

short *copy_pair_table(const short *pt)
#include <ViennaRNA/utils/structures.h> Get an exact copy of a pair table.

Deprecated:
Use vrna_ptable_copy() instead

Parameters
• pt – The pair table to be copied

Returns
A pointer to the copy of ‘pt’

short *alimake_pair_table(const char *structure)
#include <ViennaRNA/utils/structures.h> Pair table for snoop align

Deprecated:
Use vrna_pt_ali_get() instead!

short *make_pair_table_snoop(const char *structure)
#include <ViennaRNA/utils/structures.h> returns a newly allocated table, such that: table[i]=j if (i.j)
pair or 0 if i is unpaired, table[0] contains the length of the structure. The special pseudoknotted
H/ACA-mRNA structure is taken into account.

Deprecated:
Use vrna_pt_snoop_get() instead!

int bp_distance(const char *str1, const char *str2)
#include <ViennaRNA/utils/structures.h> Compute the “base pair” distance between two secondary
structures s1 and s2.

The sequences should have the same length. dist = number of base pairs in one structure but not in the
other same as edit distance with open-pair close-pair as move-set

Deprecated:
Use vrna_bp_distance instead

Parameters
• str1 – First structure in dot-bracket notation

• str2 – Second structure in dot-bracket notation

Returns
The base pair distance between str1 and str2

unsigned int *make_referenceBP_array(short *reference_pt, unsigned int turn)
#include <ViennaRNA/utils/structures.h> Make a reference base pair count matrix.

Get an upper triangular matrix containing the number of basepairs of a reference structure for each
interval [i,j] with i<j. Access it via iindx!!!

7.14. Utilities 515

ViennaRNA, Release 2.6.4

Deprecated:
Use vrna_refBPcnt_matrix() instead

unsigned int *compute_BPdifferences(short *pt1, short *pt2, unsigned int turn)
#include <ViennaRNA/utils/structures.h> Make a reference base pair distance matrix.

Get an upper triangular matrix containing the base pair distance of two reference structures for each
interval [i,j] with i<j. Access it via iindx!!!

Deprecated:
Use vrna_refBPdist_matrix() instead

void parenthesis_structure(char *structure, vrna_bp_stack_t *bp, int length)
#include <ViennaRNA/utils/structures.h> Create a dot-backet/parenthesis structure from backtracking
stack.

Deprecated:
use vrna_parenthesis_structure() instead

Note: This function is threadsafe

void parenthesis_zuker(char *structure, vrna_bp_stack_t *bp, int length)
#include <ViennaRNA/utils/structures.h> Create a dot-backet/parenthesis structure from backtracking
stack obtained by zuker suboptimal calculation in cofold.c.

Deprecated:
use vrna_parenthesis_zuker instead

Note: This function is threadsafe

void bppm_to_structure(char *structure, FLT_OR_DBL *pr, unsigned int length)
#include <ViennaRNA/utils/structures.h> Create a dot-bracket like structure string from base pair prob-
ability matrix.

Deprecated:
Use vrna_db_from_probs() instead!

char bppm_symbol(const float *x)
#include <ViennaRNA/utils/structures.h> Get a pseudo dot bracket notation for a given probability
information.

Deprecated:
Use vrna_bpp_symbol() instead!

516 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Variables

int loop_size[2000]
contains a list of all loop sizes. loop_size[0] contains the number of external bases.

int helix_size[2000]
contains a list of all stack sizes.

int loop_degree[2000]
contains the corresponding list of loop degrees.

int loops
contains the number of loops (and therefore of stacks).

int unpaired
contains the number of unpaired bases.

int pairs
contains the number of base pairs in the last parsed structure.

Functions

int *vrna_loopidx_from_ptable(const short *pt)
#include <ViennaRNA/utils/structures.h> Get a loop index representation of a structure.

unsigned int *vrna_refBPcnt_matrix(const short *reference_pt, unsigned int turn)
#include <ViennaRNA/utils/structures.h> Make a reference base pair count matrix.

Get an upper triangular matrix containing the number of basepairs of a reference structure for each
interval [i,j] with i<j. Access it via iindx!!!

unsigned int *vrna_refBPdist_matrix(const short *pt1, const short *pt2, unsigned int turn)
#include <ViennaRNA/utils/structures.h> Make a reference base pair distance matrix.

Get an upper triangular matrix containing the base pair distance of two reference structures for each
interval [i,j] with i<j. Access it via iindx!!!

char *vrna_db_from_probs(const FLT_OR_DBL *pr, unsigned int length)
#include <ViennaRNA/utils/structures.h> Create a dot-bracket like structure string from base pair prob-
ability matrix.

SWIG Wrapper Notes:
This function is available as parameter-less method db_from_probs() bound to objects of type
fold_compound. Parameters pr and length are implicitely taken from the fold_compound object
the method is bound to. Upon missing base pair probabilities, this method returns an empty string.
See, e.g. RNA.db_from_probs() in the Python API .

char vrna_bpp_symbol(const float *x)
#include <ViennaRNA/utils/structures.h> Get a pseudo dot bracket notation for a given probability
information.

7.14. Utilities 517

ViennaRNA, Release 2.6.4

char *vrna_db_from_bp_stack(vrna_bp_stack_t *bp, unsigned int length)
#include <ViennaRNA/utils/structures.h> Create a dot-backet/parenthesis structure from backtracking
stack.

This function is capable to create dot-bracket structures from suboptimal structure prediction sensu M.
Zuker

Parameters
• bp – Base pair stack containing the traced base pairs

• length – The length of the structure

Returns
The secondary structure in dot-bracket notation as provided in the input

void vrna_letter_structure(char *structure, vrna_bp_stack_t *bp, unsigned int length)
#include <ViennaRNA/utils/structures.h>

short *make_pair_table_pk(const char *structure)
#include <ViennaRNA/utils/structures.h>

int *make_loop_index_pt(short *pt)
#include <ViennaRNA/utils/structures.h>

void letter_structure(char *structure, vrna_bp_stack_t *bp, int length)
#include <ViennaRNA/utils/structures.h>

7.14.4 Multiple Sequence Alignment Utilities

Functions to extract features from and to manipulate multiple sequence alignments (MSA).

Deprecated Interface for Multiple Sequence Alignment Utilities

Typedefs

typedef struct vrna_pinfo_s pair_info
#include <ViennaRNA/utils/alignments.h> Old typename of vrna_pinfo_s.

Deprecated:
Use vrna_pinfo_t instead!

Functions

int read_clustal(FILE *clust, char *AlignedSeqs[], char *names[])
#include <ViennaRNA/utils/alignments.h>

char *consensus(const char *AS[])
#include <ViennaRNA/utils/alignments.h>

char *consens_mis(const char *AS[])
#include <ViennaRNA/utils/alignments.h>

518 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

char *get_ungapped_sequence(const char *seq)
#include <ViennaRNA/utils/alignments.h>

int get_mpi(char *Alseq[], int n_seq, int length, int *mini)
#include <ViennaRNA/utils/alignments.h> Get the mean pairwise identity in steps from ?to?(ident)

Deprecated:
Use vrna_aln_mpi() as a replacement

Parameters
• Alseq –

• n_seq – The number of sequences in the alignment

• length – The length of the alignment

• mini –

Returns
The mean pairwise identity

void encode_ali_sequence(const char *sequence, short *S, short *s5, short *s3, char *ss, unsigned
short *as, int circ)

#include <ViennaRNA/utils/alignments.h> Get arrays with encoded sequence of the alignment.

this function assumes that in S, S5, s3, ss and as enough space is already allocated (size must be at least
sequence length+2)

Parameters
• sequence – The gapped sequence from the alignment

• S – pointer to an array that holds encoded sequence

• s5 – pointer to an array that holds the next base 5’ of alignment position i

• s3 – pointer to an array that holds the next base 3’ of alignment position i

• ss –

• as –

• circ – assume the molecules to be circular instead of linear (circ=0)

void alloc_sequence_arrays(const char **sequences, short ***S, short ***S5, short ***S3, unsigned
short ***a2s, char ***Ss, int circ)

#include <ViennaRNA/utils/alignments.h> Allocate memory for sequence array used to deal with
aligned sequences.

Note that these arrays will also be initialized according to the sequence alignment given

See also:
free_sequence_arrays()

Parameters
• sequences – The aligned sequences

• S – A pointer to the array of encoded sequences

• S5 – A pointer to the array that contains the next 5’ nucleotide of a sequence position

• S3 – A pointer to the array that contains the next 3’ nucleotide of a sequence position

7.14. Utilities 519

ViennaRNA, Release 2.6.4

• a2s – A pointer to the array that contains the alignment to sequence position mapping

• Ss – A pointer to the array that contains the ungapped sequence

• circ – assume the molecules to be circular instead of linear (circ=0)

void free_sequence_arrays(unsigned int n_seq, short ***S, short ***S5, short ***S3, unsigned short
***a2s, char ***Ss)

#include <ViennaRNA/utils/alignments.h> Free the memory of the sequence arrays used to deal with
aligned sequences.

This function frees the memory previously allocated with alloc_sequence_arrays()

See also:
alloc_sequence_arrays()

Parameters
• n_seq – The number of aligned sequences

• S – A pointer to the array of encoded sequences

• S5 – A pointer to the array that contains the next 5’ nucleotide of a sequence position

• S3 – A pointer to the array that contains the next 3’ nucleotide of a sequence position

• a2s – A pointer to the array that contains the alignment to sequence position mapping

• Ss – A pointer to the array that contains the ungapped sequence

Defines

VRNA_ALN_DEFAULT

#include <ViennaRNA/utils/alignments.h> Use default alignment settings.

VRNA_ALN_RNA

#include <ViennaRNA/utils/alignments.h> Convert to RNA alphabet.

VRNA_ALN_DNA

#include <ViennaRNA/utils/alignments.h> Convert to DNA alphabet.

VRNA_ALN_UPPERCASE

#include <ViennaRNA/utils/alignments.h> Convert to uppercase nucleotide letters.

VRNA_ALN_LOWERCASE

#include <ViennaRNA/utils/alignments.h> Convert to lowercase nucleotide letters.

VRNA_MEASURE_SHANNON_ENTROPY

#include <ViennaRNA/utils/alignments.h> Flag indicating Shannon Entropy measure.

Shannon Entropy is defined as 𝐻 = −
∑︀

𝑐 𝑝𝑐 · log2 𝑝𝑐

520 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Typedefs

typedef struct vrna_pinfo_s vrna_pinfo_t
#include <ViennaRNA/utils/alignments.h> Typename for the base pair info repesenting data structure
vrna_pinfo_s.

Functions

int vrna_aln_mpi(const char **alignment)
#include <ViennaRNA/utils/alignments.h> Get the mean pairwise identity in steps from ?to?(ident)

SWIG Wrapper Notes:
This function is available as function aln_mpi(). See e.g. RNA.aln_mpi() in the Python API .

Parameters
• alignment – Aligned sequences

Returns
The mean pairwise identity

vrna_pinfo_t *vrna_aln_pinfo(vrna_fold_compound_t *fc, const char *structure, double threshold)
#include <ViennaRNA/utils/alignments.h> Retrieve an array of vrna_pinfo_t structures from precom-
puted pair probabilities.

This array of structures contains information about positionwise pair probabilies, base pair entropy and
more

See also:
vrna_pinfo_t, and vrna_pf()

Parameters
• fc – The vrna_fold_compound_t of type VRNA_FC_TYPE_COMPARATIVE with pre-

computed partition function matrices

• structure – An optional structure in dot-bracket notation (Maybe NULL)

• threshold – Do not include results with pair probabilities below threshold

Returns
The vrna_pinfo_t array

int *vrna_aln_pscore(const char **alignment, vrna_md_t *md)
#include <ViennaRNA/utils/alignments.h>

SWIG Wrapper Notes:
This function is available as overloaded function aln_pscore() where the last parameter may be
omitted, indicating md = NULL. See e.g. RNA.aln_pscore() in the Python API .

int vrna_pscore(vrna_fold_compound_t *fc, unsigned int i, unsigned int j)
#include <ViennaRNA/utils/alignments.h>

int vrna_pscore_freq(vrna_fold_compound_t *fc, const unsigned int *frequencies, unsigned int pairs)
#include <ViennaRNA/utils/alignments.h>

7.14. Utilities 521

ViennaRNA, Release 2.6.4

char **vrna_aln_slice(const char **alignment, unsigned int i, unsigned int j)
#include <ViennaRNA/utils/alignments.h> Slice out a subalignment from a larger alignment.

See also:
vrna_aln_free()

Note: The user is responsible to free the memory occupied by the returned subalignment

Parameters
• alignment – The input alignment

• i – The first column of the subalignment (1-based)

• j – The last column of the subalignment (1-based)

Returns
The subalignment between column 𝑖 and 𝑗

void vrna_aln_free(char **alignment)
#include <ViennaRNA/utils/alignments.h> Free memory occupied by a set of aligned sequences.

Parameters
• alignment – The input alignment

char **vrna_aln_uppercase(const char **alignment)
#include <ViennaRNA/utils/alignments.h> Create a copy of an alignment with only uppercase letters
in the sequences.

See also:
vrna_aln_copy

Parameters
• alignment – The input sequence alignment (last entry must be NULL terminated)

Returns
A copy of the input alignment where lowercase sequence letters are replaced by uppercase
letters

char **vrna_aln_toRNA(const char **alignment)
#include <ViennaRNA/utils/alignments.h> Create a copy of an alignment where DNA alphabet is re-
placed by RNA alphabet.

See also:
vrna_aln_copy

Parameters
• alignment – The input sequence alignment (last entry must be NULL terminated)

Returns
A copy of the input alignment where DNA alphabet is replaced by RNA alphabet (T ->
U)

522 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

char **vrna_aln_copy(const char **alignment, unsigned int options)
#include <ViennaRNA/utils/alignments.h> Make a copy of a multiple sequence alignment.

This function allows one to create a copy of a multiple sequence alignment. The options param-
eter additionally allows for sequence manipulation, such as converting DNA to RNA alphabet, and
conversion to uppercase letters.

See also:
vrna_aln_copy(), VRNA_ALN_RNA, VRNA_ALN_UPPERCASE, VRNA_ALN_DEFAULT

Parameters
• alignment – The input sequence alignment (last entry must be NULL terminated)

• options – Option flags indicating whether the aligned sequences should be converted

Returns
A (manipulated) copy of the input alignment

float *vrna_aln_conservation_struct(const char **alignment, const char *structure, const
vrna_md_t *md)

#include <ViennaRNA/utils/alignments.h> Compute base pair conservation of a consensus structure.

This function computes the base pair conservation (fraction of canonical base pairs) of a consensus
structure given a multiple sequence alignment. The base pair types that are considered canonical may
be specified using the vrna_md_t.pair array. Passing NULL as parameter md results in default pairing
rules, i.e. canonical Watson-Crick and GU Wobble pairs.

SWIG Wrapper Notes:
This function is available as overloaded function aln_conservation_struct()
where the last parameter md may be omitted, indicating md = NULL. See, e.g. RNA.
aln_conservation_struct() in the Python API .

Parameters
• alignment – The input sequence alignment (last entry must be NULL terminated)

• structure – The consensus structure in dot-bracket notation

• md – Model details that specify compatible base pairs (Maybe NULL)

Returns
A 1-based vector of base pair conservations

float *vrna_aln_conservation_col(const char **alignment, const vrna_md_t *md_p, unsigned int
options)

#include <ViennaRNA/utils/alignments.h> Compute nucleotide conservation in an alignment.

This function computes the conservation of nucleotides in alignment columns. The simples measure is
Shannon Entropy and can be selected by passing the VRNA_MEASURE_SHANNON_ENTROPY flag
in the options parameter.

SWIG Wrapper Notes:
This function is available as overloaded function aln_conservation_col()
where the last two parameters may be omitted, indicating md = NULL, and
options = VRNA_MEASURE_SHANNON_ENTROPY , respectively. See e.g. RNA.
aln_conservation_col() in the Python API .

7.14. Utilities 523

ViennaRNA, Release 2.6.4

See also:
VRNA_MEASURE_SHANNON_ENTROPY

Note: Currently, only VRNA_MEASURE_SHANNON_ENTROPY is supported as conservation mea-
sure.

Parameters
• alignment – The input sequence alignment (last entry must be NULL terminated)

• md – Model details that specify known nucleotides (Maybe NULL)

• options – A flag indicating which measure of conservation should be applied

Returns
A 1-based vector of column conservations

char *vrna_aln_consensus_sequence(const char **alignment, const vrna_md_t *md_p)
#include <ViennaRNA/utils/alignments.h> Compute the consensus sequence for a given multiple se-
quence alignment.

SWIG Wrapper Notes:
This function is available as overloaded function aln_consensus_sequence() where the last
parameter may be omitted, indicating md = NULL. See e.g. RNA.aln_consensus_sequence()
in the Python API .

Parameters
• alignment – The input sequence alignment (last entry must be NULL terminated)

• md_p – Model details that specify known nucleotides (Maybe NULL)

Returns
The consensus sequence of the alignment, i.e. the most frequent nucleotide for each
alignment column

char *vrna_aln_consensus_mis(const char **alignment, const vrna_md_t *md_p)
#include <ViennaRNA/utils/alignments.h> Compute the Most Informative Sequence (MIS) for a given
multiple sequence alignment.

The most informative sequence (MIS) [Freyhult et al., 2005] displays for each alignment column the
nucleotides with frequency greater than the background frequency, projected into IUPAC notation.
Columns where gaps are over-represented are in lower case.

SWIG Wrapper Notes:
This function is available as overloaded function aln_consensus_mis()where the last parameter
may be omitted, indicating md = NULL. See e.g. RNA.aln_consensus_mis() in the Python API .

Parameters
• alignment – The input sequence alignment (last entry must be NULL terminated)

• md_p – Model details that specify known nucleotides (Maybe NULL)

Returns
The most informative sequence for the alignment

524 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

struct vrna_pinfo_s
#include <ViennaRNA/utils/alignments.h> A base pair info structure.

For each base pair (i,j) with i,j in [0, n-1] the structure lists:

• its probability ‘p’

• an entropy-like measure for its well-definedness ‘ent’

• the frequency of each type of pair in ‘bp[]’

– ’bp[0]’ contains the number of non-compatible sequences

– ’bp[1]’ the number of CG pairs, etc.

Public Members

unsigned i
nucleotide position i

unsigned j
nucleotide position j

float p
Probability.

float ent
Pseudo entropy for 𝑝(𝑖, 𝑗) = 𝑆𝑖 + 𝑆𝑗 − 𝑝𝑖𝑗 * 𝑙𝑛(𝑝𝑖𝑗).

short bp[8]
Frequencies of pair_types.

char comp
1 iff pair is in mfe structure

7.14.5 Files and I/O

Nucleic Acid Sequences and Structures

Defines

VRNA_OPTION_MULTILINE

#include <ViennaRNA/io/file_formats.h> Tell a function that an input is assumed to span several lines.

If used as input-option a function might also be returning this state telling that it has read data from
multiple lines.

See also:
vrna_extract_record_rest_structure(), vrna_file_fasta_read_record()

7.14. Utilities 525

ViennaRNA, Release 2.6.4

VRNA_CONSTRAINT_MULTILINE

#include <ViennaRNA/io/file_formats.h> parse multiline constraint

Deprecated:
see vrna_extract_record_rest_structure()

VRNA_INPUT_VERBOSE

#include <ViennaRNA/io/file_formats.h>

Functions

void vrna_file_helixlist(const char *seq, const char *db, float energy, FILE *file)
#include <ViennaRNA/io/file_formats.h> Print a secondary structure as helix list.

Parameters
• seq – The RNA sequence

• db – The structure in dot-bracket format

• energy – Free energy of the structure in kcal/mol

• file – The file handle used to print to (print defaults to ‘stdout’ if(file == NULL))

void vrna_file_connect(const char *seq, const char *db, float energy, const char *identifier, FILE *file)
#include <ViennaRNA/io/file_formats.h> Print a secondary structure as connect table.

Connect table file format looks like this:

* 300 ENERGY = 7.0 example
* 1 G 0 2 22 1
* 2 G 1 3 21 2
*

where the headerline is followed by 6 columns with:

a. Base number: index n

b. Base (A, C, G, T, U, X)

c. Index n-1 (0 if first nucleotide)

d. Index n+1 (0 if last nucleotide)

e. Number of the base to which n is paired. No pairing is indicated by 0 (zero).

f. Natural numbering.

Parameters
• seq – The RNA sequence

• db – The structure in dot-bracket format

• energy – The free energy of the structure

• identifier – An optional identifier for the sequence

• file – The file handle used to print to (print defaults to ‘stdout’ if(file == NULL))

526 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void vrna_file_bpseq(const char *seq, const char *db, FILE *file)
#include <ViennaRNA/io/file_formats.h> Print a secondary structure in bpseq format.

Parameters
• seq – The RNA sequence

• db – The structure in dot-bracket format

• file – The file handle used to print to (print defaults to ‘stdout’ if(file == NULL))

void vrna_file_json(const char *seq, const char *db, double energy, const char *identifier, FILE *file)
#include <ViennaRNA/io/file_formats.h> Print a secondary structure in jsonformat.

Parameters
• seq – The RNA sequence

• db – The structure in dot-bracket format

• energy – The free energy

• identifier – An identifier for the sequence

• file – The file handle used to print to (print defaults to ‘stdout’ if(file == NULL))

unsigned int vrna_file_fasta_read_record(char **header, char **sequence, char ***rest, FILE *file,
unsigned int options)

#include <ViennaRNA/io/file_formats.h> Get a (fasta) data set from a file or stdin.

This function may be used to obtain complete datasets from a filehandle or stdin. A dataset is always
defined to contain at least a sequence. If data starts with a fasta header, i.e. a line like

>some header info

then vrna_file_fasta_read_record() will assume that the sequence that follows the header may span over
several lines. To disable this behavior and to assign a single line to the argument ‘sequence’ one can
pass VRNA_INPUT_NO_SPAN in the ‘options’ argument. If no fasta header is read in the beginning
of a data block, a sequence must not span over multiple lines!

Unless the options VRNA_INPUT_NOSKIP_COMMENTS or VRNA_INPUT_NOSKIP_BLANK_LINES
are passed, a sequence may be interrupted by lines starting with a comment character or empty lines.

A sequence is regarded as completely read if it was either assumed to not span over multiple lines, a
secondary structure or structure constraint follows the sequence on the next line, or a new header marks
the beginning of a new sequence. . .

All lines following the sequence (this includes comments) that do not initiate a new dataset according
to the above definition are available through the line-array ‘rest’. Here one can usually find the structure
constraint or other information belonging to the current dataset. Filling of ‘rest’ may be prevented by
passing VRNA_INPUT_NO_REST to the options argument.

The main purpose of this function is to be able to easily parse blocks of data in the header of a loop
where all calculations for the appropriate data is done inside the loop. The loop may be then left on
certain return values, e.g.:

char *id, *seq, **rest;
int i;
id = seq = NULL;
rest = NULL;
while(!(vrna_file_fasta_read_record(&id, &seq, &rest, NULL, 0) & (VRNA_INPUT_
→˓ERROR | VRNA_INPUT_QUIT))){
if(id)
printf("%s\n", id);

printf("%s\n", seq);
(continues on next page)

7.14. Utilities 527

ViennaRNA, Release 2.6.4

(continued from previous page)

if(rest)
for(i=0;rest[i];i++){
printf("%s\n", rest[i]);
free(rest[i]);

}
free(rest);
free(seq);
free(id);

}

In the example above, the while loop will be terminated when vrna_file_fasta_read_record() returns
either an error, EOF, or a user initiated quit request.

As long as data is read from stdin (we are passing NULL as the file pointer), the id is printed if it is
available for the current block of data. The sequence will be printed in any case and if some more lines
belong to the current block of data each line will be printed as well.

Note:
This function will exit any program with an error message if no sequence could be read!

This function is NOT threadsafe! It uses a global variable to store information about the next data
block. Do not forget to free the memory occupied by header, sequence and rest!

Parameters
• header – A pointer which will be set such that it points to the header of the record

• sequence – A pointer which will be set such that it points to the sequence of the record

• rest – A pointer which will be set such that it points to an array of lines which also
belong to the record

• file – A file handle to read from (if NULL, this function reads from stdin)

• options – Some options which may be passed to alter the behavior of the function,
use 0 for no options

Returns
A flag with information about what the function actually did read

char *vrna_extract_record_rest_structure(const char **lines, unsigned int length, unsigned int
option)

#include <ViennaRNA/io/file_formats.h> Extract a dot-bracket structure string from (multi-
line)character array.

This function extracts a dot-bracket structure string from the ‘rest’ array as returned by
vrna_file_fasta_read_record() and returns it. All occurences of comments within the ‘lines’ array will
be skipped as long as they do not break the structure string. If no structure could be read, this function
returns NULL.

See also:
vrna_file_fasta_read_record()

Parameters
• lines – The (multiline) character array to be parsed

• length – The assumed length of the dot-bracket string (passing a value < 1 results in
no length limit)

528 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• option – Some options which may be passed to alter the behavior of the function, use
0 for no options

Pre
The argument ‘lines’ has to be a 2-dimensional character array as obtained by
vrna_file_fasta_read_record()

Returns
The dot-bracket string read from lines or NULL

int vrna_file_SHAPE_read(const char *file_name, int length, double default_value, char *sequence,
double *values)

#include <ViennaRNA/io/file_formats.h> Read data from a given SHAPE reactivity input file.

This function parses the informations from a given file and stores the result in the preallocated string
sequence and the double array values.

Parameters
• file_name – Path to the constraints file

• length – Length of the sequence (file entries exceeding this limit will cause an error)

• default_value – Value for missing indices

• sequence – Pointer to an array used for storing the sequence obtained from the SHAPE
reactivity file

• values – Pointer to an array used for storing the values obtained from the SHAPE
reactivity file

int vrna_file_connect_read_record(FILE *fp, char **id, char **sequence, char **structure, char
**remainder, unsigned int options)

#include <ViennaRNA/io/file_formats.h>

int vrna_file_RNAstrand_db_read_record(FILE *fp, char **name_p, char **sequence_p, char
**structure_p, char **source_p, char **fname_p, char
**id_p, unsigned int options)

#include <ViennaRNA/io/file_formats.h>

void vrna_extract_record_rest_constraint(char **cstruc, const char **lines, unsigned int option)
#include <ViennaRNA/io/file_formats.h> Extract a hard constraint encoded as pseudo dot-bracket
string.

Deprecated:
Use vrna_extract_record_rest_structure() instead!

See also:
vrna_file_fasta_read_record(), VRNA_CONSTRAINT_DB_PIPE, VRNA_CONSTRAINT_DB_DOT ,
VRNA_CONSTRAINT_DB_X VRNA_CONSTRAINT_DB_ANG_BRACK,
VRNA_CONSTRAINT_DB_RND_BRACK

Parameters
• cstruc – A pointer to a character array that is used as pseudo dot-bracket output

• lines – A 2-dimensional character array with the extension lines from the FASTA
input

• option – The option flags that define the behavior and recognition pattern of this
function

7.14. Utilities 529

ViennaRNA, Release 2.6.4

Pre
The argument ‘lines’ has to be a 2-dimensional character array as obtained by
vrna_file_fasta_read_record()

char *extract_record_rest_structure(const char **lines, unsigned int length, unsigned int option)
#include <ViennaRNA/io/file_formats.h>

unsigned int read_record(char **header, char **sequence, char ***rest, unsigned int options)
#include <ViennaRNA/io/file_formats.h> Get a data record from stdin.

Deprecated:
This function is deprecated! Use vrna_file_fasta_read_record() as a replacment.

unsigned int get_multi_input_line(char **string, unsigned int options)
#include <ViennaRNA/io/file_formats.h>

Multiple Sequence Alignments

Defines

VRNA_FILE_FORMAT_MSA_CLUSTAL

#include <ViennaRNA/io/file_formats_msa.h> Option flag indicating ClustalW formatted files.

See also:
vrna_file_msa_read(), vrna_file_msa_read_record(), vrna_file_msa_detect_format()

VRNA_FILE_FORMAT_MSA_STOCKHOLM

#include <ViennaRNA/io/file_formats_msa.h> Option flag indicating Stockholm 1.0 formatted files.

See also:
vrna_file_msa_read(), vrna_file_msa_read_record(), vrna_file_msa_detect_format()

VRNA_FILE_FORMAT_MSA_FASTA

#include <ViennaRNA/io/file_formats_msa.h> Option flag indicating FASTA (Pearson) formatted
files.

See also:
vrna_file_msa_read(), vrna_file_msa_read_record(), vrna_file_msa_detect_format()

VRNA_FILE_FORMAT_MSA_MAF

#include <ViennaRNA/io/file_formats_msa.h> Option flag indicating MAF formatted files.

See also:
vrna_file_msa_read(), vrna_file_msa_read_record(), vrna_file_msa_detect_format()

530 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_FILE_FORMAT_MSA_MIS

#include <ViennaRNA/io/file_formats_msa.h> Option flag indicating most informative sequence
(MIS) output.

The default reference sequence output for an alignment is simply a consensus sequence. This flag
allows to write the most informative equence (MIS) instead.

See also:
vrna_file_msa_write()

VRNA_FILE_FORMAT_MSA_DEFAULT

#include <ViennaRNA/io/file_formats_msa.h> Option flag indicating the set of default file formats.

See also:
vrna_file_msa_read(), vrna_file_msa_read_record(), vrna_file_msa_detect_format()

VRNA_FILE_FORMAT_MSA_NOCHECK

#include <ViennaRNA/io/file_formats_msa.h> Option flag to disable validation of the alignment.

See also:
vrna_file_msa_read(), vrna_file_msa_read_record()

VRNA_FILE_FORMAT_MSA_UNKNOWN

#include <ViennaRNA/io/file_formats_msa.h> Return flag of vrna_file_msa_detect_format() to indi-
cate unknown or malformatted alignment.

See also:
vrna_file_msa_detect_format()

VRNA_FILE_FORMAT_MSA_APPEND

#include <ViennaRNA/io/file_formats_msa.h> Option flag indicating to append data to a multiple se-
quence alignment file rather than overwriting it.

See also:
vrna_file_msa_write()

VRNA_FILE_FORMAT_MSA_QUIET

#include <ViennaRNA/io/file_formats_msa.h> Option flag to suppress unnecessary spam messages on
stderr

See also:
vrna_file_msa_read(), vrna_file_msa_read_record()

7.14. Utilities 531

ViennaRNA, Release 2.6.4

VRNA_FILE_FORMAT_MSA_SILENT

#include <ViennaRNA/io/file_formats_msa.h> Option flag to completely silence any warnings on
stderr

See also:
vrna_file_msa_read(), vrna_file_msa_read_record()

Functions

int vrna_file_msa_read(const char *filename, char ***names, char ***aln, char **id, char **structure,
unsigned int options)

#include <ViennaRNA/io/file_formats_msa.h> Read a multiple sequence alignment from file.

This function reads the (first) multiple sequence alignment from an input file. The read alignment
is split into the sequence id/name part and the actual sequence information and stored in memory as
arrays of ids/names and sequences. If the alignment file format allows for additional information, such
as an ID of the entire alignment or consensus structure information, this data is retrieved as well and
made available. The options parameter allows to specify the set of alignment file formats that should
be used to retrieve the data. If 0 is passed as option, the list of alignment file formats defaults to
VRNA_FILE_FORMAT_MSA_DEFAULT .

Currently, the list of parsable multiple sequence alignment file formats consists of:

• msa-formats-clustal

• msa-formats-stockholm

• msa-formats-fasta

• msa-formats-maf

SWIG Wrapper Notes:
In the target scripting language, only the first and last argument, filename and options, are
passed to the corresponding function. The other arguments, which serve as output in the C-
library, are available as additional return values. This function exists as an overloaded version
where the options parameter may be omitted! In that case, the options parameter defaults to
VRNA_FILE_FORMAT_MSA_STOCKHOLM. See, e.g. RNA.file_msa_read() in the Python
API and Parsing Alignments in the Python examples.

See also:
vrna_file_msa_read_record(), VRNA_FILE_FORMAT_MSA_CLUSTAL,
VRNA_FILE_FORMAT_MSA_STOCKHOLM, VRNA_FILE_FORMAT_MSA_FASTA,
VRNA_FILE_FORMAT_MSA_MAF, VRNA_FILE_FORMAT_MSA_DEFAULT ,
VRNA_FILE_FORMAT_MSA_NOCHECK

Note: After successfully reading an alignment, this function performs a validation of the data that
includes uniqueness of the sequence identifiers, and equal sequence lengths. This check can be deac-
tivated by passing VRNA_FILE_FORMAT_MSA_NOCHECK in the options parameter.

It is the users responsibility to free any memory occupied by the output arguments names, aln, id,
and structure after calling this function. The function automatically sets the latter two arguments to
NULL in case no corresponding data could be retrieved from the input alignment.

Parameters
• filename – The name of input file that contains the alignment

• names – An address to the pointer where sequence identifiers should be written to

532 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• aln – An address to the pointer where aligned sequences should be written to

• id – An address to the pointer where the alignment ID should be written to (Maybe
NULL)

• structure – An address to the pointer where consensus structure information should
be written to (Maybe NULL)

• options – Options to manipulate the behavior of this function

Returns
The number of sequences in the alignment, or -1 if no alignment record could be found

int vrna_file_msa_read_record(FILE *fp, char ***names, char ***aln, char **id, char **structure,
unsigned int options)

#include <ViennaRNA/io/file_formats_msa.h> Read a multiple sequence alignment from file handle.

Similar to vrna_file_msa_read(), this function reads a multiple sequence alignment from an input file
handle. Since using a file handle, this function is not limited to the first alignment record, but allows
for looping over all alignments within the input.

The read alignment is split into the sequence id/name part and the actual sequence information and
stored in memory as arrays of ids/names and sequences. If the alignment file format allows for addi-
tional information, such as an ID of the entire alignment or consensus structure information, this data is
retrieved as well and made available. The options parameter allows to specify the alignment file for-
mat used to retrieve the data. A single format must be specified here, see vrna_file_msa_detect_format()
for helping to determine the correct MSA file format.

Currently, the list of parsable multiple sequence alignment file formats consists of:

• msa-formats-clustal

• msa-formats-stockholm

• msa-formats-fasta

• msa-formats-maf

SWIG Wrapper Notes:
In the target scripting language, only the first and last argument, fp and options, are passed
to the corresponding function. The other arguments, which serve as output in the C-library,
are available as additional return values. This function exists as an overloaded version where
the options parameter may be omitted! In that case, the options parameter defaults to
VRNA_FILE_FORMAT_MSA_STOCKHOLM. See, e.g. RNA.file_msa_read_record() in the
Python API and Parsing Alignments in the Python examples.

See also:
vrna_file_msa_read(), vrna_file_msa_detect_format(), VRNA_FILE_FORMAT_MSA_CLUSTAL,
VRNA_FILE_FORMAT_MSA_STOCKHOLM, VRNA_FILE_FORMAT_MSA_FASTA,
VRNA_FILE_FORMAT_MSA_MAF, VRNA_FILE_FORMAT_MSA_DEFAULT ,
VRNA_FILE_FORMAT_MSA_NOCHECK

Note: After successfully reading an alignment, this function performs a validation of the data that
includes uniqueness of the sequence identifiers, and equal sequence lengths. This check can be deac-
tivated by passing VRNA_FILE_FORMAT_MSA_NOCHECK in the options parameter.

It is the users responsibility to free any memory occupied by the output arguments names, aln, id,
and structure after calling this function. The function automatically sets the latter two arguments to
NULL in case no corresponding data could be retrieved from the input alignment.

Parameters
• fp – The file pointer the data will be retrieved from

7.14. Utilities 533

ViennaRNA, Release 2.6.4

• names – An address to the pointer where sequence identifiers should be written to

• aln – An address to the pointer where aligned sequences should be written to

• id – An address to the pointer where the alignment ID should be written to (Maybe
NULL)

• structure – An address to the pointer where consensus structure information should
be written to (Maybe NULL)

• options – Options to manipulate the behavior of this function

Returns
The number of sequences in the alignment, or -1 if no alignment record could be found

unsigned int vrna_file_msa_detect_format(const char *filename, unsigned int options)
#include <ViennaRNA/io/file_formats_msa.h> Detect the format of a multiple sequence alignment file.

This function attempts to determine the format of a file that supposedly contains a multiple sequence
alignment (MSA). This is useful in cases where a MSA file contains more than a single record and
therefore vrna_file_msa_read() can not be applied, since it only retrieves the first. Here, one can try to
guess the correct file format using this function and then loop over the file, record by record using one
of the low-level record retrieval functions for the corresponding MSA file format.

SWIG Wrapper Notes:
This function exists as an overloaded version where the options parameter may be omitted! In
that case, the options parameter defaults to VRNA_FILE_FORMAT_MSA_DEFAULT . See, e.g.
RNA.file_msa_detect_format() in the Python API .

See also:
vrna_file_msa_read(), vrna_file_stockholm_read_record(), vrna_file_clustal_read_record(),
vrna_file_fasta_read_record()

Note: This function parses the entire first record within the specified file. As a result, it returns
VRNA_FILE_FORMAT_MSA_UNKNOWN not only if it can’t detect the file’s format, but also in cases
where the file doesn’t contain sequences!

Parameters
• filename – The name of input file that contains the alignment

• options – Options to manipulate the behavior of this function

Returns
The MSA file format, or VRNA_FILE_FORMAT_MSA_UNKNOWN

int vrna_file_msa_write(const char *filename, const char **names, const char **aln, const char *id,
const char *structure, const char *source, unsigned int options)

#include <ViennaRNA/io/file_formats_msa.h> Write multiple sequence alignment file.

SWIG Wrapper Notes:
In the target scripting language, this function exists as a set of overloaded versions, where the
last four parameters may be omitted. If the options parameter is missing the options default to
(VRNA_FILE_FORMAT_MSA_STOCKHOLM | VRNA_FILE_FORMAT_MSA_APPEND). See,
e.g. RNA.file_msa_write() in the Python API .

534 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
VRNA_FILE_FORMAT_MSA_STOCKHOLM, VRNA_FILE_FORMAT_MSA_APPEND,
VRNA_FILE_FORMAT_MSA_MIS

Note: Currently, we only support msa-formats-stockholm output

Parameters
• filename – The output filename

• names – The array of sequence names / identifies

• aln – The array of aligned sequences

• id – An optional ID for the alignment

• structure – An optional consensus structure

• source – A string describing the source of the alignment

• options – Options to manipulate the behavior of this function

Returns
Non-null upon successfully writing the alignment to file

Command Files

Functions to parse and interpret the content of constraint-formats-file.

Defines

VRNA_CMD_PARSE_HC

#include <ViennaRNA/commands.h> Command parse/apply flag indicating hard constraints.

See also:
vrna_cmd_t, vrna_file_commands_read(), vrna_file_commands_apply(), vrna_commands_apply()

VRNA_CMD_PARSE_SC

#include <ViennaRNA/commands.h> Command parse/apply flag indicating soft constraints.

See also:
vrna_cmd_t, vrna_file_commands_read(), vrna_file_commands_apply(), vrna_commands_apply()

VRNA_CMD_PARSE_UD

#include <ViennaRNA/commands.h> Command parse/apply flag indicating unstructured domains.

See also:
vrna_cmd_t, vrna_file_commands_read(), vrna_file_commands_apply(), vrna_commands_apply()

7.14. Utilities 535

ViennaRNA, Release 2.6.4

VRNA_CMD_PARSE_SD

#include <ViennaRNA/commands.h> Command parse/apply flag indicating structured domains.

See also:
vrna_cmd_t, vrna_file_commands_read(), vrna_file_commands_apply(), vrna_commands_apply()

VRNA_CMD_PARSE_DEFAULTS

#include <ViennaRNA/commands.h> Command parse/apply flag indicating default set of commands.

See also:
vrna_cmd_t, vrna_file_commands_read(), vrna_file_commands_apply(), vrna_commands_apply()

VRNA_CMD_PARSE_SILENT

#include <ViennaRNA/commands.h>

Typedefs

typedef struct vrna_command_s *vrna_cmd_t
#include <ViennaRNA/commands.h> A data structure that contains commands.

Functions

vrna_cmd_t vrna_file_commands_read(const char *filename, unsigned int options)
#include <ViennaRNA/commands.h> Extract a list of commands from a command file.

Read a list of commands specified in the input file and return them as list of abstract commands

SWIG Wrapper Notes:
This function is available as global function file_commands_read(). See, e.g. RNA.
file_commands_read() in the Python API .

See also:
vrna_commands_apply(), vrna_file_commands_apply(), vrna_commands_free()

Parameters
• filename – The filename

• options – Options to limit the type of commands read from the file

Returns
A list of abstract commands

int vrna_file_commands_apply(vrna_fold_compound_t *fc, const char *filename, unsigned int
options)

#include <ViennaRNA/commands.h> Apply a list of commands from a command file.

This function is a shortcut to directly parse a commands file and apply all successfully parsed commands
to a vrna_fold_compound_t data structure. It is the same as:

536 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int r;
struct vrna_command_s *cmds;

cmds = vrna_file_commands_read(filename, options);
r = vrna_commands_apply(vc, cmds, options);

vrna_commands_free(cmds);

return r;

SWIG Wrapper Notes:
This function is attached as method file_commands_apply() to objects of type
fold_compound. See, e.g. RNA.fold_compound.file_commands_apply() in the Python
API .

Parameters
• fc – The vrna_fold_compound_t the command list will be applied to

• filename – The filename

• options – Options to limit the type of commands read from the file

Returns
The number of commands successfully applied

int vrna_commands_apply(vrna_fold_compound_t *fc, vrna_cmd_t commands, unsigned int options)
#include <ViennaRNA/commands.h> Apply a list of commands to a vrna_fold_compound_t.

SWIG Wrapper Notes:
This function is attached as method commands_apply() to objects of type fold_compound. See,
e.g. RNA.fold_compound.commands_apply() in the Python API .

Parameters
• fc – The vrna_fold_compound_t the command list will be applied to

• commands – The commands to apply

• options – Options to limit the type of commands read from the file

Returns
The number of commands successfully applied

void vrna_commands_free(vrna_cmd_t commands)
#include <ViennaRNA/commands.h> Free memory occupied by a list of commands.

Release memory occupied by a list of commands

Parameters
• commands – A pointer to a list of commands

7.14. Utilities 537

ViennaRNA, Release 2.6.4

Functions

float **get_ribosum(const char **Alseq, int n_seq, int length)
#include <ViennaRNA/ribo.h> Retrieve a RiboSum Scoring Matrix for a given Alignment.

float **readribosum(char *name)
#include <ViennaRNA/ribo.h> Read a RiboSum or other user-defined Scoring Matrix and Store into
global Memory.

void vrna_file_copy(FILE *from, FILE *to)
#include <ViennaRNA/io/utils.h> Inefficient cp.

char *vrna_read_line(FILE *fp)
#include <ViennaRNA/io/utils.h> Read a line of arbitrary length from a stream.

Returns a pointer to the resulting string. The necessary memory is allocated and should be released
using free() when the string is no longer needed.

Parameters
• fp – A file pointer to the stream where the function should read from

Returns
A pointer to the resulting string

int vrna_mkdir_p(const char *path)
#include <ViennaRNA/io/utils.h> Recursivly create a directory tree.

char *vrna_basename(const char *path)
#include <ViennaRNA/io/utils.h> Extract the filename from a file path.

char *vrna_dirname(const char *path)
#include <ViennaRNA/io/utils.h> Extract the directory part of a file path.

char *vrna_filename_sanitize(const char *name, const char *replacement)
#include <ViennaRNA/io/utils.h> Sanitize a file name.

Returns a new file name where all invalid characters are substituted by a replacement character. If no
replacement character is supplied, invalid characters are simply removed from the filename. File names
may also never exceed a length of 255 characters. Longer file names will undergo a ‘smart’ truncation
process, where the filenames suffix, i.e. everything after the last dot .’, is attempted to be kept intact.
Hence, only the filename part before the suffix is reduced in such a way that the total filename complies
to the length restriction of 255 characters. If no suffix is present or the suffix itself already exceeds the
maximum length, the filename is simply truncated from the back of the string.

For now we consider the following characters invalid:

• backslash ‘’

• slash ‘/’

• question mark ‘?’

• percent sign ‘’

• asterisk ‘*’

• colon ‘:’

• pipe symbol ‘|’

• double quote ‘”’

• triangular brackets ‘<’ and ‘>’

Furthermore, the (resulting) file name must not be a reserved file name, such as:

• ’.’

538 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• ’..’

Note: This function allocates a new block of memory for the sanitized string. It also may return (a)
NULL if the input is pointing to NULL, or (b) an empty string if the input only consists of invalid
characters which are simply removed!

Parameters
• name – The input file name

• replacement – The replacement character, or NULL

Returns
The sanitized file name, or NULL

int vrna_file_exists(const char *filename)
#include <ViennaRNA/io/utils.h> Check if a file already exists in the file system.

Parameters
• filename – The name of (path to) the file to check for existence

Returns
0 if it doesn’t exists, 1 otherwise

7.14.6 Plotting

Functions for Creating Secondary Structure Plots, Dot-Plots, and more.

Layouts and Coordinates

Functions to compute coordinate layouts for secondary structure plots.

Defines

VRNA_PLOT_TYPE_SIMPLE

#include <ViennaRNA/plotting/layouts.h> Definition of Plot type simple

This is the plot type definition for several RNA structure plotting functions telling them to use Simple
plotting algorithm

See also:
rna_plot_type, vrna_file_PS_rnaplot_a(), vrna_file_PS_rnaplot(), svg_rna_plot(), gmlRNA(),
ssv_rna_plot(), xrna_plot()

VRNA_PLOT_TYPE_NAVIEW

#include <ViennaRNA/plotting/layouts.h> Definition of Plot type Naview

This is the plot type definition for several RNA structure plotting functions telling them to use Naview
plotting algorithm [Bruccoleri and Heinrich, 1988] .

7.14. Utilities 539

ViennaRNA, Release 2.6.4

See also:
rna_plot_type, vrna_file_PS_rnaplot_a(), vrna_file_PS_rnaplot(), svg_rna_plot(), gmlRNA(),
ssv_rna_plot(), xrna_plot()

VRNA_PLOT_TYPE_CIRCULAR

#include <ViennaRNA/plotting/layouts.h> Definition of Plot type Circular

This is the plot type definition for several RNA structure plotting functions telling them to produce a
Circular plot

See also:
rna_plot_type, vrna_file_PS_rnaplot_a(), vrna_file_PS_rnaplot(), svg_rna_plot(), gmlRNA(),
ssv_rna_plot(), xrna_plot()

VRNA_PLOT_TYPE_TURTLE

#include <ViennaRNA/plotting/layouts.h> Definition of Plot type Turtle [Wiegreffe et al., 2019] .

VRNA_PLOT_TYPE_PUZZLER

#include <ViennaRNA/plotting/layouts.h> Definition of Plot type RNApuzzler [Wiegreffe et al., 2019]
.

VRNA_PLOT_TYPE_DEFAULT

#include <ViennaRNA/plotting/layouts.h>

Typedefs

typedef struct vrna_plot_layout_s vrna_plot_layout_t
#include <ViennaRNA/plotting/layouts.h> RNA secondary structure figure layout.

See also:
vrna_plot_layout(), vrna_plot_layout_free(), vrna_plot_layout_simple(), vrna_plot_layout_circular(),
vrna_plot_layout_naview(), vrna_plot_layout_turtle(), vrna_plot_layout_puzzler()

Functions

vrna_plot_layout_t *vrna_plot_layout(const char *structure, unsigned int plot_type)
#include <ViennaRNA/plotting/layouts.h> Create a layout (coordinates, etc.) for a secondary structure
plot.

This function can be used to create a secondary structure nucleotide layout that is then further processed
by an actual plotting function. The layout algorithm can be specified using the plot_type parameter,
and the following algorithms are currently supported:

• VRNA_PLOT_TYPE_SIMPLE

• VRNA_PLOT_TYPE_NAVIEW

• VRNA_PLOT_TYPE_CIRCULAR

• VRNA_PLOT_TYPE_TURTLE

• VRNA_PLOT_TYPE_PUZZLER

540 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Passing an unsupported selection leads to the default algorithm VRNA_PLOT_TYPE_NAVIEW

See also:
vrna_plot_layout_free(), vrna_plot_layout_simple(), vrna_plot_layout_naview(),
vrna_plot_layout_circular(), vrna_plot_layout_turtle(), vrna_plot_layout_puzzler(),
vrna_plot_coords(), vrna_file_PS_rnaplot_layout()

Note: If only X-Y coordinates of the corresponding structure layout are required, consider using
vrna_plot_coords() instead!

Parameters
• structure – The secondary structure in dot-bracket notation

• plot_type – The layout algorithm to be used

Returns
The layout data structure for the provided secondary structure

vrna_plot_layout_t *vrna_plot_layout_simple(const char *structure)
#include <ViennaRNA/plotting/layouts.h> Create a layout (coordinates, etc.) for a simple secondary
structure plot.

This function basically is a wrapper to vrna_plot_layout() that passes the plot_type
VRNA_PLOT_TYPE_SIMPLE.

See also:
vrna_plot_layout_free(), vrna_plot_layout(), vrna_plot_layout_naview(),
vrna_plot_layout_circular(), vrna_plot_layout_turtle(), vrna_plot_layout_puzzler(),
vrna_plot_coords_simple(), vrna_file_PS_rnaplot_layout()

Note: If only X-Y coordinates of the corresponding structure layout are required, consider using
vrna_plot_coords_simple() instead!

Parameters
• structure – The secondary structure in dot-bracket notation

Returns
The layout data structure for the provided secondary structure

vrna_plot_layout_t *vrna_plot_layout_circular(const char *structure)
#include <ViennaRNA/plotting/layouts.h> Create a layout (coordinates, etc.) for a circular secondary
structure plot.

This function basically is a wrapper to vrna_plot_layout() that passes the plot_type
VRNA_PLOT_TYPE_CIRCULAR.

See also:
vrna_plot_layout_free(), vrna_plot_layout(), vrna_plot_layout_naview(), vrna_plot_layout_simple(),
vrna_plot_layout_turtle(), vrna_plot_layout_puzzler(), vrna_plot_coords_circular(),
vrna_file_PS_rnaplot_layout()

7.14. Utilities 541

ViennaRNA, Release 2.6.4

Note: If only X-Y coordinates of the corresponding structure layout are required, consider using
vrna_plot_coords_circular() instead!

Parameters
• structure – The secondary structure in dot-bracket notation

Returns
The layout data structure for the provided secondary structure

vrna_plot_layout_t *vrna_plot_layout_turtle(const char *structure)
#include <ViennaRNA/plotting/layouts.h> Create a layout (coordinates, etc.) for a secondary structure
plot using the Turtle Algorithm [Wiegreffe et al., 2019] .

This function basically is a wrapper to vrna_plot_layout() that passes the plot_type
VRNA_PLOT_TYPE_TURTLE.

See also:
vrna_plot_layout_free(), vrna_plot_layout(), vrna_plot_layout_simple(), vrna_plot_layout_circular(),
vrna_plot_layout_naview(), vrna_plot_layout_puzzler(), vrna_plot_coords_turtle(),
vrna_file_PS_rnaplot_layout()

Note: If only X-Y coordinates of the corresponding structure layout are required, consider using
vrna_plot_coords_turtle() instead!

Parameters
• structure – The secondary structure in dot-bracket notation

Returns
The layout data structure for the provided secondary structure

vrna_plot_layout_t *vrna_plot_layout_puzzler(const char *structure, vrna_plot_options_puzzler_t
*options)

#include <ViennaRNA/plotting/layouts.h> Create a layout (coordinates, etc.) for a secondary structure
plot using the RNApuzzler Algorithm [Wiegreffe et al., 2019] .

This function basically is a wrapper to vrna_plot_layout() that passes the plot_type
VRNA_PLOT_TYPE_PUZZLER.

See also:
vrna_plot_layout_free(), vrna_plot_layout(), vrna_plot_layout_simple(), vrna_plot_layout_circular(),
vrna_plot_layout_naview(), vrna_plot_layout_turtle(), vrna_plot_coords_puzzler(),
vrna_file_PS_rnaplot_layout()

Note: If only X-Y coordinates of the corresponding structure layout are required, consider using
vrna_plot_coords_puzzler() instead!

Parameters
• structure – The secondary structure in dot-bracket notation

Returns
The layout data structure for the provided secondary structure

542 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void vrna_plot_layout_free(vrna_plot_layout_t *layout)
#include <ViennaRNA/plotting/layouts.h> Free memory occupied by a figure layout data structure.

See also:
vrna_plot_layout_t, vrna_plot_layout(), vrna_plot_layout_simple(), vrna_plot_layout_circular(),
vrna_plot_layout_naview(), vrna_plot_layout_turtle(), vrna_plot_layout_puzzler(),
vrna_file_PS_rnaplot_layout()

Parameters
• layout – The layout data structure to free

int vrna_plot_coords(const char *structure, float **x, float **y, int plot_type)
#include <ViennaRNA/plotting/layouts.h> Compute nucleotide coordinates for secondary structure
plot.

This function takes a secondary structure and computes X-Y coordinates for each nucleotide that then
can be used to create a structure plot. The parameter plot_type is used to select the underlying layout
algorithm. Currently, the following selections are provided:

• VRNA_PLOT_TYPE_SIMPLE

• VRNA_PLOT_TYPE_NAVIEW

• VRNA_PLOT_TYPE_CIRCULAR

• VRNA_PLOT_TYPE_TURTLE

• VRNA_PLOT_TYPE_PUZZLER

Passing an unsupported selection leads to the default algorithm VRNA_PLOT_TYPE_NAVIEW

Here is a simple example how to use this function, assuming variable structure contains a valid
dot-bracket string:

float *x, *y;

if (vrna_plot_coords(structure, &x, &y)) {
printf("all fine");

} else {
printf("some failure occured!");

}

free(x);
free(y);

See also:
vrna_plot_coords_pt(), vrna_plot_coords_simple(), vrna_plot_coords_naview()
vrna_plot_coords_circular(), vrna_plot_coords_turtle(), vrna_plot_coords_puzzler()

Note: On success, this function allocates memory for X and Y coordinates and assigns the pointers at
addressess x and y to the corresponding memory locations. It’s the users responsibility to cleanup this
memory after usage!

Parameters
• structure – The secondary structure in dot-bracket notation

7.14. Utilities 543

ViennaRNA, Release 2.6.4

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

• plot_type – The layout algorithm to be used

Returns
The length of the structure on success, 0 otherwise

int vrna_plot_coords_pt(const short *pt, float **x, float **y, int plot_type)
#include <ViennaRNA/plotting/layouts.h> Compute nucleotide coordinates for secondary structure
plot.

Same as vrna_plot_coords() but takes a pair table with the structure information as input.

See also:
vrna_plot_coords(), vrna_plot_coords_simple_pt(), vrna_plot_coords_naview_pt()
vrna_plot_coords_circular_pt(), vrna_plot_coords_turtle_pt(), vrna_plot_coords_puzzler_pt()

Note: On success, this function allocates memory for X and Y coordinates and assigns the pointers at
addressess x and y to the corresponding memory locations. It’s the users responsibility to cleanup this
memory after usage!

Parameters
• pt – The pair table that holds the secondary structure

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

• plot_type – The layout algorithm to be used

Returns
The length of the structure on success, 0 otherwise

int vrna_plot_coords_simple(const char *structure, float **x, float **y)
#include <ViennaRNA/plotting/layouts.h> Compute nucleotide coordinates for secondary structure
plot the Simple way

This function basically is a wrapper to vrna_plot_coords() that passes the plot_type
VRNA_PLOT_TYPE_SIMPLE.

Here is a simple example how to use this function, assuming variable structure contains a valid
dot-bracket string:

float *x, *y;

if (vrna_plot_coords_simple(structure, &x, &y)) {
printf("all fine");

} else {
printf("some failure occured!");

}

free(x);
free(y);

544 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_plot_coords(), vrna_plot_coords_simple_pt(), vrna_plot_coords_circular(),
vrna_plot_coords_naview(), vrna_plot_coords_turtle(), vrna_plot_coords_puzzler()

Note: On success, this function allocates memory for X and Y coordinates and assigns the pointers at
addressess x and y to the corresponding memory locations. It’s the users responsibility to cleanup this
memory after usage!

Parameters
• structure – The secondary structure in dot-bracket notation

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

Returns
The length of the structure on success, 0 otherwise

int vrna_plot_coords_simple_pt(const short *pt, float **x, float **y)
#include <ViennaRNA/plotting/layouts.h> Compute nucleotide coordinates for secondary structure
plot the Simple way

Same as vrna_plot_coords_simple() but takes a pair table with the structure information as input.

See also:
vrna_plot_coords_pt(), vrna_plot_coords_simple(), vrna_plot_coords_circular_pt(),
vrna_plot_coords_naview_pt(), vrna_plot_coords_turtle_pt(), vrna_plot_coords_puzzler_pt()

Note: On success, this function allocates memory for X and Y coordinates and assigns the pointers at
addressess x and y to the corresponding memory locations. It’s the users responsibility to cleanup this
memory after usage!

Parameters
• pt – The pair table that holds the secondary structure

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

Returns
The length of the structure on success, 0 otherwise

int vrna_plot_coords_circular(const char *structure, float **x, float **y)
#include <ViennaRNA/plotting/layouts.h> Compute coordinates of nucleotides mapped in equal dis-
tancies onto a unit circle.

This function basically is a wrapper to vrna_plot_coords() that passes the plot_type
VRNA_PLOT_TYPE_CIRCULAR.

In order to draw nice arcs using quadratic bezier curves that connect base pairs one may calculate a
second tangential point 𝑃 𝑡 in addition to the actual R2 coordinates. the simplest way to do so may be

7.14. Utilities 545

ViennaRNA, Release 2.6.4

to compute a radius scaling factor 𝑟𝑠 in the interval [0, 1] that weights the proportion of base pair span
to the actual length of the sequence. This scaling factor can then be used to calculate the coordinates
for 𝑃 𝑡, i.e.

𝑃 𝑡
𝑥[𝑖] = 𝑋[𝑖] * 𝑟𝑠

and

𝑃 𝑡
𝑦 [𝑖] = 𝑌 [𝑖] * 𝑟𝑠

.

See also:
vrna_plot_coords(), vrna_plot_coords_circular_pt(), vrna_plot_coords_simple(),
vrna_plot_coords_naview(), vrna_plot_coords_turtle(), vrna_plot_coords_puzzler()

Note: On success, this function allocates memory for X and Y coordinates and assigns the pointers at
addressess x and y to the corresponding memory locations. It’s the users responsibility to cleanup this
memory after usage!

Parameters
• structure – The secondary structure in dot-bracket notation

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

Returns
The length of the structure on success, 0 otherwise

int vrna_plot_coords_circular_pt(const short *pt, float **x, float **y)
#include <ViennaRNA/plotting/layouts.h> Compute nucleotide coordinates for a Circular Plot

Same as vrna_plot_coords_circular() but takes a pair table with the structure information as input.

See also:
vrna_plot_coords_pt(), vrna_plot_coords_circular(), vrna_plot_coords_simple_pt(),
vrna_plot_coords_naview_pt(), vrna_plot_coords_turtle_pt(), vrna_plot_coords_puzzler_pt()

Note: On success, this function allocates memory for X and Y coordinates and assigns the pointers at
addressess x and y to the corresponding memory locations. It’s the users responsibility to cleanup this
memory after usage!

Parameters
• pt – The pair table that holds the secondary structure

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

546 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

Returns
The length of the structure on success, 0 otherwise

int vrna_plot_coords_puzzler(const char *structure, float **x, float **y, double **arc_coords,
vrna_plot_options_puzzler_t *options)

#include <ViennaRNA/plotting/RNApuzzler/RNApuzzler.h> Compute nucleotide coordinates for sec-
ondary structure plot using the RNApuzzler algorithm [Wiegreffe et al., 2019] .

This function basically is a wrapper to vrna_plot_coords() that passes the plot_type
VRNA_PLOT_TYPE_PUZZLER.

Here is a simple example how to use this function, assuming variable structure contains a valid
dot-bracket string and using the default options (options = NULL):

float *x, *y;
double *arcs;

if (vrna_plot_coords_puzzler(structure, &x, &y, &arcs, NULL)) {
printf("all fine");

} else {
printf("some failure occured!");

}

free(x);
free(y);
free(arcs);

See also:
vrna_plot_coords(), vrna_plot_coords_puzzler_pt(), vrna_plot_coords_circular(),
vrna_plot_coords_simple(), vrna_plot_coords_turtle(), vrna_plot_coords_naview(),
vrna_plot_options_puzzler()

Note: On success, this function allocates memory for X, Y and arc coordinates and assigns the pointers
at addressess x, y and arc_coords to the corresponding memory locations. It’s the users responsibility
to cleanup this memory after usage!

Parameters
• structure – The secondary structure in dot-bracket notation

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

• arc_coords – [inout] The address of a pointer that will hold arc coordinates (pointer
will point to memory, or NULL on failure)

• options – The options for the RNApuzzler algorithm (or NULL)

Returns
The length of the structure on success, 0 otherwise

7.14. Utilities 547

ViennaRNA, Release 2.6.4

int vrna_plot_coords_puzzler_pt(short const *const pair_table, float **x, float **y, double
**arc_coords, vrna_plot_options_puzzler_t *puzzler)

#include <ViennaRNA/plotting/RNApuzzler/RNApuzzler.h> Compute nucleotide coordinates for sec-
ondary structure plot using the RNApuzzler algorithm [Wiegreffe et al., 2019] .

Same as vrna_plot_coords_puzzler() but takes a pair table with the structure information as input.

See also:
vrna_plot_coords_pt(), vrna_plot_coords_puzzler(), vrna_plot_coords_circular_pt(),
vrna_plot_coords_simple_pt(), vrna_plot_coords_turtle_pt(), vrna_plot_coords_naview_pt()

Note: On success, this function allocates memory for X, Y and arc coordinates and assigns the pointers
at addressess x, y and arc_coords to the corresponding memory locations. It’s the users responsibility
to cleanup this memory after usage!

Parameters
• pt – The pair table that holds the secondary structure

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

• arc_coords – [inout] The address of a pointer that will hold arc coordinates (pointer
will point to memory, or NULL on failure)

• options – The options for the RNApuzzler algorithm (or NULL)

Returns
The length of the structure on success, 0 otherwise

vrna_plot_options_puzzler_t *vrna_plot_options_puzzler(void)
#include <ViennaRNA/plotting/RNApuzzler/RNApuzzler.h> Create an RNApuzzler options data struc-
ture.

See also:
vrna_plot_options_puzzler_free(), vrna_plot_coords_puzzler(), vrna_plot_coords_puzzler_pt(),
vrna_plot_layout_puzzler()

Returns
An RNApuzzler options data structure with default settings

void vrna_plot_options_puzzler_free(vrna_plot_options_puzzler_t *options)
#include <ViennaRNA/plotting/RNApuzzler/RNApuzzler.h> Free memory occupied by an RNApuzzler
options data structure.

See also:
vrna_plot_options_puzzler(), vrna_plot_coords_puzzler(), vrna_plot_coords_puzzler_pt(),
vrna_plot_layout_puzzler()

Parameters
• options – A pointer to the options data structure to free

548 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int vrna_plot_coords_turtle(const char *structure, float **x, float **y, double **arc_coords)
#include <ViennaRNA/plotting/RNApuzzler/RNAturtle.h> Compute nucleotide coordinates for sec-
ondary structure plot using the RNAturtle algorithm [Wiegreffe et al., 2019] .

This function basically is a wrapper to vrna_plot_coords() that passes the plot_type
VRNA_PLOT_TYPE_TURTLE.

Here is a simple example how to use this function, assuming variable structure contains a valid
dot-bracket string:

float *x, *y;
double *arcs;

if (vrna_plot_coords_turtle(structure, &x, &y, &arcs)) {
printf("all fine");

} else {
printf("some failure occured!");

}

free(x);
free(y);
free(arcs);

See also:
vrna_plot_coords(), vrna_plot_coords_turtle_pt(), vrna_plot_coords_circular(),
vrna_plot_coords_simple(), vrna_plot_coords_naview(), vrna_plot_coords_puzzler()

Note: On success, this function allocates memory for X, Y and arc coordinates and assigns the pointers
at addressess x, y and arc_coords to the corresponding memory locations. It’s the users responsibility
to cleanup this memory after usage!

Parameters
• structure – The secondary structure in dot-bracket notation

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

• arc_coords – [inout] The address of a pointer that will hold arc coordinates (pointer
will point to memory, or NULL on failure)

Returns
The length of the structure on success, 0 otherwise

int vrna_plot_coords_turtle_pt(short const *const pair_table, float **x, float **y, double
**arc_coords)

#include <ViennaRNA/plotting/RNApuzzler/RNAturtle.h> Compute nucleotide coordinates for sec-
ondary structure plot using the RNAturtle algorithm [Wiegreffe et al., 2019] .

Same as vrna_plot_coords_turtle() but takes a pair table with the structure information as input.

See also:
vrna_plot_coords_pt(), vrna_plot_coords_turtle(), vrna_plot_coords_circular_pt(),
vrna_plot_coords_simple_pt(), vrna_plot_coords_puzzler_pt(), vrna_plot_coords_naview_pt()

7.14. Utilities 549

ViennaRNA, Release 2.6.4

Note: On success, this function allocates memory for X, Y and arc coordinates and assigns the pointers
at addressess x, y and arc_coords to the corresponding memory locations. It’s the users responsibility
to cleanup this memory after usage!

Parameters
• pt – The pair table that holds the secondary structure

• x – [inout] The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y – [inout] The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

• arc_coords – [inout] The address of a pointer that will hold arc coordinates (pointer
will point to memory, or NULL on failure)

Returns
The length of the structure on success, 0 otherwise

struct vrna_plot_layout_s

Public Members

unsigned int length

float *x

float *y

double *arcs

int bbox[4]

struct vrna_plot_options_puzzler_t
#include <ViennaRNA/plotting/RNApuzzler/RNApuzzler.h> Options data structure for RNApuzzler al-
gorithm implementation.

Public Members

short drawArcs

double paired

double unpaired

short checkAncestorIntersections

short checkSiblingIntersections

550 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

short checkExteriorIntersections

short allowFlipping

short optimize

int maximumNumberOfConfigChangesAllowed

char *config

const char *filename

int numberOfChangesAppliedToConfig

int psNumber

Annotation

Functions to generate annotations for secondary structure plots, dot-plots, and others.

Functions

char **vrna_annotate_covar_db(const char **alignment, const char *structure, vrna_md_t *md_p)
#include <ViennaRNA/plotting/utils.h> Produce covariance annotation for an alignment given a sec-
ondary structure.

char **vrna_annotate_covar_db_extended(const char **alignment, const char *structure, vrna_md_t
*md_p, unsigned int options)

#include <ViennaRNA/plotting/utils.h>

vrna_cpair_t *vrna_annotate_covar_pairs(const char **alignment, vrna_ep_t *pl, vrna_ep_t *mfel,
double threshold, vrna_md_t *md)

#include <ViennaRNA/plotting/utils.h> Produce covariance annotation for an alignment given a set of
base pairs.

Pair Probability Plots

Functions related to plotting of probabilities, such as dot-plots.

7.14. Utilities 551

ViennaRNA, Release 2.6.4

Defines

VRNA_PLOT_PROBABILITIES_BP

#include <ViennaRNA/plotting/probabilities.h> Option flag for base pair probabilities in probability
plot output functions.

VRNA_PLOT_PROBABILITIES_ACC

#include <ViennaRNA/plotting/probabilities.h> Option flag for accessibilities in probability plot out-
put functions.

VRNA_PLOT_PROBABILITIES_UD

#include <ViennaRNA/plotting/probabilities.h> Option flag for unstructured domain probabilities in
probability plot output functions.

VRNA_PLOT_PROBABILITIES_UD_LIN

#include <ViennaRNA/plotting/probabilities.h> Option flag for unstructured domain probabilities (lin-
ear representation) in probability plot output functions.

VRNA_PLOT_PROBABILITIES_SD

#include <ViennaRNA/plotting/probabilities.h> Option flag for structured domain probabilities (such
as G-quadruplexes) in probability plot output functions.

VRNA_PLOT_PROBABILITIES_SC_MOTIF

#include <ViennaRNA/plotting/probabilities.h> Option flag for soft-constraint motif probabilities in
probability plot output functions.

VRNA_PLOT_PROBABILITIES_SC_UP

#include <ViennaRNA/plotting/probabilities.h>

VRNA_PLOT_PROBABILITIES_SC_BP

#include <ViennaRNA/plotting/probabilities.h>

VRNA_PLOT_PROBABILITIES_DEFAULT

#include <ViennaRNA/plotting/probabilities.h> Default option flag for probability plot output func-
tions.

Default output includes actual base pair probabilties (VRNA_PLOT_PROBABILITIES_BP), structured
domain probabilities such as G-quadruplexes (VRNA_PLOT_PROBABILITIES_SD), probabilities ob-
tained from soft-constraint motif implementation (VRNA_PLOT_PROBABILITIES_SC_MOTIF), and
unstructured domain probabilities (VRNA_PLOT_PROBABILITIES_UD_LIN).

See also:
vrna_plot_dp_EPS()

552 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Functions

int vrna_plot_dp_EPS(const char *filename, const char *sequence, vrna_ep_t *upper, vrna_ep_t *lower,
vrna_dotplot_auxdata_t *auxdata, unsigned int options)

#include <ViennaRNA/plotting/probabilities.h> Produce an encapsulate PostScript (EPS) dot-plot
from one or two lists of base pair probabilities.

This function reads two vrna_ep_t lists upper and lower (e.g. base pair probabilities and a secondary
structure) and produces an EPS “dot plot” with filename 'filename'where data from upper is placed
in the upper-triangular and data from lower is placed in the lower triangular part of the matrix.

For default output, provide the flag VRNA_PLOT_PROBABILITIES_DEFAULT as options parame-
ter.

SWIG Wrapper Notes:
This function is available as overloaded function plot_dp_EPS() where the last three parameters
may be omitted. The default values for these parameters are lower = NULL, auxdata = NULL,
options = VRNA_PLOT_PROBABILITIES_DEFAULT . See, e.g. RNA.plot_dp_EPS() in the
Python API .

See also:
vrna_plist(), vrna_plist_from_probs(), VRNA_PLOT_PROBABILITIES_DEFAULT

Parameters
• filename – A filename for the EPS output

• sequence – The RNA sequence

• upper – The base pair probabilities for the upper triangular part

• lower – The base pair probabilities for the lower triangular part

• options – Options indicating which of the input data should be included in the dot-
plot

Returns
1 if EPS file was successfully written, 0 otherwise

int vrna_plot_dp_PS_list(char *seq, int cp, char *filename, vrna_ep_t *pl, vrna_ep_t *mf, char
*comment)

#include <ViennaRNA/plotting/probabilities.h> Produce a postscript dot-plot from two pair lists.

This function reads two plist structures (e.g. base pair probabilities and a secondary structure) as pro-
duced by vrna_plist_from_probs() and vrna_plist() and produces a postscript “dot plot” that is written
to ‘filename’.

Using base pair probabilities in the first and mfe structure in the second plist, the resulting “dot plot”
represents each base pairing probability by a square of corresponding area in a upper triangle matrix.
The lower part of the matrix contains the minimum free energy structure.

See also:
vrna_plist_from_probs(), vrna_plist()

Parameters
• seq – The RNA sequence

• filename – A filename for the postscript output

• pl – The base pair probability pairlist

7.14. Utilities 553

ViennaRNA, Release 2.6.4

• mf – The mfe secondary structure pairlist

• comment – A comment

Returns
1 if postscript was successfully written, 0 otherwise

struct vrna_dotplot_auxdata_t

Public Members

char *comment

char *title

vrna_data_lin_t **top

char **top_title

vrna_data_lin_t **bottom

char **bottom_title

vrna_data_lin_t **left

char **left_title

vrna_data_lin_t **right

char **right_title

Alignment Plots

Functions to generate Alignment plots with annotated consensus structure.

Functions

int vrna_file_PS_aln(const char *filename, const char **seqs, const char **names, const char
*structure, unsigned int columns)

#include <ViennaRNA/plotting/alignments.h> Create an annotated PostScript alignment plot.

SWIG Wrapper Notes:
This function is available as overloaded function file_PS_aln() with three additional pa-
rameters start, end, and offset before the columns argument. Thus, it resembles the
vrna_file_PS_aln_slice() function. The last four arguments may be omitted, indicating the
default of start = 0, end = 0, offset = 0, and columns = 60. See, e.g. RNA.file_PS_aln()
in the Python API .

554 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

See also:
vrna_file_PS_aln_slice()

Parameters
• filename – The output file name

• seqs – The aligned sequences

• names – The names of the sequences

• structure – The consensus structure in dot-bracket notation

• columns – The number of columns before the alignment is wrapped as a new block (a
value of 0 indicates no wrapping)

int vrna_file_PS_aln_slice(const char *filename, const char **seqs, const char **names, const char
*structure, unsigned int start, unsigned int end, int offset, unsigned int
columns)

#include <ViennaRNA/plotting/alignments.h> Create an annotated PostScript alignment plot.

Similar to vrna_file_PS_aln() but allows the user to print a particular slice of the alignment by speci-
fying a start and end position. The additional offset parameter allows for adjusting the alignment
position ruler value.

SWIG Wrapper Notes:
This function is available as overloaded function file_PS_aln() where the last four parameter
may be omitted, indicating start = 0, end = 0, offset = 0, and columns = 60. See, e.g. RNA.
file_PS_aln() in the Python API .

See also:
vrna_file_PS_aln_slice()

Parameters
• filename – The output file name

• seqs – The aligned sequences

• names – The names of the sequences

• structure – The consensus structure in dot-bracket notation

• start – The start of the alignment slice (a value of 0 indicates the first position of the
alignment, i.e. no slicing at 5’ side)

• end – The end of the alignment slice (a value of 0 indicates the last position of the
alignment, i.e. no slicing at 3’ side)

• offset – The alignment coordinate offset for the position ruler.

• columns – The number of columns before the alignment is wrapped as a new block (a
value of 0 indicates no wrapping)

7.14. Utilities 555

ViennaRNA, Release 2.6.4

Deprecated Interface for Plotting Utilities

Functions

int PS_color_aln(const char *structure, const char *filename, const char *seqs[], const char *names[])
#include <ViennaRNA/plotting/alignments.h> Produce PostScript sequence alignment color-annotated
by consensus structure.

Deprecated:
Use vrna_file_PS_aln() instead!

int aliPS_color_aln(const char *structure, const char *filename, const char *seqs[], const char
*names[])

#include <ViennaRNA/plotting/alignments.h> PS_color_aln for duplexes.

Deprecated:
Use vrna_file_PS_aln() instead!

int simple_xy_coordinates(short *pair_table, float *X, float *Y)

#include <ViennaRNA/plotting/layouts.h> Calculate nucleotide coordinates for secondary structure
plot the Simple way

Deprecated:
Consider switching to vrna_plot_coords_simple_pt() instead!

See also:
make_pair_table(), rna_plot_type, simple_circplot_coordinates(), naview_xy_coordinates(),
vrna_file_PS_rnaplot_a(), vrna_file_PS_rnaplot, svg_rna_plot()

Parameters
• pair_table – The pair table of the secondary structure

• X – a pointer to an array with enough allocated space to hold the x coordinates

• Y – a pointer to an array with enough allocated space to hold the y coordinates

Returns
length of sequence on success, 0 otherwise

int simple_circplot_coordinates(short *pair_table, float *x, float *y)
#include <ViennaRNA/plotting/layouts.h> Calculate nucleotide coordinates for Circular Plot

This function calculates the coordinates of nucleotides mapped in equal distancies onto a unit circle.

Deprecated:
Consider switching to vrna_plot_coords_circular_pt() instead!

See also:
make_pair_table(), rna_plot_type, simple_xy_coordinates(), naview_xy_coordinates(),
vrna_file_PS_rnaplot_a(), vrna_file_PS_rnaplot, svg_rna_plot()

556 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Note: In order to draw nice arcs using quadratic bezier curves that connect base pairs one may calculate
a second tangential point 𝑃 𝑡 in addition to the actual R2 coordinates. the simplest way to do so may be
to compute a radius scaling factor 𝑟𝑠 in the interval [0, 1] that weights the proportion of base pair span
to the actual length of the sequence. This scaling factor can then be used to calculate the coordinates
for 𝑃 𝑡, i.e. 𝑃 𝑡

𝑥[𝑖] = 𝑋[𝑖] * 𝑟𝑠 and 𝑃 𝑡
𝑦 [𝑖] = 𝑌 [𝑖] * 𝑟𝑠.

Parameters
• pair_table – The pair table of the secondary structure

• x – a pointer to an array with enough allocated space to hold the x coordinates

• y – a pointer to an array with enough allocated space to hold the y coordinates

Returns
length of sequence on success, 0 otherwise

int PS_color_dot_plot(char *string, vrna_cpair_t *pi, char *filename)
#include <ViennaRNA/plotting/probabilities.h>

int PS_color_dot_plot_turn(char *seq, vrna_cpair_t *pi, char *filename, int winSize)
#include <ViennaRNA/plotting/probabilities.h>

int PS_dot_plot_turn(char *seq, vrna_ep_t *pl, char *filename, int winSize)
#include <ViennaRNA/plotting/probabilities.h>

int PS_dot_plot_list(char *seq, char *filename, vrna_ep_t *pl, vrna_ep_t *mf, char *comment)
#include <ViennaRNA/plotting/probabilities.h> Produce a postscript dot-plot from two pair lists.

This function reads two plist structures (e.g. base pair probabilities and a secondary structure) as
produced by assign_plist_from_pr() and assign_plist_from_db() and produces a postscript “dot plot”
that is written to ‘filename’.

Using base pair probabilities in the first and mfe structure in the second plist, the resulting “dot plot”
represents each base pairing probability by a square of corresponding area in a upper triangle matrix.
The lower part of the matrix contains the minimum free energy structure.

See also:
assign_plist_from_pr(), assign_plist_from_db()

Parameters
• seq – The RNA sequence

• filename – A filename for the postscript output

• pl – The base pair probability pairlist

• mf – The mfe secondary structure pairlist

• comment – A comment

Returns
1 if postscript was successfully written, 0 otherwise

int PS_dot_plot(char *string, char *file)
#include <ViennaRNA/plotting/probabilities.h> Produce postscript dot-plot.

Wrapper to PS_dot_plot_list

Reads base pair probabilities produced by pf_fold() from the global array pr and the pair list base_pair
produced by fold() and produces a postscript “dot plot” that is written to ‘filename’. The “dot plot”

7.14. Utilities 557

ViennaRNA, Release 2.6.4

represents each base pairing probability by a square of corresponding area in a upper triangle matrix.
The lower part of the matrix contains the minimum free energy

Deprecated:
This function is deprecated and will be removed soon! Use PS_dot_plot_list() instead!

Note: DO NOT USE THIS FUNCTION ANYMORE SINCE IT IS NOT THREADSAFE

Variables

int rna_plot_type
Switch for changing the secondary structure layout algorithm.

Current possibility are 0 for a simple radial drawing or 1 for the modified radial drawing taken from
the naview program of Bruccoleri and Heinrich [1988] .

See also:
VRNA_PLOT_TYPE_SIMPLE, VRNA_PLOT_TYPE_NAVIEW , VRNA_PLOT_TYPE_CIRCULAR

Note: To provide thread safety please do not rely on this global variable in future implementations
but pass a plot type flag directly to the function that decides which layout algorithm it may use!

struct COORDINATE
#include <ViennaRNA/plotting/layouts.h> this is a workarround for the SWIG Perl Wrapper RNA plot
function that returns an array of type COORDINATE

Public Members

float X

float Y

Functions

int vrna_file_PS_rnaplot(const char *seq, const char *structure, const char *file, vrna_md_t *md_p)
#include <ViennaRNA/plotting/structures.h> Produce a secondary structure graph in PostScript and
write it to ‘filename’.

Note that this function has changed from previous versions and now expects the structure to be plotted
in dot-bracket notation as an argument. It does not make use of the global base_pair array anymore.

Parameters
• seq – The RNA sequence

• structure – The secondary structure in dot-bracket notation

• file – The filename of the postscript output

558 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• md_p – Model parameters used to generate a commandline option string in the output
(Maybe NULL)

Returns
1 on success, 0 otherwise

int vrna_file_PS_rnaplot_a(const char *seq, const char *structure, const char *file, const char *pre,
const char *post, vrna_md_t *md_p)

#include <ViennaRNA/plotting/structures.h> Produce a secondary structure graph in PostScript in-
cluding additional annotation macros and write it to ‘filename’.

Same as vrna_file_PS_rnaplot() but adds extra PostScript macros for various annotations (see generated
PS code). The ‘pre’ and ‘post’ variables contain PostScript code that is verbatim copied in the resulting
PS file just before and after the structure plot. If both arguments (‘pre’ and ‘post’) are NULL, no
additional macros will be printed into the PostScript.

Parameters
• seq – The RNA sequence

• structure – The secondary structure in dot-bracket notation

• file – The filename of the postscript output

• pre – PostScript code to appear before the secondary structure plot

• post – PostScript code to appear after the secondary structure plot

• md_p – Model parameters used to generate a commandline option string in the output
(Maybe NULL)

Returns
1 on success, 0 otherwise

int vrna_file_PS_rnaplot_layout(const char *seq, const char *structure, const char *ssfile, const char
*pre, const char *post, vrna_md_t *md_p, vrna_plot_layout_t
*layout)

#include <ViennaRNA/plotting/structures.h>

int PS_rna_plot_snoop_a(const char *string, const char *structure, const char *ssfile, int
*relative_access, const char *seqs[])

#include <ViennaRNA/plotting/structures.h>

int gmlRNA(char *string, char *structure, char *ssfile, char option)
#include <ViennaRNA/plotting/structures.h> Produce a secondary structure graph in Graph Meta Lan-
guage (gml) and write it to a file.

If ‘option’ is an uppercase letter the RNA sequence is used to label nodes, if ‘option’ equals ‘X’ or ‘x’
the resulting file will coordinates for an initial layout of the graph.

Parameters
• string – The RNA sequence

• structure – The secondary structure in dot-bracket notation

• ssfile – The filename of the gml output

• option – The option flag

Returns
1 on success, 0 otherwise

int ssv_rna_plot(char *string, char *structure, char *ssfile)
#include <ViennaRNA/plotting/structures.h> Produce a secondary structure graph in SStructView for-
mat.

Write coord file for SStructView

7.14. Utilities 559

ViennaRNA, Release 2.6.4

Parameters
• string – The RNA sequence

• structure – The secondary structure in dot-bracket notation

• ssfile – The filename of the ssv output

Returns
1 on success, 0 otherwise

int svg_rna_plot(char *string, char *structure, char *ssfile)
#include <ViennaRNA/plotting/structures.h> Produce a secondary structure plot in SVG format and
write it to a file.

Parameters
• string – The RNA sequence

• structure – The secondary structure in dot-bracket notation

• ssfile – The filename of the svg output

Returns
1 on success, 0 otherwise

int xrna_plot(char *string, char *structure, char *ssfile)
#include <ViennaRNA/plotting/structures.h> Produce a secondary structure plot for further editing in
XRNA.

Parameters
• string – The RNA sequence

• structure – The secondary structure in dot-bracket notation

• ssfile – The filename of the xrna output

Returns
1 on success, 0 otherwise

int PS_rna_plot(char *string, char *structure, char *file)
#include <ViennaRNA/plotting/structures.h> Produce a secondary structure graph in PostScript and
write it to ‘filename’.

Deprecated:
Use vrna_file_PS_rnaplot() instead!

int PS_rna_plot_a(char *string, char *structure, char *file, char *pre, char *post)
#include <ViennaRNA/plotting/structures.h> Produce a secondary structure graph in PostScript in-
cluding additional annotation macros and write it to ‘filename’.

Deprecated:
Use vrna_file_PS_rnaplot_a() instead!

int PS_rna_plot_a_gquad(char *string, char *structure, char *ssfile, char *pre, char *post)
#include <ViennaRNA/plotting/structures.h> Produce a secondary structure graph in PostScript in-
cluding additional annotation macros and write it to ‘filename’ (detect and draw g-quadruplexes)

Deprecated:
Use vrna_file_PS_rnaplot_a() instead!

560 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.14.7 Search Algorithms

Implementations of various search algorithms to detect strings of objects within other strings of objects.

Functions

const unsigned int *vrna_search_BMH_num(const unsigned int *needle, size_t needle_size, const
unsigned int *haystack, size_t haystack_size, size_t start,
size_t *badchars, unsigned char cyclic)

#include <ViennaRNA/search/BoyerMoore.h> Search for a string of elements in a larger string of ele-
ments using the Boyer-Moore-Horspool algorithm.

To speed-up subsequent searches with this function, the Bad Character Table should be precomputed
and passed as argument badchars.

See also:
vrna_search_BM_BCT_num(), vrna_search_BMH()

Parameters
• needle – The pattern of object representations to search for

• needle_size – The size (length) of the pattern provided in needle

• haystack – The string of objects the search will be performed on

• haystack_size – The size (length) of the haystack string

• start – The position within haystack where to start the search

• badchars – A pre-computed Bad Character Table obtained from
vrna_search_BM_BCT_num() (If NULL, a Bad Character Table will be gener-
ated automatically)

• cyclic – Allow for cyclic matches if non-zero, stop search at end of haystack otherwise

Returns
A pointer to the first occurence of needle within haystack after position start

const char *vrna_search_BMH(const char *needle, size_t needle_size, const char *haystack, size_t
haystack_size, size_t start, size_t *badchars, unsigned char cyclic)

#include <ViennaRNA/search/BoyerMoore.h> Search for an ASCII pattern within a larger ASCII string
using the Boyer-Moore-Horspool algorithm.

To speed-up subsequent searches with this function, the Bad Character Table should be precomputed
and passed as argument badchars. Furthermore, both, the lengths of needle and the length of
haystack should be pre-computed and must be passed along with each call.

See also:
vrna_search_BM_BCT(), vrna_search_BMH_num()

Parameters
• needle – The NULL-terminated ASCII pattern to search for

• needle_size – The size (length) of the pattern provided in needle

• haystack – The NULL-terminated ASCII string of the search will be performed on

7.14. Utilities 561

ViennaRNA, Release 2.6.4

• haystack_size – The size (length) of the haystack string

• start – The position within haystack where to start the search

• badchars – A pre-computed Bad Character Table obtained from
vrna_search_BM_BCT() (If NULL, a Bad Character Table will be generated
automatically)

• cyclic – Allow for cyclic matches if non-zero, stop search at end of haystack otherwise

Returns
A pointer to the first occurence of needle within haystack after position start

size_t *vrna_search_BM_BCT_num(const unsigned int *pattern, size_t pattern_size, unsigned int
num_max)

#include <ViennaRNA/search/BoyerMoore.h> Retrieve a Boyer-Moore Bad Character Table for a pat-
tern of elements represented by natural numbers.

See also:
vrna_search_BMH_num(), vrna_search_BM_BCT()

Note: We store the maximum number representation of an element num_max at position 0. So the
actual bad character table T starts at T[1] for an element represented by number 0.

Parameters
• pattern – The pattern of element representations used in the subsequent search

• pattern_size – The size (length) of the pattern provided in pattern

• num_max – The maximum number representation of an element, i.e. the size of the
alphabet

Returns
A Bad Character Table for use in our Boyer-Moore search algorithm implementation(s)

size_t *vrna_search_BM_BCT(const char *pattern)
#include <ViennaRNA/search/BoyerMoore.h> Retrieve a Boyer-Moore Bad Character Table for a
NULL-terminated pattern of ASCII characters.

See also:
vrna_search_BMH(), vrna_search_BM_BCT_num()

Note: We store the maximum number representation of an element, i.e. 127 at position 0. So the
actual bad character table T starts at T[1] for an element represented by ASCII code 0.

Parameters
• pattern – The NULL-terminated pattern of ASCII characters used in the subsequent

search

Returns
A Bad Character Table for use in our Boyer-Moore search algorithm implementation(s)

562 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.14.8 Combinatorics Algorithms

Implementations to solve various combinatorial aspects for strings of objects.

Functions

unsigned int **vrna_enumerate_necklaces(const unsigned int *type_counts)
#include <ViennaRNA/combinatorics.h> Enumerate all necklaces with fixed content.

This function implements A fast algorithm to generate necklaces with fixed content as published by
Sawada [2003] .

The function receives a list of counts (the elements on the necklace) for each type of object within a
necklace. The list starts at index 0 and ends with an entry that has a count of 0. The algorithm then
enumerates all non-cyclic permutations of the content, returned as a list of necklaces. This list, again,
is zero-terminated, i.e. the last entry of the list is a NULL pointer.

SWIG Wrapper Notes:
This function is available as global function enumerate_necklaces() which accepts lists input,
an produces list of lists output. See, e.g. RNA.enumerate_necklaces() in the Python API .

Parameters
• type_counts – A 0-terminated list of entity counts

Returns
A list of all non-cyclic permutations of the entities

unsigned int vrna_rotational_symmetry_num(const unsigned int *string, size_t string_length)
#include <ViennaRNA/combinatorics.h> Determine the order of rotational symmetry for a string of
objects represented by natural numbers.

The algorithm applies a fast search of the provided string within itself, assuming the end of the string
wraps around to connect with it’s start. For example, a string of the form 011011 has rotational sym-
metry of order 2

This is a simplified version of vrna_rotational_symmetry_pos_num() that may be useful if one is only
interested in the degree of rotational symmetry but not the actual set of rotational symmetric strings.

SWIG Wrapper Notes:
This function is available as global function rotational_symmetry(). See
vrna_rotational_symmetry_pos() for details. Note, that in the target language the length of
the list string is always known a-priori, so the parameter string_length must be omitted.
See, e.g. RNA.rotational_symmetry() in the Python API .

See also:
vrna_rotational_symmetry_pos_num(), vrna_rotationa_symmetry()

Parameters
• string – The string of elements encoded as natural numbers

• string_length – The length of the string

Returns
The order of rotational symmetry

7.14. Utilities 563

ViennaRNA, Release 2.6.4

unsigned int vrna_rotational_symmetry_pos_num(const unsigned int *string, size_t string_length,
unsigned int **positions)

#include <ViennaRNA/combinatorics.h> Determine the order of rotational symmetry for a string of
objects represented by natural numbers.

The algorithm applies a fast search of the provided string within itself, assuming the end of the string
wraps around to connect with it’s start. For example, a string of the form 011011 has rotational sym-
metry of order 2

If the argument positions is not NULL, the function stores an array of string start positions for rota-
tional shifts that map the string back onto itself. This array has length of order of rotational symmetry,
i.e. the number returned by this function. The first element positions[0] always contains a shift value
of 0 representing the trivial rotation.

SWIG Wrapper Notes:
This function is available as global function rotational_symmetry(). See
vrna_rotational_symmetry_pos() for details. Note, that in the target language the length of
the list string is always known a-priori, so the parameter string_length must be omitted.
See, e.g. RNA.rotational_symmetry() in the Python API .

See also:
vrna_rotational_symmetry_num(), vrna_rotational_symmetry(), vrna_rotational_symmetry_pos()

Note: Do not forget to release the memory occupied by positions after a successful execution of
this function.

Parameters
• string – The string of elements encoded as natural numbers

• string_length – The length of the string

• positions – A pointer to an (undefined) list of alternative string start positions that
lead to an identity mapping (may be NULL)

Returns
The order of rotational symmetry

unsigned int vrna_rotational_symmetry(const char *string)
#include <ViennaRNA/combinatorics.h> Determine the order of rotational symmetry for a NULL-
terminated string of ASCII characters.

The algorithm applies a fast search of the provided string within itself, assuming the end of the string
wraps around to connect with it’s start. For example, a string of the form AABAAB has rotational sym-
metry of order 2

This is a simplified version of vrna_rotational_symmetry_pos() that may be useful if one is only inter-
ested in the degree of rotational symmetry but not the actual set of rotational symmetric strings.

SWIG Wrapper Notes:
This function is available as global function rotational_symmetry(). See
vrna_rotational_symmetry_pos() for details. See, e.g. RNA.rotational_symmetry() in
the Python API .

See also:
vrna_rotational_symmetry_pos(), vrna_rotationa_symmetry_num()

Parameters

564 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• string – A NULL-terminated string of characters

Returns
The order of rotational symmetry

unsigned int vrna_rotational_symmetry_pos(const char *string, unsigned int **positions)
#include <ViennaRNA/combinatorics.h> Determine the order of rotational symmetry for a NULL-
terminated string of ASCII characters.

The algorithm applies a fast search of the provided string within itself, assuming the end of the string
wraps around to connect with it’s start. For example, a string of the form AABAAB has rotational sym-
metry of order 2

If the argument positions is not NULL, the function stores an array of string start positions for rota-
tional shifts that map the string back onto itself. This array has length of order of rotational symmetry,
i.e. the number returned by this function. The first element positions[0] always contains a shift value
of 0 representing the trivial rotation.

SWIG Wrapper Notes:
This function is available as overloaded global function rotational_symmetry(). It
merges the functionalities of vrna_rotational_symmetry(), vrna_rotational_symmetry_pos(),
vrna_rotational_symmetry_num(), and vrna_rotational_symmetry_pos_num(). In contrast to
our C-implementation, this function doesn’t return the order of rotational symmetry as a sin-
gle value, but returns a list of cyclic permutation shifts that result in a rotationally symmetric
string. The length of the list then determines the order of rotational symmetry. See, e.g. RNA.
rotational_symmetry() in the Python API .

See also:
vrna_rotational_symmetry(), vrna_rotational_symmetry_num(), vrna_rotational_symmetry_num_pos()

Note: Do not forget to release the memory occupied by positions after a successful execution of
this function.

Parameters
• string – A NULL-terminated string of characters

• positions – A pointer to an (undefined) list of alternative string start positions that
lead to an identity mapping (may be NULL)

Returns
The order of rotational symmetry

unsigned int vrna_rotational_symmetry_db(vrna_fold_compound_t *fc, const char *structure)
#include <ViennaRNA/combinatorics.h> Determine the order of rotational symmetry for a dot-bracket
structure.

Given a (permutation of multiple) RNA strand(s) and a particular secondary structure in dot-bracket
notation, compute the degree of rotational symmetry. In case there is only a single linear RNA strand,
the structure always has degree 1, as there are no rotational symmetries due to the direction of the
nucleic acid sequence and the fixed positions of 5’ and 3’ ends. However, for circular RNAs, rotational
symmetries might arise if the sequence consists of a concatenation of 𝑘 identical subsequences.

This is a simplified version of vrna_rotational_symmetry_db_pos() that may be useful if one is only
interested in the degree of rotational symmetry but not the actual set of rotational symmetric strings.

7.14. Utilities 565

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes:
This function is attached as method rotational_symmetry_db() to objects of type
fold_compound (i.e. vrna_fold_compound_t). See vrna_rotational_symmetry_db_pos() for de-
tails. See, e.g. RNA.fold_compound.rotational_symmetry_db() in the Python API .

See also:
vrna_rotational_symmetry_db_pos(), vrna_rotational_symmetry(), vrna_rotational_symmetry_num()

Parameters
• fc – A fold_compound data structure containing the nucleic acid sequence(s), their

order, and model settings

• structure – The dot-bracket structure the degree of rotational symmetry is checked
for

Returns
The degree of rotational symmetry of the structure (0 in case of any errors)

unsigned int vrna_rotational_symmetry_db_pos(vrna_fold_compound_t *fc, const char *structure,
unsigned int **positions)

#include <ViennaRNA/combinatorics.h> Determine the order of rotational symmetry for a dot-bracket
structure.

Given a (permutation of multiple) RNA strand(s) and a particular secondary structure in dot-bracket
notation, compute the degree of rotational symmetry. In case there is only a single linear RNA strand,
the structure always has degree 1, as there are no rotational symmetries due to the direction of the
nucleic acid sequence and the fixed positions of 5’ and 3’ ends. However, for circular RNAs, rotational
symmetries might arise if the sequence consists of a concatenation of 𝑘 identical subsequences.

If the argument positions is not NULL, the function stores an array of string start positions for rota-
tional shifts that map the string back onto itself. This array has length of order of rotational symmetry,
i.e. the number returned by this function. The first element positions[0] always contains a shift value
of 0 representing the trivial rotation.

SWIG Wrapper Notes:
This function is attached as method rotational_symmetry_db() to objects of type
fold_compound (i.e. vrna_fold_compound_t). Thus, the first argument must be omitted. In con-
trast to our C-implementation, this function doesn’t simply return the order of rotational symmetry
of the secondary structure, but returns the list position of cyclic permutation shifts that result in
a rotationally symmetric structure. The length of the list then determines the order of rotational
symmetry. See, e.g. RNA.fold_compound.rotational_symmetry_db() in the Python API .

See also:
vrna_rotational_symmetry_db(), vrna_rotational_symmetry_pos(), vrna_rotational_symmetry_pos_num()

Note: Do not forget to release the memory occupied by positions after a successful execution of
this function.

Parameters
• fc – A fold_compound data structure containing the nucleic acid sequence(s), their

order, and model settings

• structure – The dot-bracket structure the degree of rotational symmetry is checked
for

• positions – A pointer to an (undefined) list of alternative string start positions that
lead to an identity mapping (may be NULL)

566 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Returns
The degree of rotational symmetry of the structure (0 in case of any errors)

unsigned int **vrna_n_multichoose_k(size_t n, size_t k)
#include <ViennaRNA/combinatorics.h> Obtain a list of k-combinations with repetition (n multichoose
k)

This function compiles a list of k-combinations, or k-multicombination, i.e. a list of multisubsets of
size k from a set of integer values from 0 to n - 1. For that purpose, we enumerate n + k - 1 choose k
and decrease each index position i by i to obtain n multichoose k.

Parameters
• n – Maximum number to choose from (interval of integers from 0 to n - 1)

• k – Number of elements to choose, i.e. size of each multisubset

Returns
A list of lists of elements of combinations (last entry is terminated by NULL

unsigned int *vrna_boustrophedon(size_t start, size_t end)
#include <ViennaRNA/combinatorics.h> Generate a sequence of Boustrophedon distributed numbers.

This function generates a sequence of positive natural numbers within the interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] in a
Boustrophedon fashion. That is, the numbers 𝑠𝑡𝑎𝑟𝑡, . . . , 𝑒𝑛𝑑 in the resulting list are alternating between
left and right ends of the interval while progressing to the inside, i.e. the list consists of a sequence of
natural numbers of the form:

𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑠𝑡𝑎𝑟𝑡 + 1, 𝑒𝑛𝑑− 1, 𝑠𝑡𝑎𝑟𝑡 + 2, 𝑒𝑛𝑑− 2, . . .

The resulting list is 1-based and contains the length of the sequence of numbers at it’s 0-th position.

Upon failure, the function returns NULL

SWIG Wrapper Notes:
This function is available as overloaded global function boustrophedon(). See, e.g. RNA.
boustrophedon() in the Python API .

See also:
vrna_boustrophedon_pos()

Parameters
• start – The first number of the list (left side of the interval)

• end – The last number of the list (right side of the interval)

Returns
A list of alternating numbers from the interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] (or NULL on error)

unsigned int vrna_boustrophedon_pos(size_t start, size_t end, size_t pos)
#include <ViennaRNA/combinatorics.h> Obtain the i-th element in a Boustrophedon distributed inter-
val of natural numbers.

SWIG Wrapper Notes:
This function is available as overloaded global function boustrophedon(). Omitting the pos
argument yields the entire sequence from start to end. See, e.g. RNA.boustrophedon() in the
Python API .

7.14. Utilities 567

ViennaRNA, Release 2.6.4

See also:
vrna_boustrophedon()

Parameters
• start – The first number of the list (left side of the interval)

• end – The last number of the list (right side of the interval)

• pos – The index of the number within the Boustrophedon distributed sequence (1-
based)

Returns
The pos-th element in the Boustrophedon distributed sequence of natural numbers of
the interval

7.14.9 (Abstract) Data Structures

All datastructures and typedefs shared among the ViennaRNA Package can be found here.

The Fold Compound

This module provides interfaces that deal with the most basic data structure used in structure predicting and energy
evaluating function of the RNAlib.

Throughout the entire RNAlib, the vrna_fold_compound_t, is used to group information and data that is required
for structure prediction and energy evaluation. Here, you’ll find interface functions to create, modify, and delete
vrna_fold_compound_t data structures.

Defines

VRNA_STATUS_MFE_PRE

#include <ViennaRNA/fold_compound.h> Status message indicating that MFE computations are about
to begin.

See also:
vrna_fold_compound_t.stat_cb, vrna_recursion_status_f(), vrna_mfe(), vrna_fold(), vrna_circfold(),
vrna_alifold(), vrna_circalifold(), vrna_cofold()

VRNA_STATUS_MFE_POST

#include <ViennaRNA/fold_compound.h> Status message indicating that MFE computations are fin-
ished.

See also:
vrna_fold_compound_t.stat_cb, vrna_recursion_status_f(), vrna_mfe(), vrna_fold(), vrna_circfold(),
vrna_alifold(), vrna_circalifold(), vrna_cofold()

568 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

VRNA_STATUS_PF_PRE

#include <ViennaRNA/fold_compound.h> Status message indicating that Partition function computa-
tions are about to begin.

See also:
vrna_fold_compound_t.stat_cb, vrna_recursion_status_f(), vrna_pf()

VRNA_STATUS_PF_POST

#include <ViennaRNA/fold_compound.h> Status message indicating that Partition function computa-
tions are finished.

See also:
vrna_fold_compound_t.stat_cb, vrna_recursion_status_f(), vrna_pf()

VRNA_OPTION_DEFAULT

#include <ViennaRNA/fold_compound.h> Option flag to specify default settings/requirements.

VRNA_OPTION_MFE

#include <ViennaRNA/fold_compound.h> Option flag to specify requirement of Minimum Free En-
ergy (MFE) DP matrices and corresponding set of energy parameters.

See also:
vrna_fold_compound(), vrna_fold_compound_comparative(), VRNA_OPTION_EVAL_ONLY

VRNA_OPTION_PF

#include <ViennaRNA/fold_compound.h> Option flag to specify requirement of Partition Function
(PF) DP matrices and corresponding set of Boltzmann factors.

See also:
vrna_fold_compound(), vrna_fold_compound_comparative(), VRNA_OPTION_EVAL_ONLY

VRNA_OPTION_HYBRID

#include <ViennaRNA/fold_compound.h> Option flag to specify requirement of dimer DP matrices.

VRNA_OPTION_EVAL_ONLY

#include <ViennaRNA/fold_compound.h> Option flag to specify that neither MFE, nor PF DP matrices
are required.

Use this flag in conjuntion with VRNA_OPTION_MFE, and VRNA_OPTION_PF to save memory for a
vrna_fold_compound_t obtained from vrna_fold_compound(), or vrna_fold_compound_comparative()
in cases where only energy evaluation but no structure prediction is required.

See also:
vrna_fold_compound(), vrna_fold_compound_comparative(), vrna_eval_structure()

7.14. Utilities 569

ViennaRNA, Release 2.6.4

VRNA_OPTION_WINDOW

#include <ViennaRNA/fold_compound.h> Option flag to specify requirement of DP matrices for local
folding approaches.

VRNA_OPTION_F5

#include <ViennaRNA/fold_compound.h>

VRNA_OPTION_F3

#include <ViennaRNA/fold_compound.h>

VRNA_OPTION_WINDOW_F5

#include <ViennaRNA/fold_compound.h>

VRNA_OPTION_WINDOW_F3

#include <ViennaRNA/fold_compound.h>

Typedefs

typedef struct vrna_fc_s vrna_fold_compound_t
#include <ViennaRNA/fold_compound.h> Typename for the fold_compound data structure vrna_fc_s.

typedef void (*vrna_auxdata_free_f)(void *data)
#include <ViennaRNA/fold_compound.h> Callback to free memory allocated for auxiliary user-
provided data.

This type of user-implemented function usually deletes auxiliary data structures. The user must take
care to free all the memory occupied by the data structure passed.

Notes on Callback Functions:
This callback is supposed to free memory occupied by an auxiliary data structure. It
will be called when the vrna_fold_compound_t is erased from memory through a call to
vrna_fold_compound_free() and will be passed the address of memory previously bound to the
vrna_fold_compound_t via vrna_fold_compound_add_auxdata().

See also:
vrna_fold_compound_add_auxdata(), vrna_fold_compound_free(),
vrna_fold_compound_add_callback()

Param data
The data that needs to be free’d

typedef int (*vrna_auxdata_prepare_f)(vrna_fold_compound_t *fc, void *data, unsigned int event,
void *event_data)

#include <ViennaRNA/fold_compound.h>

void() vrna_callback_free_auxdata (void *data)

#include <ViennaRNA/fold_compound.h> Callback to free memory allocated for auxiliary user-
provided data.

570 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Deprecated:
Use vrna_auxdata_free_f(void *data) instead!

typedef void (*vrna_recursion_status_f)(unsigned char status, void *data)
#include <ViennaRNA/fold_compound.h> Callback to perform specific user-defined actions before, or
after recursive computations.

Notes on Callback Functions:
This function will be called to notify a third-party implementation about the status of a currently
ongoing recursion. The purpose of this callback mechanism is to provide users with a simple way
to ensure pre- and post conditions for auxiliary mechanisms attached to our implementations.

See also:
vrna_fold_compound_add_auxdata(), vrna_fold_compound_add_callback(), vrna_mfe(),
vrna_pf(), VRNA_STATUS_MFE_PRE, VRNA_STATUS_MFE_POST , VRNA_STATUS_PF_PRE,
VRNA_STATUS_PF_POST

Param status
The status indicator

Param data
The data structure that was assigned with vrna_fold_compound_add_auxdata()

void() vrna_callback_recursion_status (unsigned char status, void *data)

#include <ViennaRNA/fold_compound.h>

Enums

enum vrna_fc_type_e
An enumerator that is used to specify the type of a vrna_fold_compound_t.

Values:

enumerator VRNA_FC_TYPE_SINGLE
Type is suitable for single, and hybridizing sequences

enumerator VRNA_FC_TYPE_COMPARATIVE
Type is suitable for sequence alignments (consensus structure prediction)

Functions

vrna_fold_compound_t *vrna_fold_compound(const char *sequence, const vrna_md_t *md_p,
unsigned int options)

#include <ViennaRNA/fold_compound.h> Retrieve a vrna_fold_compound_t data structure for single
sequences and hybridizing sequences.

This function provides an easy interface to obtain a prefilled vrna_fold_compound_t by passing a single
sequence, or two contatenated sequences as input. For the latter, sequences need to be seperated by an
‘&’ character like this:

char *sequence = "GGGG&CCCC";

7.14. Utilities 571

ViennaRNA, Release 2.6.4

The optional parameter md_p can be used to specify the model details for successive computations
based on the content of the generated vrna_fold_compound_t. Passing NULL will instruct the function
to use default model details. The third parameter options may be used to specify dynamic program-
ming (DP) matrix requirements.

Options

• VRNA_OPTION_DEFAULT - Option flag to specify default settings/requirements.

• VRNA_OPTION_MFE - Option flag to specify requirement of Minimum Free Energy (MFE) DP
matrices and corresponding set of energy parameters.

• VRNA_OPTION_PF - Option flag to specify requirement of Partition Function (PF) DP matrices
and corresponding set of Boltzmann factors.

• VRNA_OPTION_WINDOW - Option flag to specify requirement of DP matrices for local folding
approaches.

The above options may be OR-ed together.

If you just need the folding compound serving as a container for your data, you can simply pass
VRNA_OPTION_DEFAULT to the option parameter. This creates a vrna_fold_compound_t with-
out DP matrices, thus saving memory. Subsequent calls of any structure prediction function will then
take care of allocating the memory required for the DP matrices. If you only intend to evaluate struc-
tures instead of actually predicting them, you may use the VRNA_OPTION_EVAL_ONLY macro. This
will seriously speedup the creation of the vrna_fold_compound_t.

See also:
vrna_fold_compound_free(), vrna_fold_compound_comparative(), vrna_md_t

Note: The sequence string must be uppercase, and should contain only RNA (resp. DNA) alphabet
depending on what energy parameter set is used

Parameters
• sequence – A single sequence, or two concatenated sequences seperated by an ‘&’

character

• md_p – An optional set of model details

• options – The options for DP matrices memory allocation

Returns
A prefilled vrna_fold_compound_t ready to be used for computations (may be NULL on
error)

vrna_fold_compound_t *vrna_fold_compound_comparative(const char **sequences, vrna_md_t
*md_p, unsigned int options)

#include <ViennaRNA/fold_compound.h> Retrieve a vrna_fold_compound_t data structure for se-
quence alignments.

This function provides an easy interface to obtain a prefilled vrna_fold_compound_t by passing an
alignment of sequences.

The optional parameter md_p can be used to specify the model details for successive computations
based on the content of the generated vrna_fold_compound_t. Passing NULL will instruct the function
to use default model details. The third parameter options may be used to specify dynamic program-
ming (DP) matrix requirements.

Options

572 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• VRNA_OPTION_DEFAULT - Option flag to specify default settings/requirements.

• VRNA_OPTION_MFE - Option flag to specify requirement of Minimum Free Energy (MFE) DP
matrices and corresponding set of energy parameters.

• VRNA_OPTION_PF - Option flag to specify requirement of Partition Function (PF) DP matrices
and corresponding set of Boltzmann factors.

• VRNA_OPTION_WINDOW - Option flag to specify requirement of DP matrices for local folding
approaches.

The above options may be OR-ed together.

If you just need the folding compound serving as a container for your data, you can simply pass
VRNA_OPTION_DEFAULT to the option parameter. This creates a vrna_fold_compound_t with-
out DP matrices, thus saving memory. Subsequent calls of any structure prediction function will then
take care of allocating the memory required for the DP matrices. If you only intend to evaluate struc-
tures instead of actually predicting them, you may use the VRNA_OPTION_EVAL_ONLY macro. This
will seriously speedup the creation of the vrna_fold_compound_t.

See also:
vrna_fold_compound_free(), vrna_fold_compound(), vrna_md_t, VRNA_OPTION_MFE,
VRNA_OPTION_PF, VRNA_OPTION_EVAL_ONLY , read_clustal()

Note: The sequence strings must be uppercase, and should contain only RNA (resp. DNA) alphabet
including gap characters depending on what energy parameter set is used.

Parameters
• sequences – A sequence alignment including ‘gap’ characters

• md_p – An optional set of model details

• options – The options for DP matrices memory allocation

Returns
A prefilled vrna_fold_compound_t ready to be used for computations (may be NULL on
error)

vrna_fold_compound_t *vrna_fold_compound_comparative2(const char **sequences, const char
**names, const unsigned char
*orientation, const unsigned long long
*start, const unsigned long long
*genome_size, vrna_md_t *md_p,
unsigned int options)

#include <ViennaRNA/fold_compound.h>

vrna_fold_compound_t *vrna_fold_compound_TwoD(const char *sequence, const char *s1, const char
*s2, vrna_md_t *md_p, unsigned int options)

#include <ViennaRNA/fold_compound.h>

int vrna_fold_compound_prepare(vrna_fold_compound_t *fc, unsigned int options)
#include <ViennaRNA/fold_compound.h>

void vrna_fold_compound_free(vrna_fold_compound_t *fc)
#include <ViennaRNA/fold_compound.h> Free memory occupied by a vrna_fold_compound_t.

7.14. Utilities 573

ViennaRNA, Release 2.6.4

See also:
vrna_fold_compound(), vrna_fold_compound_comparative(), vrna_mx_mfe_free(),
vrna_mx_pf_free()

Parameters
• fc – The vrna_fold_compound_t that is to be erased from memory

void vrna_fold_compound_add_auxdata(vrna_fold_compound_t *fc, void *data,
vrna_auxdata_free_f f)

#include <ViennaRNA/fold_compound.h> Add auxiliary data to the vrna_fold_compound_t.

This function allows one to bind arbitrary data to a vrna_fold_compound_t which may later on be
used by one of the callback functions, e.g. vrna_recursion_status_f(). To allow for proper cleanup
of the memory occupied by this auxiliary data, the user may also provide a pointer to a cleanup
function that free’s the corresponding memory. This function will be called automatically when the
vrna_fold_compound_t is free’d with vrna_fold_compound_free().

See also:
vrna_auxdata_free_f()

Note: Before attaching the arbitrary data pointer, this function will call the vrna_auxdata_free_f() on
any pre-existing data that is already attached.

Parameters
• fc – The fold_compound the arbitrary data pointer should be associated with

• data – A pointer to an arbitrary data structure

• f – A pointer to function that free’s memory occupied by the arbitrary data (May be
NULL)

void vrna_fold_compound_add_callback(vrna_fold_compound_t *fc, vrna_recursion_status_f f)
#include <ViennaRNA/fold_compound.h> Add a recursion status callback to the
vrna_fold_compound_t.

Binding a recursion status callback function to a vrna_fold_compound_t allows one to perform arbitrary
operations just before, or after an actual recursive computations, e.g. MFE prediction, is performed by
the RNAlib. The callback function will be provided with a pointer to its vrna_fold_compound_t, and a
status message. Hence, it has complete access to all variables that incluence the recursive computations.

See also:
vrna_recursion_status_f(), vrna_fold_compound_t, VRNA_STATUS_MFE_PRE,
VRNA_STATUS_MFE_POST , VRNA_STATUS_PF_PRE, VRNA_STATUS_PF_POST

Parameters
• fc – The fold_compound the callback function should be attached to

• f – The pointer to the recursion status callback function

574 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

struct vrna_fc_s
#include <ViennaRNA/fold_compound.h> The most basic data structure required by many functions
throughout the RNAlib.

SWIG Wrapper Notes:

This data structure is wrapped as class fold_compound with several related functions attached as
methods.

A new fold_compound can be obtained by calling one of its constructors:
• fold_compound(seq) - Initialize with a single sequence, or two concatenated sequences

separated by an ampersand character & (for cofolding)
• fold_compound(aln) - Initialize with a sequence alignment aln stored as a list of sequences

(with gap characters).
The resulting object has a list of attached methods which in most cases directly correspond to
functions that mainly operate on the corresponding C data structure:

• type() - Get the type of the fold_compound (See vrna_fc_type_e)
• length() - Get the length of the sequence(s) or alignment stored within the fold_compound.

See, e.g. RNA.fold_compound in the Python API .

See also:
vrna_fold_compound_t.type, vrna_fold_compound(), vrna_fold_compound_comparative(),
vrna_fold_compound_free(), VRNA_FC_TYPE_SINGLE, VRNA_FC_TYPE_COMPARATIVE

Note: Please read the documentation of this data structure carefully! Some attributes are only available
for specific types this data structure can adopt.

Warning: Reading/Writing from/to attributes that are not within the scope of the current type
usually result in undefined behavior!

Common data fields

const vrna_fc_type_e type
The type of the vrna_fold_compound_t.

Currently possible values are VRNA_FC_TYPE_SINGLE, and
VRNA_FC_TYPE_COMPARATIVE

Warning: Do not edit this attribute, it will be automagically set by the corresponding get()
methods for the vrna_fold_compound_t. The value specified in this attribute dictates the set
of other attributes to use within this data structure.

unsigned int length
The length of the sequence (or sequence alignment)

int cutpoint
The position of the (cofold) cutpoint within the provided sequence. If there is no cutpoint, this
field will be set to -1.

7.14. Utilities 575

ViennaRNA, Release 2.6.4

unsigned int *strand_number
The strand number a particular nucleotide is associated with.

unsigned int *strand_order
The strand order, i.e. permutation of current concatenated sequence.

unsigned int *strand_order_uniq
The strand order array where identical sequences have the same ID.

unsigned int *strand_start
The start position of a particular strand within the current concatenated sequence.

unsigned int *strand_end
The end (last) position of a particular strand within the current concatenated sequence.

unsigned int strands
Number of interacting strands.

vrna_seq_t *nucleotides
Set of nucleotide sequences.

vrna_msa_t *alignment
Set of alignments.

vrna_hc_t *hc
The hard constraints data structure used for structure prediction.

vrna_mx_mfe_t *matrices
The MFE DP matrices.

vrna_mx_pf_t *exp_matrices
The PF DP matrices

vrna_param_t *params
The precomputed free energy contributions for each type of loop.

vrna_exp_param_t *exp_params
The precomputed free energy contributions as Boltzmann factors

int *iindx
DP matrix accessor

int *jindx
DP matrix accessor

576 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

User-defined data fields

vrna_recursion_status_f stat_cb
Recursion status callback (usually called just before, and after recursive computations in the li-
brary.

See also:
vrna_recursion_status_f(), vrna_fold_compound_add_callback()

void *auxdata
A pointer to auxiliary, user-defined data.

See also:
vrna_fold_compound_add_auxdata(), vrna_fold_compound_t.free_auxdata

vrna_auxdata_free_f free_auxdata
A callback to free auxiliary user data whenever the fold_compound itself is free’d.

See also:
vrna_fold_compound_t.auxdata, vrna_auxdata_free_f()

Secondary Structure Decomposition (grammar) related data fields

vrna_sd_t *domains_struc
Additional structured domains.

vrna_ud_t *domains_up
Additional unstructured domains.

vrna_gr_aux_t *aux_grammar
Additional decomposition grammar rules.

Data fields available for single/hybrid structure prediction

char *sequence
The input sequence string.

Warning: Only available if

type==VRNA_FC_TYPE_SINGLE

short *sequence_encoding
Numerical encoding of the input sequence.

7.14. Utilities 577

ViennaRNA, Release 2.6.4

See also:
vrna_sequence_encode()

Warning: Only available if

type==VRNA_FC_TYPE_SINGLE

short *encoding5

short *encoding3

short *sequence_encoding2

char *ptype
Pair type array.

Contains the numerical encoding of the pair type for each pair (i,j) used in MFE, Partition function
and Evaluation computations.

See also:
vrna_idx_col_wise(), vrna_ptypes()

Note: This array is always indexed via jindx, in contrast to previously different indexing between
mfe and pf variants!

Warning: Only available if

type==VRNA_FC_TYPE_SINGLE

char *ptype_pf_compat
ptype array indexed via iindx

Deprecated:
This attribute will vanish in the future! It’s meant for backward compatibility only!

Warning: Only available if

type==VRNA_FC_TYPE_SINGLE

vrna_sc_t *sc
The soft constraints for usage in structure prediction and evaluation.

Warning: Only available if

type==VRNA_FC_TYPE_SINGLE

578 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Data fields for consensus structure prediction

char **sequences
The aligned sequences.

Note: The end of the alignment is indicated by a NULL pointer in the second dimension

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

unsigned int n_seq
The number of sequences in the alignment.

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

char *cons_seq
The consensus sequence of the aligned sequences.

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

short *S_cons
Numerical encoding of the consensus sequence.

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

short **S
Numerical encoding of the sequences in the alignment.

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

short **S5
S5[s][i] holds next base 5’ of i in sequence s.

7.14. Utilities 579

ViennaRNA, Release 2.6.4

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

short **S3
Sl[s][i] holds next base 3’ of i in sequence s.

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

char **Ss

unsigned int **a2s

int *pscore
Precomputed array of pair types expressed as pairing scores.

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

int **pscore_local
Precomputed array of pair types expressed as pairing scores.

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

short *pscore_pf_compat
Precomputed array of pair types expressed as pairing scores indexed via iindx.

Deprecated:
This attribute will vanish in the future!

Warning: Only available if

type==VRNA_FC_TYPE_COMPARATIVE

vrna_sc_t **scs
A set of soft constraints (for each sequence in the alignment)

Warning: Only available if

580 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

type==VRNA_FC_TYPE_COMPARATIVE

int oldAliEn

Additional data fields for Distance Class Partitioning

These data fields are typically populated with meaningful data only if used in the context of Distance
Class Partitioning

unsigned int maxD1
Maximum allowed base pair distance to first reference.

unsigned int maxD2
Maximum allowed base pair distance to second reference.

short *reference_pt1
A pairtable of the first reference structure.

short *reference_pt2
A pairtable of the second reference structure.

unsigned int *referenceBPs1
Matrix containing number of basepairs of reference structure1 in interval [i,j].

unsigned int *referenceBPs2
Matrix containing number of basepairs of reference structure2 in interval [i,j].

unsigned int *bpdist
Matrix containing base pair distance of reference structure 1 and 2 on interval [i,j].

unsigned int *mm1
Maximum matching matrix, reference struct 1 disallowed.

unsigned int *mm2
Maximum matching matrix, reference struct 2 disallowed.

Additional data fields for local folding

These data fields are typically populated with meaningful data only if used in the context of local folding

int window_size
window size for local folding sliding window approach

char **ptype_local
Pair type array (for local folding)

vrna_zsc_dat_t zscore_data
Data structure with settings for z-score computations.

7.14. Utilities 581

ViennaRNA, Release 2.6.4

Public Members

union vrna_fc_s.[anonymous] [anonymous]

The Dynamic Programming Matrices

This module provides interfaces that deal with creation and destruction of dynamic programming matrices
used within the RNAlib.

Typedefs

typedef struct vrna_mx_mfe_s vrna_mx_mfe_t
#include <ViennaRNA/dp_matrices.h> Typename for the Minimum Free Energy (MFE) DP matrices
data structure vrna_mx_mfe_s.

typedef struct vrna_mx_pf_s vrna_mx_pf_t
#include <ViennaRNA/dp_matrices.h> Typename for the Partition Function (PF) DP matrices data
structure vrna_mx_pf_s.

Enums

enum vrna_mx_type_e
An enumerator that is used to specify the type of a polymorphic Dynamic Programming (DP) matrix
data structure.

See also:
vrna_mx_mfe_t, vrna_mx_pf_t

Values:

enumerator VRNA_MX_DEFAULT
Default DP matrices.

enumerator VRNA_MX_WINDOW
DP matrices suitable for local structure prediction using window approach.

See also:
vrna_mfe_window(), vrna_mfe_window_zscore(), pfl_fold()

enumerator VRNA_MX_2DFOLD
DP matrices suitable for distance class partitioned structure prediction.

See also:
vrna_mfe_TwoD(), vrna_pf_TwoD()

582 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Functions

int vrna_mx_add(vrna_fold_compound_t *fc, vrna_mx_type_e type, unsigned int options)
#include <ViennaRNA/dp_matrices.h> Add Dynamic Programming (DP) matrices (allocate memory)

This function adds DP matrices of a specific type to the provided vrna_fold_compound_t, such that
successive DP recursion can be applied. The function caller has to specify which type of DP ma-
trix is requested, see vrna_mx_type_e, and what kind of recursive algorithm will be applied later on,
using the parameters type, and options, respectively. For the latter, Minimum free energy (MFE),
and Partition function (PF) computations are distinguished. A third option that may be passed is
VRNA_OPTION_HYBRID, indicating that auxiliary DP arrays are required for RNA-RNA interaction
prediction.

See also:
vrna_mx_mfe_add(), vrna_mx_pf_add(), vrna_fold_compound(), vrna_fold_compound_comparative(),
vrna_fold_compound_free(), vrna_mx_pf_free(), vrna_mx_mfe_free(), vrna_mx_type_e,
VRNA_OPTION_MFE, VRNA_OPTION_PF, VRNA_OPTION_HYBRID,
VRNA_OPTION_EVAL_ONLY

Note: Usually, there is no need to call this function, since the constructors of vrna_fold_compound_t
are handling all the DP matrix memory allocation.

Parameters
• fc – The vrna_fold_compound_t that holds pointers to the DP matrices

• type – The type of DP matrices requested

• options – Option flags that specify the kind of DP matrices, such as MFE or PF arrays,
and auxiliary requirements

Returns
1 if DP matrices were properly allocated and attached, 0 otherwise

int vrna_mx_mfe_add(vrna_fold_compound_t *fc, vrna_mx_type_e mx_type, unsigned int options)
#include <ViennaRNA/dp_matrices.h>

int vrna_mx_pf_add(vrna_fold_compound_t *fc, vrna_mx_type_e mx_type, unsigned int options)
#include <ViennaRNA/dp_matrices.h>

int vrna_mx_prepare(vrna_fold_compound_t *fc, unsigned int options)
#include <ViennaRNA/dp_matrices.h>

void vrna_mx_mfe_free(vrna_fold_compound_t *fc)
#include <ViennaRNA/dp_matrices.h> Free memory occupied by the Minimum Free Energy (MFE)
Dynamic Programming (DP) matrices.

See also:
vrna_fold_compound(), vrna_fold_compound_comparative(), vrna_fold_compound_free(),
vrna_mx_pf_free()

Parameters
• fc – The vrna_fold_compound_t storing the MFE DP matrices that are to be erased

from memory

7.14. Utilities 583

ViennaRNA, Release 2.6.4

void vrna_mx_pf_free(vrna_fold_compound_t *fc)
#include <ViennaRNA/dp_matrices.h> Free memory occupied by the Partition Function (PF) Dynamic
Programming (DP) matrices.

See also:
vrna_fold_compound(), vrna_fold_compound_comparative(), vrna_fold_compound_free(),
vrna_mx_mfe_free()

Parameters
• fc – The vrna_fold_compound_t storing the PF DP matrices that are to be erased from

memory

struct vrna_mx_mfe_s
#include <ViennaRNA/dp_matrices.h> Minimum Free Energy (MFE) Dynamic Programming (DP)
matrices data structure required within the vrna_fold_compound_t.

Common fields for MFE matrices

const vrna_mx_type_e type
Type of the DP matrices

unsigned int length
Length of the sequence, therefore an indicator of the size of the DP matrices.

unsigned int strands
Number of strands

Default DP matrices

Note: These data fields are available if

vrna_mx_mfe_t.type == VRNA_MX_DEFAULT

int *c
Energy array, given that i-j pair.

int *f5
Energy of 5’ end.

int *f3
Energy of 3’ end.

int **fms5
Energy for connected interstrand configurations.

584 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int **fms3
nergy for connected interstrand configurations

int *fML
Multi-loop auxiliary energy array.

int *fM1
Second ML array, only for unique multibrnach loop decomposition.

int *fM2
Energy for a multibranch loop region with exactly two stems, extending to 3’ end.

int *ggg
Energies of g-quadruplexes.

int Fc
Minimum Free Energy of entire circular RNA.

int FcH
Minimum Free Energy of hairpin loop cases in circular RNA.

int FcI
Minimum Free Energy of internal loop cases in circular RNA.

int FcM
Minimum Free Energy of multibranch loop cases in circular RNA.

Local Folding DP matrices using window approach

Note: These data fields are available if

vrna_mx_mfe_t.type == VRNA_MX_WINDOW

int **c_local
Energy array, given that i-j pair.

int *f3_local
Energy of 5’ end.

int **fML_local
Multi-loop auxiliary energy array.

int **ggg_local
Energies of g-quadruplexes.

7.14. Utilities 585

ViennaRNA, Release 2.6.4

Distance Class DP matrices

Note: These data fields are available if

vrna_mx_mfe_t.type == VRNA_MX_2DFOLD

int ***E_F5

int **l_min_F5

int **l_max_F5

int *k_min_F5

int *k_max_F5

int ***E_F3

int **l_min_F3

int **l_max_F3

int *k_min_F3

int *k_max_F3

int ***E_C

int **l_min_C

int **l_max_C

int *k_min_C

int *k_max_C

int ***E_M

int **l_min_M

int **l_max_M

int *k_min_M

586 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int *k_max_M

int ***E_M1

int **l_min_M1

int **l_max_M1

int *k_min_M1

int *k_max_M1

int ***E_M2

int **l_min_M2

int **l_max_M2

int *k_min_M2

int *k_max_M2

int **E_Fc

int *l_min_Fc

int *l_max_Fc

int k_min_Fc

int k_max_Fc

int **E_FcH

int *l_min_FcH

int *l_max_FcH

int k_min_FcH

int k_max_FcH

int **E_FcI

int *l_min_FcI

7.14. Utilities 587

ViennaRNA, Release 2.6.4

int *l_max_FcI

int k_min_FcI

int k_max_FcI

int **E_FcM

int *l_min_FcM

int *l_max_FcM

int k_min_FcM

int k_max_FcM

int *E_F5_rem

int *E_F3_rem

int *E_C_rem

int *E_M_rem

int *E_M1_rem

int *E_M2_rem

int E_Fc_rem

int E_FcH_rem

int E_FcI_rem

int E_FcM_rem

Public Members

union vrna_mx_mfe_s.[anonymous] [anonymous]

struct vrna_mx_pf_s
#include <ViennaRNA/dp_matrices.h> Partition function (PF) Dynamic Programming (DP) matrices
data structure required within the vrna_fold_compound_t.

588 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Common fields for DP matrices

const vrna_mx_type_e type
Type of the DP matrices

unsigned int length
Size of the DP matrices (i.e. sequence length)

FLT_OR_DBL *scale
Boltzmann factor scaling

FLT_OR_DBL *expMLbase
Boltzmann factors for unpaired bases in multibranch loop

Default PF matrices

Note: These data fields are available if

vrna_mx_pf_t.type == VRNA_MX_DEFAULT

FLT_OR_DBL *q

FLT_OR_DBL *qb

FLT_OR_DBL *qm

FLT_OR_DBL *qm1

FLT_OR_DBL *probs

FLT_OR_DBL *q1k

FLT_OR_DBL *qln

FLT_OR_DBL *G

FLT_OR_DBL qo

FLT_OR_DBL *qm2

FLT_OR_DBL qho

FLT_OR_DBL qio

FLT_OR_DBL qmo

7.14. Utilities 589

ViennaRNA, Release 2.6.4

Local Folding DP matrices using window approach

Note: These data fields are available if

vrna_mx_mfe_t.type == VRNA_MX_WINDOW

FLT_OR_DBL **q_local

FLT_OR_DBL **qb_local

FLT_OR_DBL **qm_local

FLT_OR_DBL **pR

FLT_OR_DBL **qm2_local

FLT_OR_DBL **QI5

FLT_OR_DBL **q2l

FLT_OR_DBL **qmb

FLT_OR_DBL **G_local

Distance Class DP matrices

Note: These data fields are available if

vrna_mx_pf_t.type == VRNA_MX_2DFOLD

FLT_OR_DBL ***Q

int **l_min_Q

int **l_max_Q

int *k_min_Q

int *k_max_Q

FLT_OR_DBL ***Q_B

590 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int **l_min_Q_B

int **l_max_Q_B

int *k_min_Q_B

int *k_max_Q_B

FLT_OR_DBL ***Q_M

int **l_min_Q_M

int **l_max_Q_M

int *k_min_Q_M

int *k_max_Q_M

FLT_OR_DBL ***Q_M1

int **l_min_Q_M1

int **l_max_Q_M1

int *k_min_Q_M1

int *k_max_Q_M1

FLT_OR_DBL ***Q_M2

int **l_min_Q_M2

int **l_max_Q_M2

int *k_min_Q_M2

int *k_max_Q_M2

FLT_OR_DBL **Q_c

int *l_min_Q_c

int *l_max_Q_c

int k_min_Q_c

7.14. Utilities 591

ViennaRNA, Release 2.6.4

int k_max_Q_c

FLT_OR_DBL **Q_cH

int *l_min_Q_cH

int *l_max_Q_cH

int k_min_Q_cH

int k_max_Q_cH

FLT_OR_DBL **Q_cI

int *l_min_Q_cI

int *l_max_Q_cI

int k_min_Q_cI

int k_max_Q_cI

FLT_OR_DBL **Q_cM

int *l_min_Q_cM

int *l_max_Q_cM

int k_min_Q_cM

int k_max_Q_cM

FLT_OR_DBL *Q_rem

FLT_OR_DBL *Q_B_rem

FLT_OR_DBL *Q_M_rem

FLT_OR_DBL *Q_M1_rem

FLT_OR_DBL *Q_M2_rem

FLT_OR_DBL Q_c_rem

FLT_OR_DBL Q_cH_rem

592 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

FLT_OR_DBL Q_cI_rem

FLT_OR_DBL Q_cM_rem

Public Members

union vrna_mx_pf_s.[anonymous] [anonymous]

Hash Tables

Various implementations of hash table functions.

Hash tables are common data structures that allow for fast random access to the data that is stored within.

Here, we provide an abstract implementation of a hash table interface and a concrete implementation for pairs of
secondary structure and corresponding free energy value.

Abstract interface

typedef struct vrna_hash_table_s *vrna_hash_table_t
#include <ViennaRNA/datastructures/hash_tables.h> A hash table object.

See also:
vrna_ht_init(), vrna_ht_free()

typedef int (*vrna_ht_cmp_f)(void *x, void *y)
#include <ViennaRNA/datastructures/hash_tables.h> Callback function to compare two hash table
entries.

See also:
vrna_ht_init(), vrna_ht_db_comp()

Param x
A hash table entry

Param y
A hash table entry

Return
-1 if x is smaller, +1 if x is larger than y. 0 if 𝑥 == 𝑦

int() vrna_callback_ht_compare_entries (void *x, void *y)

#include <ViennaRNA/datastructures/hash_tables.h>

7.14. Utilities 593

ViennaRNA, Release 2.6.4

typedef unsigned int (*vrna_ht_hashfunc_f)(void *x, unsigned long hashtable_size)
#include <ViennaRNA/datastructures/hash_tables.h> Callback function to generate a hash key, i.e.
hash function.

See also:
vrna_ht_init(), vrna_ht_db_hash_func()

Param x
A hash table entry

Param hashtable_size
The size of the hash table

Return
The hash table key for entry x

unsigned int() vrna_callback_ht_hash_function (void *x,
unsigned long hashtable_size)

#include <ViennaRNA/datastructures/hash_tables.h>

typedef int (*vrna_ht_free_f)(void *x)
#include <ViennaRNA/datastructures/hash_tables.h> Callback function to free a hash table entry.

See also:
vrna_ht_init(), vrna_ht_db_free_entry()

Param x
A hash table entry

Return
0 on success

int() vrna_callback_ht_free_entry (void *x)

#include <ViennaRNA/datastructures/hash_tables.h>

vrna_hash_table_t vrna_ht_init(unsigned int b, vrna_ht_cmp_f compare_function,
vrna_ht_hashfunc_f hash_function, vrna_ht_free_f free_hash_entry)

#include <ViennaRNA/datastructures/hash_tables.h> Get an initialized hash table.

This function returns a ready-to-use hash table with pre-allocated memory for a particular number of
entries.

Note:
If all function pointers are NULL, this function initializes the hash table with default functions, i.e.

• vrna_ht_db_comp() for the compare_function,

• vrna_ht_db_hash_func() for the hash_function, and

• vrna_ht_db_free_entry() for the free_hash_entry

arguments.

594 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Warning: If hash_bits is larger than 27 you have to compile it with the flag gcc -mcmodel=large.

Parameters

• b – Number of bits for the hash table. This determines the size (2𝑏 − 1).

• compare_function – A function pointer to compare any two entries in the hash table
(may be NULL)

• hash_function – A function pointer to retrieve the hash value of any entry (may be
NULL)

• free_hash_entry – A function pointer to free the memory occupied by any entry
(may be NULL)

Returns
An initialized, empty hash table, or NULL on any error

unsigned long vrna_ht_size(vrna_hash_table_t ht)
#include <ViennaRNA/datastructures/hash_tables.h> Get the size of the hash table.

Parameters
• ht – The hash table

Returns
The size of the hash table, i.e. the maximum number of entries

unsigned long vrna_ht_collisions(struct vrna_hash_table_s *ht)
#include <ViennaRNA/datastructures/hash_tables.h> Get the number of collisions in the hash table.

Parameters
• ht – The hash table

Returns
The number of collisions in the hash table

void *vrna_ht_get(vrna_hash_table_t ht, void *x)
#include <ViennaRNA/datastructures/hash_tables.h> Get an element from the hash table.

This function takes an object x and performs a look-up whether the object is stored within the hash
table ht. If the object is already stored in ht, the function simply returns the entry, otherwise it returns
NULL.

See also:
vrna_ht_insert(), vrna_hash_delete(), vrna_ht_init()

Parameters
• ht – The hash table

• x – The hash entry to look-up

Returns
The entry x if it is stored in ht, NULL otherwise

int vrna_ht_insert(vrna_hash_table_t ht, void *x)
#include <ViennaRNA/datastructures/hash_tables.h> Insert an object into a hash table.

Writes the pointer to your hash entry into the table.

7.14. Utilities 595

ViennaRNA, Release 2.6.4

See also:
vrna_ht_init(), vrna_hash_delete(), vrna_ht_clear()

Warning: In case of collisions, this function simply increments the hash key until a free entry in
the hash table is found.

Parameters
• ht – The hash table

• x – The hash entry

Returns
0 on success, 1 if the value is already in the hash table, -1 on error.

void vrna_ht_remove(vrna_hash_table_t ht, void *x)
#include <ViennaRNA/datastructures/hash_tables.h> Remove an object from the hash table.

Deletes the pointer to your hash entry from the table.

Note: This function doesn’t free any memory occupied by the hash entry.

Parameters
• ht – The hash table

• x – The hash entry

void vrna_ht_clear(vrna_hash_table_t ht)
#include <ViennaRNA/datastructures/hash_tables.h> Clear the hash table.

This function removes all entries from the hash table and automatically free’s the memory occupied by
each entry using the bound vrna_ht_free_f() function.

See also:
vrna_ht_free(), vrna_ht_init()

Parameters
• ht – The hash table

void vrna_ht_free(vrna_hash_table_t ht)
#include <ViennaRNA/datastructures/hash_tables.h> Free all memory occupied by the hash table.

This function removes all entries from the hash table by calling the vrna_ht_free_f() function for each
entry. Finally, the memory occupied by the hash table itself is free’d as well.

Parameters
• ht – The hash table

596 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Dot-Bracket / Free Energy entries

int vrna_ht_db_comp(void *x, void *y)
#include <ViennaRNA/datastructures/hash_tables.h> Default hash table entry comparison.

This is the default comparison function for hash table entries. It assumes the both entries x and y are
of type vrna_ht_entry_db_t and compares the structure attribute of both entries

See also:
vrna_ht_entry_db_t, vrna_ht_init(), vrna_ht_db_hash_func(), vrna_ht_db_free_entry()

Parameters
• x – A hash table entry of type vrna_ht_entry_db_t

• y – A hash table entry of type vrna_ht_entry_db_t

Returns
-1 if x is smaller, +1 if x is larger than y. 0 if both are equal.

unsigned int vrna_ht_db_hash_func(void *x, unsigned long hashtable_size)
#include <ViennaRNA/datastructures/hash_tables.h> Default hash function.

This is the default hash function for hash table insertion/lookup. It assumes that entries are of type
vrna_ht_entry_db_t and uses the Bob Jenkins 1996 mix function to create a hash key from the
structure attribute of the hash entry.

See also:
vrna_ht_entry_db_t, vrna_ht_init(), vrna_ht_db_comp(), vrna_ht_db_free_entry()

Parameters
• x – A hash table entry to compute the key for

• hashtable_size – The size of the hash table

Returns
The hash key for entry x

int vrna_ht_db_free_entry(void *hash_entry)
#include <ViennaRNA/datastructures/hash_tables.h> Default function to free memory occupied by a
hash entry.

This function assumes that hash entries are of type vrna_ht_entry_db_t and free’s the memory occupied
by that entry.

See also:
vrna_ht_entry_db_t, vrna_ht_init(), vrna_ht_db_comp(), vrna_ht_db_hash_func()

Parameters
• hash_entry – The hash entry to remove from memory

Returns
0 on success

7.14. Utilities 597

ViennaRNA, Release 2.6.4

struct vrna_ht_entry_db_t
#include <ViennaRNA/datastructures/hash_tables.h> Default hash table entry.

See also:
vrna_ht_init(), vrna_ht_db_comp(), vrna_ht_db_hash_func(), vrna_ht_db_free_entry()

Public Members

char *structure
A secondary structure in dot-bracket notation

float energy
The free energy of structure

Heaps

Interface for an abstract implementation of a heap data structure.

Typedefs

typedef struct vrna_heap_s *vrna_heap_t
#include <ViennaRNA/datastructures/heap.h> An abstract heap data structure.

See also:
vrna_heap_init(), vrna_heap_free(), vrna_heap_insert(), vrna_heap_pop(), vrna_heap_top(),
vrna_heap_remove(), vrna_heap_update()

typedef int (*vrna_heap_cmp_f)(const void *a, const void *b, void *data)
#include <ViennaRNA/datastructures/heap.h> Heap compare function prototype.

Use this prototype to design the compare function for the heap implementation. The arbitrary data
pointer data may be used to get access to further information required to actually compare the two
values a and b.

Note: The heap implementation acts as a min-heap, therefore, the minimum element will be present
at the heap’s root. In case a max-heap is required, simply reverse the logic of this compare function.

Param a
The first object to compare

Param b
The second object to compare

Param data
An arbitrary data pointer passed through from the heap implementation

598 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Return
A value less than zero if a < b, a value greater than zero if a > b, and 0 otherwise

int() vrna_callback_heap_cmp (const void *a, const void *b, void *data)

#include <ViennaRNA/datastructures/heap.h>

typedef size_t (*vrna_heap_get_pos_f)(const void *a, void *data)
#include <ViennaRNA/datastructures/heap.h> Retrieve the position of a particular heap entry within
the heap.

Param a
The object to look-up within the heap

Param data
An arbitrary data pointer passed through from the heap implementation

Return
The position of the element a within the heap, or 0 if it is not in the heap

size_t() vrna_callback_heap_get_pos (const void *a, void *data)

#include <ViennaRNA/datastructures/heap.h>

typedef void (*vrna_heap_set_pos_f)(const void *a, size_t pos, void *data)
#include <ViennaRNA/datastructures/heap.h> Store the position of a particular heap entry within the
heap.

Param a
The object whose position shall be stored

Param pos
The current position of a within the heap, or 0 if a was deleted

Param data
An arbitrary data pointer passed through from the heap implementation

void() vrna_callback_heap_set_pos (const void *a, size_t pos, void *data)

#include <ViennaRNA/datastructures/heap.h>

Functions

vrna_heap_t vrna_heap_init(size_t n, vrna_heap_cmp_f cmp, vrna_heap_get_pos_f get_entry_pos,
vrna_heap_set_pos_f set_entry_pos, void *data)

#include <ViennaRNA/datastructures/heap.h> Initialize a heap data structure.

This function initializes a heap data structure. The implementation is based on a min-heap, i.e. the
minimal element is located at the root of the heap. However, by reversing the logic of the compare
function, one can easily transform this into a max-heap implementation.

Beside the regular operations on a heap data structure, we implement removal and update of arbitrary
elements within the heap. For that purpose, however, one requires a reverse-index lookup system that,
(i) for a given element stores the current position in the heap, and (ii) allows for fast lookup of an
elements current position within the heap. The corresponding getter- and setter- functions may be
provided through the arguments get_entry_pos and set_entry_pos, respectively.

Sometimes, it is difficult to simply compare two data structures without any context. Therefore, the
compare function is provided with a user-defined data pointer that can hold any context required.

7.14. Utilities 599

ViennaRNA, Release 2.6.4

See also:
vrna_heap_free(), vrna_heap_insert(), vrna_heap_pop(), vrna_heap_top(), vrna_heap_remove(),
vrna_heap_update(), vrna_heap_t, vrna_heap_cmp_f , vrna_heap_get_pos_f , vrna_heap_set_pos_f

Warning: If any of the arguments get_entry_pos or set_entry_pos is NULL, the operations
vrna_heap_update() and vrna_heap_remove() won’t work.

Parameters
• n – The initial size of the heap, i.e. the number of elements to store

• cmp – The address of a compare function that will be used to fullfill the partial order
requirement

• get_entry_pos – The address of a function that retrieves the position of an element
within the heap (or NULL)

• set_entry_pos – The address of a function that stores the position of an element
within the heap (or NULL)

• data – An arbitrary data pointer passed through to the compare function cmp, and the
set/get functions get_entry_pos / set_entry_pos

Returns
An initialized heap data structure, or NULL on error

void vrna_heap_free(vrna_heap_t h)
#include <ViennaRNA/datastructures/heap.h> Free memory occupied by a heap data structure.

See also:
vrna_heap_init()

Parameters
• h – The heap that should be free’d

size_t vrna_heap_size(struct vrna_heap_s *h)
#include <ViennaRNA/datastructures/heap.h> Get the size of a heap data structure, i.e. the number of
stored elements.

Parameters
• h – The heap data structure

Returns
The number of elements currently stored in the heap, or 0 upon any error

void vrna_heap_insert(vrna_heap_t h, void *v)
#include <ViennaRNA/datastructures/heap.h> Insert an element into the heap.

See also:
vrna_heap_init(), vrna_heap_pop(), vrna_heap_top(), vrna_heap_free(), vrna_heap_remove(),
vrna_heap_update()

Parameters
• h – The heap data structure

• v – A pointer to the object that is about to be inserted into the heap

600 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void *vrna_heap_pop(vrna_heap_t h)
#include <ViennaRNA/datastructures/heap.h> Pop (remove and return) the object at the root of the
heap.

This function removes the root from the heap and returns it to the caller.

See also:
vrna_heap_init(), vrna_heap_top(), vrna_heap_insert(), vrna_heap_free() vrna_heap_remove(),
vrna_heap_update()

Parameters
• h – The heap data structure

Returns
The object at the root of the heap, i.e. the minimal element (or NULL if (a) the heap is
empty or (b) any error occurred)

const void *vrna_heap_top(vrna_heap_t h)
#include <ViennaRNA/datastructures/heap.h> Get the object at the root of the heap.

See also:
vrna_heap_init(), vrna_heap_pop(), vrna_heap_insert(), vrna_heap_free() vrna_heap_remove(),
vrna_heap_update()

Parameters
• h – The heap data structure

Returns
The object at the root of the heap, i.e. the minimal element (or NULL if (a) the heap is
empty or (b) any error occurred)

void *vrna_heap_remove(vrna_heap_t h, const void *v)
#include <ViennaRNA/datastructures/heap.h> Remove an arbitrary element within the heap.

See also:
vrna_heap_init(), vrna_heap_get_pos_f , vrna_heap_set_pos_f , vrna_heap_pop(), vrna_heap_free()

Warning: This function won’t work if the heap was not properly initialized with callback functions
for fast reverse-index mapping!

Parameters
• h – The heap data structure

• v – The object to remove from the heap

Returns
The object that was removed from the heap (or NULL if (a) it wasn’t found or (b) any
error occurred)

7.14. Utilities 601

ViennaRNA, Release 2.6.4

void *vrna_heap_update(vrna_heap_t h, void *v)
#include <ViennaRNA/datastructures/heap.h> Update an arbitrary element within the heap.

See also:
vrna_heap_init(), vrna_heap_get_pos_f , vrna_heap_set_pos_f vrna_heap_pop(),
vrna_heap_remove(), vrna_heap_free()

Note: If the object that is to be updated is not currently stored in the heap, it will be inserted. In this
case, the function returns NULL.

Warning: This function won’t work if the heap was not properly initialized with callback functions
for fast reverse-index mapping!

Parameters
• h – The heap data structure

• v – The object to update

Returns
The ‘previous’ object within the heap that now got replaced by v (or NULL if (a) it wasn’t
found or (b) any error occurred)

Arrays

Interface for an abstract implementation of an array data structure.

Arrays of a particular Type are defined and initialized using the following code:

vrna_array(Type) my_array;
vrna_array_init(my_array);

or equivalently:

vrna_array_make(Type, my_array);

Dynamic arrays can be used like regular pointers, i.e. elements are simply addressed using the [] operator, e.g.:

my_array[1] = 42;

Using the vrna_array_append macro, items can be safely appended and the array will grow accordingly if
required:

vrna_array_append(my_array, item);

Finally, memory occupied by an array must be released using the vrna_array_free macro:

vrna_array_free(my_array);

Use the vrna_array_size macro to get the number of items stored in an array, e.g. for looping over its elements:

// define and initialize
vrna_array_make(int, my_array);

// append some items
(continues on next page)

602 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

(continued from previous page)

vrna_array_append(my_array, 42);
vrna_array_append(my_array, 23);
vrna_array_append(my_array, 5);

// loop over items and print
for (size_t i = 0; i < vrna_array_size(my_array); i++)

printf("%d\n", my_array[i]);

// release memory of the array
vrna_array_free(my_array);

Under the hood, arrays are preceded by a header that actually stores the number of items they contain and the
capacity of elements they are able to store. The general ideas for this implementation are taken from Ginger Bill’s
C Helper Library (public domain).

Defines

vrna_array(Type)
#include <ViennaRNA/datastructures/array.h> Define an array.

vrna_array_make(Type, Name)
#include <ViennaRNA/datastructures/array.h> Make an array Name of type Type.

VRNA_ARRAY_GROW_FORMULA(n)
#include <ViennaRNA/datastructures/array.h> The default growth formula for array.

VRNA_ARRAY_HEADER(input)
#include <ViennaRNA/datastructures/array.h> Retrieve a pointer to the header of an array input.

vrna_array_size(input)
#include <ViennaRNA/datastructures/array.h> Get the number of elements of an array input.

vrna_array_capacity(input)
#include <ViennaRNA/datastructures/array.h> Get the size of an array input, i.e. its actual capacity.

vrna_array_set_capacity(a, capacity)
#include <ViennaRNA/datastructures/array.h> Explicitely set the capacity of an array a.

vrna_array_init_size(a, init_size)
#include <ViennaRNA/datastructures/array.h> Initialize an array awith a particular pre-allocated size
init_size.

vrna_array_init(a)
#include <ViennaRNA/datastructures/array.h> Initialize an array a.

vrna_array_free(a)
#include <ViennaRNA/datastructures/array.h> Release memory of an array a.

vrna_array_append(a, item)

#include <ViennaRNA/datastructures/array.h> Safely append an item to an array a.

vrna_array_grow(a, min_capacity)
#include <ViennaRNA/datastructures/array.h> Grow an array a to provide a minimum capacity
min_capacity.

7.14. Utilities 603

https://github.com/gingerBill/gb
https://github.com/gingerBill/gb

ViennaRNA, Release 2.6.4

Typedefs

typedef struct vrna_array_header_s vrna_array_header_t
#include <ViennaRNA/datastructures/array.h> The header of an array.

Functions

void *vrna__array_set_capacity(void *array, size_t capacity, size_t element_size)
#include <ViennaRNA/datastructures/array.h> Explicitely set the capacity of an array.

Note: Do not use this function. Rather resort to the vrna_array_set_capacity macro

struct vrna_array_header_s
#include <ViennaRNA/datastructures/array.h> The header of an array.

Public Members

size_t num
The number of elements in an array.

size_t size
The actual capacity of an array.

Strings

Defines

VRNA_STRING_HEADER(s)
#include <ViennaRNA/datastructures/string.h>

Typedefs

typedef char *vrna_string_t
#include <ViennaRNA/datastructures/string.h>

typedef struct vrna_string_header_s vrna_string_header_t
#include <ViennaRNA/datastructures/string.h> The header of an array.

604 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Functions

vrna_string_t vrna_string_make(char const *str)
#include <ViennaRNA/datastructures/string.h>

void vrna_string_free(vrna_string_t str)
#include <ViennaRNA/datastructures/string.h>

vrna_string_t vrna_string_append(vrna_string_t str, vrna_string_t const other)
#include <ViennaRNA/datastructures/string.h>

vrna_string_t vrna_string_append_cstring(vrna_string_t str, char const *other)
#include <ViennaRNA/datastructures/string.h>

struct vrna_string_header_s
#include <ViennaRNA/datastructures/string.h> The header of an array.

Public Members

size_t len
The length of the string.

size_t size
The actual capacity of an array.

size_t shift_post

char backup

Buffers

Functions that provide dynamically buffered stream-like data structures.

Typedefs

typedef struct vrna_cstr_s *vrna_cstr_t
#include <ViennaRNA/datastructures/char_stream.h>

typedef struct vrna_ordered_stream_s *vrna_ostream_t
#include <ViennaRNA/datastructures/stream_output.h> An ordered output stream structure with un-
ordered insert capabilities.

typedef void (*vrna_stream_output_f)(void *auxdata, unsigned int i, void *data)
#include <ViennaRNA/datastructures/stream_output.h> Ordered stream processing callback.

This callback will be processed in sequential order as soon as sequential data in the output stream
becomes available.

7.14. Utilities 605

ViennaRNA, Release 2.6.4

Note: The callback must also release the memory occupied by the data passed since the stream will
lose any reference to it after the callback has been executed.

Param auxdata
A shared pointer for all calls, as provided by the second argument to vrna_ostream_init()

Param i
The index number of the data passed to data

Param data
A block of data ready for processing

void() vrna_callback_stream_output (void *auxdata, unsigned int i, void *data)

#include <ViennaRNA/datastructures/stream_output.h>

Functions

vrna_cstr_t vrna_cstr(size_t size, FILE *output)
#include <ViennaRNA/datastructures/char_stream.h> Create a dynamic char * stream data structure.

See also:
vrna_cstr_free(), vrna_cstr_close(), vrna_cstr_fflush(), vrna_cstr_discard(), vrna_cstr_printf()

Parameters
• size – The initial size of the buffer in characters

• output – An optional output file stream handle that is used to write the collected data
to (defaults to stdout if NULL)

void vrna_cstr_discard(struct vrna_cstr_s *buf)
#include <ViennaRNA/datastructures/char_stream.h> Discard the current content of the dynamic char
* stream data structure.

See also:
vrna_cstr_free(), vrna_cstr_close(), vrna_cstr_fflush(), vrna_cstr_printf()

Parameters
• buf – The dynamic char * stream data structure to free

void vrna_cstr_free(vrna_cstr_t buf)
#include <ViennaRNA/datastructures/char_stream.h> Free the memory occupied by a dynamic char
* stream data structure.

This function first flushes any remaining character data within the stream and then free’s the memory
occupied by the data structure.

See also:
vrna_cstr_close(), vrna_cstr_fflush(), vrna_cstr()

Parameters

606 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• buf – The dynamic char * stream data structure to free

void vrna_cstr_close(vrna_cstr_t buf)
#include <ViennaRNA/datastructures/char_stream.h> Free the memory occupied by a dynamic char
* stream and close the output stream.

This function first flushes any remaining character data within the stream then closes the attached output
file stream (if any), and finally free’s the memory occupied by the data structure.

See also:
vrna_cstr_free(), vrna_cstr_fflush(), vrna_cstr()

Parameters
• buf – The dynamic char * stream data structure to free

void vrna_cstr_fflush(struct vrna_cstr_s *buf)
#include <ViennaRNA/datastructures/char_stream.h> Flush the dynamic char * output stream.

This function flushes the collected char * stream, either by writing to the attached file handle, or simply
by writing to stdout if no file handle has been attached upon construction using vrna_cstr().

See also:
vrna_cstr(), vrna_cstr_close(), vrna_cstr_free()

Parameters
• buf – The dynamic char * stream data structure to flush

Post
The stream buffer is empty after execution of this function

const char *vrna_cstr_string(vrna_cstr_t buf)
#include <ViennaRNA/datastructures/char_stream.h>

int vrna_cstr_vprintf(vrna_cstr_t buf, const char *format, va_list args)
#include <ViennaRNA/datastructures/char_stream.h>

int vrna_cstr_printf(vrna_cstr_t buf, const char *format, ...)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_message_info(vrna_cstr_t buf, const char *format, ...)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_message_vinfo(vrna_cstr_t buf, const char *format, va_list args)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_message_warning(struct vrna_cstr_s *buf, const char *format, ...)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_message_vwarning(struct vrna_cstr_s *buf, const char *format, va_list args)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_fasta_header(vrna_cstr_t buf, const char *head)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_printf_structure(struct vrna_cstr_s *buf, const char *structure, const char *format,
...)

#include <ViennaRNA/datastructures/char_stream.h>

7.14. Utilities 607

ViennaRNA, Release 2.6.4

void vrna_cstr_vprintf_structure(struct vrna_cstr_s *buf, const char *structure, const char *format,
va_list args)

#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_printf_comment(struct vrna_cstr_s *buf, const char *format, ...)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_vprintf_comment(struct vrna_cstr_s *buf, const char *format, va_list args)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_printf_thead(struct vrna_cstr_s *buf, const char *format, ...)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_vprintf_thead(struct vrna_cstr_s *buf, const char *format, va_list args)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_printf_tbody(struct vrna_cstr_s *buf, const char *format, ...)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_vprintf_tbody(struct vrna_cstr_s *buf, const char *format, va_list args)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_eval_sd_corr(struct vrna_cstr_s *buf)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_eval_ext_loop(struct vrna_cstr_s *buf, int energy)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_eval_hp_loop(struct vrna_cstr_s *buf, int i, int j, char si, char sj, int energy)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_eval_hp_loop_revert(struct vrna_cstr_s *buf, int i, int j, char si, char sj, int
energy)

#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_eval_int_loop(struct vrna_cstr_s *buf, int i, int j, char si, char sj, int k, int l,
char sk, char sl, int energy)

#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_eval_int_loop_revert(struct vrna_cstr_s *buf, int i, int j, char si, char sj, int
k, int l, char sk, char sl, int energy)

#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_eval_mb_loop(struct vrna_cstr_s *buf, int i, int j, char si, char sj, int energy)
#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_eval_mb_loop_revert(struct vrna_cstr_s *buf, int i, int j, char si, char sj, int
energy)

#include <ViennaRNA/datastructures/char_stream.h>

void vrna_cstr_print_eval_gquad(struct vrna_cstr_s *buf, int i, int L, int l[3], int energy)
#include <ViennaRNA/datastructures/char_stream.h>

vrna_ostream_t vrna_ostream_init(vrna_stream_output_f output, void *auxdata)
#include <ViennaRNA/datastructures/stream_output.h> Get an initialized ordered output stream.

See also:
vrna_ostream_free(), vrna_ostream_request(), vrna_ostream_provide()

Parameters

608 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

• output – A callback function that processes and releases data in the stream

• auxdata – A pointer to auxiliary data passed as first argument to the output callback

Returns
An initialized ordered output stream

void vrna_ostream_free(vrna_ostream_t dat)
#include <ViennaRNA/datastructures/stream_output.h> Free an initialized ordered output stream.

See also:
vrna_ostream_init()

Parameters
• dat – The output stream for which occupied memory should be free’d

int vrna_ostream_threadsafe(void)
#include <ViennaRNA/datastructures/stream_output.h>

void vrna_ostream_request(vrna_ostream_t dat, unsigned int num)

#include <ViennaRNA/datastructures/stream_output.h> Request index in ordered output stream.

This function must be called prior to vrna_ostream_provide() to indicate that data associted with a
certain index number is expected to be inserted into the stream in the future.

See also:
vrna_ostream_init(), vrna_ostream_provide(), vrna_ostream_free()

Parameters
• dat – The output stream for which the index is requested

• num – The index to request data for

void vrna_ostream_provide(vrna_ostream_t dat, unsigned int i, void *data)
#include <ViennaRNA/datastructures/stream_output.h> Provide output stream data for a particular
index.

See also:
vrna_ostream_request()

Parameters
• dat – The output stream for which data is provided

• i – The index of the provided data

• data – The data provided

Pre
The index data is provided for must have been requested using vrna_ostream_request()
beforehand.

7.14. Utilities 609

ViennaRNA, Release 2.6.4

Typedefs

typedef struct vrna_basepair_s vrna_basepair_t
#include <ViennaRNA/datastructures/basic.h> Typename for the base pair repesenting data structure
vrna_basepair_s.

typedef struct vrna_elem_prob_s vrna_plist_t
#include <ViennaRNA/datastructures/basic.h> Typename for the base pair list repesenting data struc-
ture vrna_elem_prob_s.

typedef struct vrna_bp_stack_s vrna_bp_stack_t
#include <ViennaRNA/datastructures/basic.h> Typename for the base pair stack repesenting data
structure vrna_bp_stack_s.

typedef struct vrna_cpair_s vrna_cpair_t
#include <ViennaRNA/datastructures/basic.h> Typename for data structure vrna_cpair_s.

typedef struct vrna_sect_s vrna_sect_t
#include <ViennaRNA/datastructures/basic.h> Typename for stack of partial structures vrna_sect_s.

typedef struct vrna_data_linear_s vrna_data_lin_t
#include <ViennaRNA/datastructures/basic.h>

typedef struct vrna_color_s vrna_color_t
#include <ViennaRNA/datastructures/basic.h>

typedef double FLT_OR_DBL
#include <ViennaRNA/datastructures/basic.h> Typename for floating point number in partition func-
tion computations.

typedef struct vrna_basepair_s PAIR
#include <ViennaRNA/datastructures/basic.h> Old typename of vrna_basepair_s.

Deprecated:
Use vrna_basepair_t instead!

typedef struct vrna_elem_prob_s plist
#include <ViennaRNA/datastructures/basic.h> Old typename of vrna_elem_prob_s.

Deprecated:
Use vrna_ep_t or vrna_elem_prob_s instead!

typedef struct vrna_cpair_s cpair
#include <ViennaRNA/datastructures/basic.h> Old typename of vrna_cpair_s.

Deprecated:
Use vrna_cpair_t instead!

610 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

typedef struct vrna_sect_s sect
#include <ViennaRNA/datastructures/basic.h> Old typename of vrna_sect_s.

Deprecated:
Use vrna_sect_t instead!

typedef struct vrna_bp_stack_s bondT
#include <ViennaRNA/datastructures/basic.h> Old typename of vrna_bp_stack_s.

Deprecated:
Use vrna_bp_stack_t instead!

typedef struct pu_contrib pu_contrib
#include <ViennaRNA/datastructures/basic.h> contributions to p_u

typedef struct interact interact
#include <ViennaRNA/datastructures/basic.h> interaction data structure for RNAup

typedef struct pu_out pu_out
#include <ViennaRNA/datastructures/basic.h> Collection of all free_energy of beeing unpaired values
for output.

typedef struct constrain constrain
#include <ViennaRNA/datastructures/basic.h> constraints for cofolding

typedef struct node folden
#include <ViennaRNA/datastructures/basic.h> Data structure for RNAsnoop (fold energy list)

typedef struct dupVar dupVar
#include <ViennaRNA/datastructures/basic.h> Data structure used in RNApkplex.

Functions

void vrna_C11_features(void)
#include <ViennaRNA/datastructures/basic.h> Dummy symbol to check whether the library was build
using C11/C++11 features.

By default, several data structures of our new v3.0 API use C11/C++11 features, such as unnamed
unions, unnamed structs. However, these features can be deactivated at compile time to allow building
the library and executables with compilers that do not support these features.

Now, the problem arises that once our static library is compiled and a third-party application is sup-
posed to link against it, it needs to know, at compile time, how to correctly address particular data
structures. This is usually implicitely taken care of through the API exposed in our header files. Un-
fortunately, we had some preprocessor directives in our header files that changed the API depending
on the capabilities of the compiler the third-party application is build with. This in turn prohibited the
use of an RNAlib compiled without C11/C++11 support in a program that compiles/links with enabled
C11/C++11 support and vice-versa.

Therefore, we introduce this dummy symbol which can be used to check, whether the static library was
build with C11/C++11 features.

7.14. Utilities 611

ViennaRNA, Release 2.6.4

Since
v2.2.9

Note: If the symbol is present, the library was build with enabled C11/C++11 features support and
no action is required. However, if the symbol is missing in RNAlib >= 2.2.9, programs that link to
RNAlib must define a pre-processor identifier VRNA_DISABLE_C11_FEATURES before including
any ViennaRNA Package header file, for instance by adding a CPPFLAG

CPPFLAGS+=-DVRNA_DISABLE_C11_FEATURES

struct vrna_basepair_s
#include <ViennaRNA/datastructures/basic.h> Base pair data structure used in subopt.c.

Public Members

int i

int j

struct vrna_cpair_s
#include <ViennaRNA/datastructures/basic.h> this datastructure is used as input parameter in func-
tions of PS_dot.c

Public Members

int i

int j

int mfe

float p

float hue

float sat

int type

struct vrna_color_s

612 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Public Members

float hue

float sat

float bri

struct vrna_data_linear_s

Public Members

unsigned int position

float value

vrna_color_t color

struct vrna_sect_s
#include <ViennaRNA/datastructures/basic.h> Stack of partial structures for backtracking.

Public Members

int i

int j

int ml

struct vrna_bp_stack_s
#include <ViennaRNA/datastructures/basic.h> Base pair stack element.

Public Members

unsigned int i

unsigned int j

struct pu_contrib
#include <ViennaRNA/datastructures/basic.h> contributions to p_u

7.14. Utilities 613

ViennaRNA, Release 2.6.4

Public Members

double **H
hairpin loops

double **I
interior loops

double **M
multi loops

double **E
exterior loop

int length
length of the input sequence

int w
longest unpaired region

struct interact
#include <ViennaRNA/datastructures/basic.h> interaction data structure for RNAup

Public Members

double *Pi
probabilities of interaction

double *Gi
free energies of interaction

double Gikjl
full free energy for interaction between [k,i] k<i in longer seq and [j,l] j<l in shorter seq

double Gikjl_wo
Gikjl without contributions for prob_unpaired.

int i
k<i in longer seq

int k
k<i in longer seq

int j
j<l in shorter seq

int l
j<l in shorter seq

614 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int length
length of longer sequence

struct pu_out
#include <ViennaRNA/datastructures/basic.h> Collection of all free_energy of beeing unpaired values
for output.

Public Members

int len
sequence length

int u_vals
number of different -u values

int contribs
[-c “SHIME”]

char **header
header line

double **u_values
(the -u values * [-c “SHIME”]) * seq len

struct constrain
#include <ViennaRNA/datastructures/basic.h> constraints for cofolding

Public Members

int *indx

char *ptype

struct duplexT
#include <ViennaRNA/datastructures/basic.h> Data structure for RNAduplex.

Public Members

int i

int j

int end

char *structure

7.14. Utilities 615

ViennaRNA, Release 2.6.4

double energy

double energy_backtrack

double opening_backtrack_x

double opening_backtrack_y

int offset

double dG1

double dG2

double ddG

int tb

int te

int qb

int qe

struct node
#include <ViennaRNA/datastructures/basic.h> Data structure for RNAsnoop (fold energy list)

Public Members

int k

int energy

struct node *next

struct snoopT
#include <ViennaRNA/datastructures/basic.h> Data structure for RNAsnoop.

616 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Public Members

int i

int j

int u

char *structure

float energy

float Duplex_El

float Duplex_Er

float Loop_E

float Loop_D

float pscd

float psct

float pscg

float Duplex_Ol

float Duplex_Or

float Duplex_Ot

float fullStemEnergy

struct dupVar
#include <ViennaRNA/datastructures/basic.h> Data structure used in RNApkplex.

Public Members

int i

int j

int end

7.14. Utilities 617

ViennaRNA, Release 2.6.4

char *pk_helix

char *structure

double energy

int offset

double dG1

double dG2

double ddG

int tb

int te

int qb

int qe

int inactive

int processed

7.14.10 Messages

Functions to print various kind of messages.

Functions

void vrna_message_error(const char *format, ...)
#include <ViennaRNA/utils/basic.h> Print an error message and die.

This function is a wrapper to fprintf(stderr, . . .) that puts a capital ERROR: in front of the message
and then exits the calling program.

See also:
vrna_message_verror(), vrna_message_warning(), vrna_message_info()

Parameters
• format – The error message to be printed

• ... – Optional arguments for the formatted message string

618 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

void vrna_message_verror(const char *format, va_list args)
#include <ViennaRNA/utils/basic.h> Print an error message and die.

This function is a wrapper to vfprintf(stderr, . . .) that puts a capital ERROR: in front of the message
and then exits the calling program.

See also:
vrna_message_error(), vrna_message_warning(), vrna_message_info()

Parameters
• format – The error message to be printed

• args – The argument list for the formatted message string

void vrna_message_warning(const char *format, ...)
#include <ViennaRNA/utils/basic.h> Print a warning message.

This function is a wrapper to fprintf(stderr, . . .) that puts a capital WARNING: in front of the message.

See also:
vrna_message_vwarning(), vrna_message_error(), vrna_message_info()

Parameters
• format – The warning message to be printed

• ... – Optional arguments for the formatted message string

void vrna_message_vwarning(const char *format, va_list args)
#include <ViennaRNA/utils/basic.h> Print a warning message.

This function is a wrapper to fprintf(stderr, . . .) that puts a capital WARNING: in front of the message.

See also:
vrna_message_vwarning(), vrna_message_error(), vrna_message_info()

Parameters
• format – The warning message to be printed

• args – The argument list for the formatted message string

void vrna_message_info(FILE *fp, const char *format, ...)
#include <ViennaRNA/utils/basic.h> Print an info message.

This function is a wrapper to fprintf(. . .).

See also:
vrna_message_vinfo(), vrna_message_error(), vrna_message_warning()

Parameters
• fp – The file pointer where the message is printed to

• format – The warning message to be printed

• ... – Optional arguments for the formatted message string

7.14. Utilities 619

ViennaRNA, Release 2.6.4

void vrna_message_vinfo(FILE *fp, const char *format, va_list args)
#include <ViennaRNA/utils/basic.h> Print an info message.

This function is a wrapper to fprintf(. . .).

See also:
vrna_message_vinfo(), vrna_message_error(), vrna_message_warning()

Parameters
• fp – The file pointer where the message is printed to

• format – The info message to be printed

• args – The argument list for the formatted message string

void vrna_message_input_seq_simple(void)
#include <ViennaRNA/utils/basic.h> Print a line to stdout that asks for an input sequence.

There will also be a ruler (scale line) printed that helps orientation of the sequence positions

void vrna_message_input_seq(const char *s)
#include <ViennaRNA/utils/basic.h> Print a line with a user defined string and a ruler to stdout.

(usually this is used to ask for user input) There will also be a ruler (scale line) printed that helps
orientation of the sequence positions

Parameters
• s – A user defined string that will be printed to stdout

void vrna_message_input_msa(const char *s)
#include <ViennaRNA/utils/basic.h>

7.14.11 Unit Conversion

Functions to convert between various physical units

Enums

enum vrna_unit_energy_e
Energy / Work Units.

See also:
vrna_convert_energy()

Values:

enumerator VRNA_UNIT_J
Joule (1 𝐽 = 1 𝑘𝑔 ·𝑚2𝑠−2)

enumerator VRNA_UNIT_KJ
Kilojoule (1 𝑘𝐽 = 1, 000 𝐽)

620 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

enumerator VRNA_UNIT_CAL_IT
Calorie (International (Steam) Table, 1 𝑐𝑎𝑙𝐼𝑇 = 4.1868 𝐽)

enumerator VRNA_UNIT_DACAL_IT
Decacolorie (International (Steam) Table, 1 𝑑𝑎𝑐𝑎𝑙𝐼𝑇 = 10 𝑐𝑎𝑙𝐼𝑇 = 41.868 𝐽)

enumerator VRNA_UNIT_KCAL_IT
Kilocalorie (International (Steam) Table, 1 𝑘𝑐𝑎𝑙𝐼𝑇 = 4.1868 𝑘𝐽)

enumerator VRNA_UNIT_CAL
Calorie (Thermochemical, 1 𝑐𝑎𝑙𝑡ℎ = 4.184 𝐽)

enumerator VRNA_UNIT_DACAL
Decacalorie (Thermochemical, 1 𝑑𝑎𝑐𝑎𝑙𝑡ℎ = 10 𝑐𝑎𝑙𝑡ℎ = 41.84 𝐽)

enumerator VRNA_UNIT_KCAL
Kilocalorie (Thermochemical, 1 𝑘𝑐𝑎𝑙𝑡ℎ = 4.184 𝑘𝐽)

enumerator VRNA_UNIT_G_TNT
g TNT (1 𝑔 TNT = 1, 000 𝑐𝑎𝑙𝑡ℎ = 4, 184 𝐽)

enumerator VRNA_UNIT_KG_TNT
kg TNT (1 𝑘𝑔 TNT = 1, 000 𝑘𝑐𝑎𝑙𝑡ℎ = 4, 184 𝑘𝐽)

enumerator VRNA_UNIT_T_TNT
ton TNT (1 𝑡 TNT = 1, 000, 000 𝑘𝑐𝑎𝑙𝑡ℎ = 4, 184 𝑀𝐽)

enumerator VRNA_UNIT_EV
Electronvolt (1 𝑒𝑉 = 1.602176565 × 10−19 𝐽)

enumerator VRNA_UNIT_WH
Watt hour (1 𝑊 · ℎ = 1 𝑊 · 3, 600𝑠 = 3, 600 𝐽 = 3.6 𝑘𝐽)

enumerator VRNA_UNIT_KWH
Kilowatt hour (1 𝑘𝑊 · ℎ = 1 𝑘𝑊 · 3, 600 𝑠 = 3, 600 𝑘𝐽 = 3.6 𝑀𝐽)

enum vrna_unit_temperature_e
Temperature Units.

See also:
vrna_convert_temperature()

Values:

enumerator VRNA_UNIT_K
Kelvin (K)

enumerator VRNA_UNIT_DEG_C
Degree Celcius (C) ([∘𝐶] = [𝐾] − 273.15)

7.14. Utilities 621

ViennaRNA, Release 2.6.4

enumerator VRNA_UNIT_DEG_F

Degree Fahrenheit (F) ([∘𝐹] = [𝐾] × 9
5 − 459.67)

enumerator VRNA_UNIT_DEG_R

Degree Rankine (R) ([∘𝑅] = [𝐾] × 9
5)

enumerator VRNA_UNIT_DEG_N

Degree Newton (N) ([∘𝑁] = ([𝐾] − 273.15) × 33
100)

enumerator VRNA_UNIT_DEG_DE

Degree Delisle (De) ([∘𝐷𝑒] = (373.15 − [𝐾]) × 3
2)

enumerator VRNA_UNIT_DEG_RE

Degree Raumur (R) ([∘𝑅𝑒] = ([𝐾] − 273.15) × 4
5)

enumerator VRNA_UNIT_DEG_RO

Degree Rmer (R) ([∘Rø] = ([𝐾] − 273.15) × 21
40 + 7.5)

Functions

double vrna_convert_energy(double energy, vrna_unit_energy_e from, vrna_unit_energy_e to)
#include <ViennaRNA/utils/units.h> Convert between energy / work units.

See also:
vrna_unit_energy_e

Parameters
• energy – Input energy value

• from – Input unit

• to – Output unit

Returns
Energy value in Output unit

double vrna_convert_temperature(double temp, vrna_unit_temperature_e from,
vrna_unit_temperature_e to)

#include <ViennaRNA/utils/units.h> Convert between temperature units.

See also:
vrna_unit_temperature_e

Parameters
• temp – Input temperature value

• from – Input unit

• to – Output unit

Returns
Temperature value in Output unit

622 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

int vrna_convert_kcal_to_dcal(double energy)
#include <ViennaRNA/utils/units.h> Convert floating point energy value into integer representation.

This function converts a floating point value in kcal/mol into its corresponding deka-cal/mol integer
representation as used throughout RNAlib.

See also:
vrna_convert_dcal_to_kcal()

Parameters
• energy – The energy value in kcal/mol

Returns
The energy value in deka-cal/mol

double vrna_convert_dcal_to_kcal(int energy)
#include <ViennaRNA/utils/units.h> Convert an integer representation of free energy in deka-cal/mol
to kcal/mol.

This function converts a free energy value given as integer in deka-cal/mol into the corresponding
floating point number in kcal/mol

See also:
vrna_convert_kcal_to_dcal()

Parameters
• energy – The energy in deka-cal/mol

Returns
The energy in kcal/mol

Defines

PUBLIC

#include <ViennaRNA/utils/basic.h>

PRIVATE

#include <ViennaRNA/utils/basic.h>

VRNA_INPUT_ERROR

#include <ViennaRNA/utils/basic.h> Output flag of get_input_line(): “An ERROR has occured, maybe
EOF”.

VRNA_INPUT_QUIT

#include <ViennaRNA/utils/basic.h> Output flag of get_input_line(): “the user requested quitting the
program”.

VRNA_INPUT_MISC

#include <ViennaRNA/utils/basic.h> Output flag of get_input_line(): “something was read”.

7.14. Utilities 623

ViennaRNA, Release 2.6.4

VRNA_INPUT_FASTA_HEADER

#include <ViennaRNA/utils/basic.h> Input/Output flag of get_input_line() :

if used as input option this tells get_input_line() that the data to be read should comply with the FASTA
format.

the function will return this flag if a fasta header was read

VRNA_INPUT_SEQUENCE

#include <ViennaRNA/utils/basic.h>

VRNA_INPUT_CONSTRAINT

#include <ViennaRNA/utils/basic.h> Input flag for get_input_line() :

Tell get_input_line() that we assume to read a structure constraint.

VRNA_INPUT_NO_TRUNCATION

#include <ViennaRNA/utils/basic.h> Input switch for get_input_line(): “do not trunkate the line by
eliminating white spaces at end of line”.

VRNA_INPUT_NO_REST

#include <ViennaRNA/utils/basic.h> Input switch for vrna_file_fasta_read_record(): “do fill rest ar-
ray”.

VRNA_INPUT_NO_SPAN

#include <ViennaRNA/utils/basic.h> Input switch for vrna_file_fasta_read_record(): “never allow
data to span more than one line”.

VRNA_INPUT_NOSKIP_BLANK_LINES

#include <ViennaRNA/utils/basic.h> Input switch for vrna_file_fasta_read_record(): “do not skip
empty lines”.

VRNA_INPUT_BLANK_LINE

#include <ViennaRNA/utils/basic.h> Output flag for vrna_file_fasta_read_record(): “read an empty
line”.

VRNA_INPUT_NOSKIP_COMMENTS

#include <ViennaRNA/utils/basic.h> Input switch for get_input_line(): “do not skip comment lines”.

VRNA_INPUT_COMMENT

#include <ViennaRNA/utils/basic.h> Output flag for vrna_file_fasta_read_record(): “read a com-
ment”.

MIN2(A, B)
#include <ViennaRNA/utils/basic.h> Get the minimum of two comparable values.

MAX2(A, B)
#include <ViennaRNA/utils/basic.h> Get the maximum of two comparable values.

MIN3(A, B, C)
#include <ViennaRNA/utils/basic.h> Get the minimum of three comparable values.

MAX3(A, B, C)
#include <ViennaRNA/utils/basic.h> Get the maximum of three comparable values.

624 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Functions

void *vrna_alloc(unsigned size)
#include <ViennaRNA/utils/basic.h> Allocate space safely.

Parameters
• size – The size of the memory to be allocated in bytes

Returns
A pointer to the allocated memory

void *vrna_realloc(void *p, unsigned size)
#include <ViennaRNA/utils/basic.h> Reallocate space safely.

Parameters
• p – A pointer to the memory region to be reallocated

• size – The size of the memory to be allocated in bytes

Returns
A pointer to the newly allocated memory

void vrna_init_rand(void)
#include <ViennaRNA/utils/basic.h> Initialize seed for random number generator.

See also:
vrna_init_rand_seed(), vrna_urn()

void vrna_init_rand_seed(unsigned int seed)
#include <ViennaRNA/utils/basic.h> Initialize the random number generator with a pre-defined seed.

SWIG Wrapper Notes:
This function is available as an overloaded function init_rand() where the argument seed is op-
tional. See, e.g. RNA.init_rand() in the Python API .

See also:
vrna_init_rand(), vrna_urn()

Parameters
• seed – The seed for the random number generator

double vrna_urn(void)
#include <ViennaRNA/utils/basic.h> get a random number from [0..1]

See also:
vrna_int_urn(), vrna_init_rand(), vrna_init_rand_seed()

Note: Usually implemented by calling erand48().

Returns
A random number in range [0..1]

7.14. Utilities 625

ViennaRNA, Release 2.6.4

int vrna_int_urn(int from, int to)
#include <ViennaRNA/utils/basic.h> Generates a pseudo random integer in a specified range.

See also:
vrna_urn(), vrna_init_rand()

Parameters
• from – The first number in range

• to – The last number in range

Returns
A pseudo random number in range [from, to]

char *vrna_time_stamp(void)
#include <ViennaRNA/utils/basic.h> Get a timestamp.

Returns a string containing the current date in the format

Fri Mar 19 21:10:57 1993

Returns
A string containing the timestamp

unsigned int get_input_line(char **string, unsigned int options)
#include <ViennaRNA/utils/basic.h>

Retrieve a line from ‘stdin’ savely while skipping comment characters and other features This function
returns the type of input it has read if recognized. An option argument allows one to switch between
different reading modes.

Currently available options are: VRNA_INPUT_COMMENT , VRNA_INPUT_NOSKIP_COMMENTS,
VRNA_INPUT_NO_TRUNCATION

pass a collection of options as one value like this:

get_input_line(string, option_1 | option_2 | option_n)

If the function recognizes the type of input, it will report it in the return value. It
also reports if a user defined ‘quit’ command (-sign on ‘stdin’) was given. Possible re-
turn values are:VRNA_INPUT_FASTA_HEADER, VRNA_INPUT_ERROR, VRNA_INPUT_MISC,
VRNA_INPUT_QUIT

Parameters
• string – A pointer to the character array that contains the line read

• options – A collection of options for switching the functions behavior

Returns
A flag with information about what has been read

int *vrna_idx_row_wise(unsigned int length)
#include <ViennaRNA/utils/basic.h> Get an index mapper array (iindx) for accessing the energy ma-
trices, e.g. in partition function related functions.

Access of a position “(i,j)” is then accomplished by using

(i,j) ~ iindx[i]-j

626 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

This function is necessary as most of the two-dimensional energy matrices are actually one-dimensional
arrays throughout the ViennaRNA Package

Consult the implemented code to find out about the mapping formula ;)

See also:
vrna_idx_col_wise()

Parameters
• length – The length of the RNA sequence

Returns
The mapper array

int *vrna_idx_col_wise(unsigned int length)
#include <ViennaRNA/utils/basic.h> Get an index mapper array (indx) for accessing the energy ma-
trices, e.g. in MFE related functions.

Access of a position “(i,j)” is then accomplished by using

(i,j) ~ indx[j]+i

This function is necessary as most of the two-dimensional energy matrices are actually one-dimensional
arrays throughout the ViennaRNAPackage

Consult the implemented code to find out about the mapping formula ;)

See also:
vrna_idx_row_wise()

Parameters
• length – The length of the RNA sequence

Returns
The mapper array

Variables

unsigned short xsubi[3]
Current 48 bit random number.

This variable is used by vrna_urn(). These should be set to some random number seeds before the first
call to vrna_urn().

See also:
vrna_urn()

7.14. Utilities 627

ViennaRNA, Release 2.6.4

7.15 RNAlib API v3.0

7.15.1 Introduction

With version 2.2 we introduce the new API that will take over the old one in the future version 3.0. By then,
backwards compatibility will be broken, and third party applications using RNAlib need to be ported. This switch
of API became necessary, since many new features found their way into the RNAlib where a balance between
threadsafety and easy-to-use library functions is hard or even impossible to establish. Furthermore, many old
functions of the library are present as slightly modified copies of themself to provide a crude way to overload
functions.

Therefore, we introduce the new v3.0 API very early in our development stage such that developers have enough
time to migrate to the new functions and interfaces. We also started to provide encapsulation of the RNAlib
functions, data structures, typedefs, and macros by prefixing them with vrna_ and VRNA_ , respectively.

Header files should also be included using the ViennaRNA/ namespace, e.g.

#include <ViennaRNA/fold.h>

instead of just using

#include <fold.h>

as is has been required for RNAlib 1.x and 2.x.

This eases the work for programmers of third party applications that would otherwise need to put much effort into
renaming functions and data types in their own implementations if their names appear in our library. Since we still
provide backward compatibility up to the last version of RNAlib 2.x, this advantage may be fully exploited only
starting from v3.0 which will be released in the future. However, our plan is to provide the possibility for an early
switch-off mechanism of the backward compatibility in one of our next releases of ViennaRNA Package 2.x.

7.15.2 Major changes

. . .

7.15.3 Porting to the new API

. . .

7.15.4 Examples

Examples on how to use the new v3.0 API can be found in the C Examples section.

7.16 Callback Functions

Many functions in RNAlib support so-called callback mechanisms to propagate the computation results. In essence,
this means that a user defines a function that takes computation results as input and does whatever should be done
with these results. Then, this function is provided to our algorithms in RNAlib such that they can call the function
and provide corresponding data as soon as it has been computed.

628 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.16.1 Why Callbacks?

Using callback mechanisms, our library enables users not only to retrieve computed data without the need for
parsing complicated data structures, but also allows one to tweak our implementation to do additional tasks without
the requirement of a re-implementation of basic algorithms.

Our implementation of the callback mechanisms always follows the same scheme:

The user . . .

• . . . defines a function that complies with the interface we’ve defined, and

• . . . passes a pointer to said function to our implementations

In addition to the specific arguments of our callback interfaces, virtually all callbacks receive an additional pass-
through-pointer as their last argument. This enables one to . . .

• . . . encapsulate data, and

• . . . provide thread-safe operations,

since this pointer is simply passed through by our library functions. It may therefore hold the address of an arbitrary,
user-defined data structure.

7.16.2 Scripting Language Support

Our callback mechanisms also work in a cross-language specific manner. This means that users can write functions
(or methods) in a scripting language, such as Python, and use them as callbacks for our C-library. Our scripting
language interface will take care of transforming the relevant data structures from the target language into C and
vice-versa. Whenever our algorithms trigger the callback, they will then be calling the actual scripting language
function and provide the corresponding data directly to them.

Warning: Keep in mind that the translation between the scripting language and C involves many extra func-
tion calls to prepare and evaluate the corresponding data structures. This in turn impacts the runtime of our
algorithms that can be substantial. For instance providing callbacks for the hard- or soft constraints framework
from a scripting language can lead to a slow-down of up to a factor of 10.

7.16.3 Available Callbacks

Below, you find an enumeration of the individual callback functions that are available in RNAlib:

Global vrna_auxdata_free_f)(void *data)
This callback is supposed to free memory occupied by an auxiliary data structure. It will be called

when the vrna_fold_compound_t is erased from memory through a call to vrna_fold_compound_free()
and will be passed the address of memory previously bound to the vrna_fold_compound_t via
vrna_fold_compound_add_auxdata().

Global vrna_bs_result_f)(const char *structure, void *data)
This function will be called for each secondary structure that has been successfully backtraced from

the partition function DP matrices.

Global vrna_hc_eval_f)(int i, int j, int k, int l, unsigned char d, void *data)
This callback enables one to over-rule default hard constraints in secondary structure decompositions.

Global vrna_heat_capacity_f)(float temp, float heat_capacity, void *data)
This function will be called for each evaluated temperature in the heat capacity prediction.

7.16. Callback Functions 629

ViennaRNA, Release 2.6.4

Global vrna_mfe_window_f)(int start, int end, const char *structure, float en, void *data)
This function will be called for each hit in a sliding window MFE prediction.

Global vrna_probs_window_f)(FLT_OR_DBL *pr, int pr_size, int i, int max, unsigned int type, void
*data)

This function will be called for each probability data set in the sliding window probability computation
implementation of vrna_probs_window(). The argument type specifies the type of probability that is
passed to this function.

Global vrna_recursion_status_f)(unsigned char status, void *data)
This function will be called to notify a third-party implementation about the status of a currently

ongoing recursion. The purpose of this callback mechanism is to provide users with a simple way to
ensure pre- and post conditions for auxiliary mechanisms attached to our implementations.

Global vrna_sc_bt_f)(int i, int j, int k, int l, unsigned char d, void *data)
This callback enables one to add auxiliary base pairs in the backtracking steps of hairpin- and interior
loops.

Global vrna_sc_exp_f)(int i, int j, int k, int l, unsigned char d, void *data)
This callback enables one to add (pseudo-)energy contributions to individual decompositions of the

secondary structure (Partition function variant, i.e. contributions must be returned as Boltzmann fac-
tors).

Global vrna_sc_f)(int i, int j, int k, int l, unsigned char d, void *data)
This callback enables one to add (pseudo-)energy contributions to individual decompositions of the

secondary structure.

Global vrna_subopt_result_f)(const char *stucture, float energy, void *data)
This function will be called for each suboptimal secondary structure that is successfully backtraced.

Global vrna_ud_add_probs_f)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type,
FLT_OR_DBL exp_energy, void *data)

A callback function to store equilibrium probabilities for the unstructured domain feature

Global vrna_ud_exp_f)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type, void *data)
This function will be called to determine the additional energy contribution of a specific unstructured
domain, e.g. the binding free energy of some ligand (Partition function variant, i.e. the Boltzmann
factors instead of actual free energies).

Global vrna_ud_exp_production_f)(vrna_fold_compound_t *fc, void *data)
The production rule for the unstructured domain grammar extension (Partition function variant)

Global vrna_ud_f)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type, void *data)
This function will be called to determine the additional energy contribution of a specific unstructured
domain, e.g. the binding free energy of some ligand.

Global vrna_ud_get_probs_f)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type, int motif,
void *data)

A callback function to retrieve equilibrium probabilities for the unstructured domain feature

Global vrna_ud_production_f)(vrna_fold_compound_t *fc, void *data)
The production rule for the unstructured domain grammar extension

630 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

7.17 Deprecated List

Global alifold (const char **strings, char *structure)
Usage of this function is discouraged! Use vrna_alifold(), or vrna_mfe() instead!

Global alimake_pair_table (const char *structure)
Use vrna_pt_ali_get() instead!

Global alipbacktrack (double *prob)
Use vrna_pbacktrack() instead!

Global alipf_circ_fold (const char **sequences, char *structure, vrna_ep_t **pl)
Use vrna_pf() instead

Global alipf_fold (const char **sequences, char *structure, vrna_ep_t **pl)
Use vrna_pf() instead

Global alipf_fold_par (const char **sequences, char *structure, vrna_ep_t **pl, vrna_exp_param_t
*parameters, int calculate_bppm, int is_constrained, int is_circular)

Use vrna_pf() instead

Global aliPS_color_aln (const char *structure, const char *filename, const char *seqs[], const char
*names[])

Use vrna_file_PS_aln() instead!

File aln_util.h
Use ViennaRNA/utils/alignments.h instead

Global assign_plist_from_db (vrna_ep_t **pl, const char *struc, float pr)
Use vrna_plist() instead

Global assign_plist_from_pr (vrna_ep_t **pl, FLT_OR_DBL *probs, int length, double cutoff)
Use vrna_plist_from_probs() instead!

Global b2C (const char *structure)
See vrna_db_to_tree_string() and VRNA_STRUCTURE_TREE_SHAPIRO_SHORT for a replacement

Global b2HIT (const char *structure)
See vrna_db_to_tree_string() and VRNA_STRUCTURE_TREE_HIT for a replacement

Global b2Shapiro (const char *structure)
See vrna_db_to_tree_string() and VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT for a replace-
ment

Global base_pair
Do not use this variable anymore!

Global bondT
Use vrna_bp_stack_t instead!

Global bp_distance (const char *str1, const char *str2)
Use vrna_bp_distance instead

7.17. Deprecated List 631

ViennaRNA, Release 2.6.4

Global bppm_symbol (const float *x)
Use vrna_bpp_symbol() instead!

Global bppm_to_structure (char *structure, FLT_OR_DBL *pr, unsigned int length)
Use vrna_db_from_probs() instead!

Global centroid (int length, double *dist)
This function is deprecated and should not be used anymore as it is not threadsafe!

File char_stream.h
Use ViennaRNA/datastructures/char_stream.h instead

Global circalifold (const char **strings, char *structure)
Usage of this function is discouraged! Use vrna_alicircfold(), and vrna_mfe() instead!

Global circfold (const char *sequence, char *structure)
Use vrna_circfold(), or vrna_mfe() instead!

Global co_pf_fold (char *sequence, char *structure)
{Use vrna_pf_dimer() instead!}

Global co_pf_fold_par (char *sequence, char *structure, vrna_exp_param_t *parameters, int
calculate_bppm, int is_constrained)

Use vrna_pf_dimer() instead!

Global cofold (const char *sequence, char *structure)
use vrna_mfe_dimer() instead

Global cofold_par (const char *string, char *structure, vrna_param_t *parameters, int is_constrained)
use vrna_mfe_dimer() instead

Global compute_BPdifferences (short *pt1, short *pt2, unsigned int turn)
Use vrna_refBPdist_matrix() instead

Global compute_probabilities (double FAB, double FEA, double FEB, vrna_ep_t *prAB, vrna_ep_t *prA,
vrna_ep_t *prB, int Alength)

{ Use vrna_pf_dimer_probs() instead!}

Global constrain_ptypes (const char *constraint, unsigned int length, char *ptype, int *BP, int
min_loop_size, unsigned int idx_type)

Do not use this function anymore! Structure constraints are now handled through vrna_hc_t and related
functions.

File constraints.h
Use ViennaRNA/constraints/basic.h instead

File constraints_hard.h
Use ViennaRNA/constraints/hard.h instead

File constraints_ligand.h
Use ViennaRNA/constraints/ligand.h instead

File constraints_SHAPE.h
Use ViennaRNA/constraints/SHAPE.h instead

File constraints_soft.h
Use ViennaRNA/constraints/soft.h instead

632 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

File convert_epars.h
Use ViennaRNA/params/convert.h instead

Global copy_pair_table (const short *pt)
Use vrna_ptable_copy() instead

Global cpair
Use vrna_cpair_t instead!

Global cv_fact
See vrna_md_t.cv_fact, and vrna_mfe() to avoid using global variables

File data_structures.h
Use ViennaRNA/datastructures/basic.h instead

Global destroy_TwoDfold_variables (TwoDfold_vars *our_variables)
Use the new API that relies on vrna_fold_compound_t and the corresponding functions
vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), and vrna_fold_compound_free() instead!

Global destroy_TwoDpfold_variables (TwoDpfold_vars *vars)
Use the new API that relies on vrna_fold_compound_t and the corresponding functions
vrna_fold_compound_TwoD(), vrna_pf_TwoD(), and vrna_fold_compound_free() instead!

Global E_Stem (int type, int si1, int sj1, int extLoop, vrna_param_t *P)
Please use one of the functions vrna_E_ext_stem() and E_MLstem() instead! Use the former for cases
where extLoop != 0 and the latter otherwise.

File energy_const.h
Use ViennaRNA/params/constants.h instead

Global energy_of_alistruct (const char **sequences, const char *structure, int n_seq, float *energy)
Usage of this function is discouraged! Use vrna_eval_structure(), and vrna_eval_covar_structure()
instead!

Global energy_of_circ_struct (const char *string, const char *structure)
This function is deprecated and should not be used in future programs Use energy_of_circ_structure()
instead!

Global energy_of_circ_struct_par (const char *string, const char *structure, vrna_param_t *parameters,
int verbosity_level)

Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

Global energy_of_circ_structure (const char *string, const char *structure, int verbosity_level)
Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

Global energy_of_move (const char *string, const char *structure, int m1, int m2)
Use vrna_eval_move() instead!

Global energy_of_move_pt (short *pt, short *s, short *s1, int m1, int m2)
Use vrna_eval_move_pt() instead!

Global energy_of_struct (const char *string, const char *structure)
This function is deprecated and should not be used in future programs! Use energy_of_structure()
instead!

Global energy_of_struct_par (const char *string, const char *structure, vrna_param_t *parameters, int
verbosity_level)

Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

Global energy_of_struct_pt (const char *string, short *ptable, short *s, short *s1)
This function is deprecated and should not be used in future programs! Use energy_of_structure_pt()
instead!

7.17. Deprecated List 633

ViennaRNA, Release 2.6.4

Global energy_of_struct_pt_par (const char *string, short *ptable, short *s, short *s1, vrna_param_t
*parameters, int verbosity_level)

Use vrna_eval_structure_pt() or vrna_eval_structure_pt_verbose() instead!

Global energy_of_structure (const char *string, const char *structure, int verbosity_level)
Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

Global energy_of_structure_pt (const char *string, short *ptable, short *s, short *s1, int verbosity_level)
Use vrna_eval_structure_pt() or vrna_eval_structure_pt_verbose() instead!

File energy_par.h
Use ViennaRNA/params/default.h instead

Global exp_E_ExtLoop (int type, int si1, int sj1, vrna_exp_param_t *P)
Use vrna_exp_E_ext_stem() instead!

Global expHairpinEnergy (int u, int type, short si1, short sj1, const char *string)
Use exp_E_Hairpin() from loop_energies.h instead

Global expLoopEnergy (int u1, int u2, int type, int type2, short si1, short sj1, short sp1, short sq1)
Use exp_E_IntLoop() from loop_energies.h instead

Global export_ali_bppm (void)
Usage of this function is discouraged! The new vrna_fold_compound_t allows direct access to the
folding matrices, including the pair probabilities! The pair probability array returned here reflects the
one of the latest call to vrna_pf(), or any of the old API calls for consensus structure partition function
folding.

Global export_circfold_arrays (int *Fc_p, int *FcH_p, int *FcI_p, int *FcM_p, int **fM2_p, int **f5_p,
int **c_p, int **fML_p, int **fM1_p, int **indx_p, char **ptype_p)

See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

Global export_circfold_arrays_par (int *Fc_p, int *FcH_p, int *FcI_p, int *FcM_p, int **fM2_p, int
**f5_p, int **c_p, int **fML_p, int **fM1_p, int **indx_p, char **ptype_p, vrna_param_t **P_p)

See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

Global export_co_bppm (void)
This function is deprecated and will be removed soon! The base pair probability array is available
through the vrna_fold_compound_t data structure, and its associated vrna_mx_pf_t member.

Global export_cofold_arrays (int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **fc_p, int **indx_p,
char **ptype_p)

folding matrices now reside within the vrna_fold_compound_t. Thus, this function will only work in
conjunction with a prior call to the deprecated functions cofold() or cofold_par()

Global export_cofold_arrays_gq (int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **fc_p, int
**ggg_p, int **indx_p, char **ptype_p)

folding matrices now reside within the fold compound. Thus, this function will only work in conjunc-
tion with a prior call to cofold() or cofold_par()

Global export_fold_arrays (int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **indx_p, char
**ptype_p)

See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

Global export_fold_arrays_par (int **f5_p, int **c_p, int **fML_p, int **fM1_p, int **indx_p, char
**ptype_p, vrna_param_t **P_p)

See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

File exterior_loops.h
Use ViennaRNA/loops/external.h instead

634 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

File file_formats.h
Use ViennaRNA/io/file_formats.h instead

File file_formats_msa.h
Use ViennaRNA/io/file_formats_msa.h instead

File file_utils.h
Use ViennaRNA/io/utils.h instead

Global filecopy (FILE *from, FILE *to)
Use vrna_file_copy() instead!

Global find_saddle (const char *seq, const char *s1, const char *s2, int width)
Use vrna_path_findpath_saddle() instead!

File findpath.h
Use ViennaRNA/landscape/findpath.h instead

Global fold (const char *sequence, char *structure)
use vrna_fold(), or vrna_mfe() instead!

Global fold_par (const char *sequence, char *structure, vrna_param_t *parameters, int is_constrained, int
is_circular)

use vrna_mfe() instead!

Global free_alifold_arrays (void)
Usage of this function is discouraged! It only affects memory being free’d that was allocated by an old
API function before. Release of memory occupied by the newly introduced vrna_fold_compound_t is
handled by vrna_fold_compound_free()

Global free_alipf_arrays (void)
Usage of this function is discouraged! This function only free’s memory allocated by old API function
calls. Memory allocated by any of the new API calls (starting with vrna_) will be not affected!

Global free_arrays (void)
See vrna_fold(), vrna_circfold(), or vrna_mfe() and vrna_fold_compound_t for the usage of the new
API!

Global free_co_arrays (void)
This function will only free memory allocated by a prior call of cofold() or cofold_par(). See
vrna_mfe_dimer() for how to use the new API

Global free_co_pf_arrays (void)
This function will be removed for the new API soon! See vrna_pf_dimer(), vrna_fold_compound(),
and vrna_fold_compound_free() for an alternative

Global free_path (vrna_path_t *path)
Use vrna_path_free() instead!

Global free_pf_arrays (void)
See vrna_fold_compound_t and its related functions for how to free memory occupied by the dynamic
programming matrices

Global get_alipf_arrays (short ***S_p, short ***S5_p, short ***S3_p, unsigned short ***a2s_p, char
***Ss_p, FLT_OR_DBL **qb_p, FLT_OR_DBL **qm_p, FLT_OR_DBL **q1k_p, FLT_OR_DBL
**qln_p, short **pscore)

It is discouraged to use this function! The new vrna_fold_compound_t allows direct access to all
necessary consensus structure prediction related variables!

7.17. Deprecated List 635

ViennaRNA, Release 2.6.4

Global get_boltzmann_factor_copy (vrna_exp_param_t *parameters)
Use vrna_exp_params_copy() instead!

Global get_boltzmann_factors (double temperature, double betaScale, vrna_md_t md, double pf_scale)
Use vrna_exp_params() instead!

Global get_boltzmann_factors_ali (unsigned int n_seq, double temperature, double betaScale, vrna_md_t
md, double pf_scale)

Use vrna_exp_params_comparative() instead!

Global get_centroid_struct_gquad_pr (int length, double *dist)
This function is deprecated and should not be used anymore as it is not threadsafe!

Global get_centroid_struct_pl (int length, double *dist, vrna_ep_t *pl)
This function was renamed to vrna_centroid_from_plist()

Global get_centroid_struct_pr (int length, double *dist, FLT_OR_DBL *pr)
This function was renamed to vrna_centroid_from_probs()

Global get_concentrations (double FEAB, double FEAA, double FEBB, double FEA, double FEB, double
*startconc)

{ Use vrna_pf_dimer_concentrations() instead!}

Global get_line (FILE *fp)
Use vrna_read_line() as a substitute!

Global get_mpi (char *Alseq[], int n_seq, int length, int *mini)
Use vrna_aln_mpi() as a replacement

Global get_path (const char *seq, const char *s1, const char *s2, int width)
Use vrna_path_findpath() instead!

Global get_plist (vrna_ep_t *pl, int length, double cut_off)
{ This function is deprecated and will be removed soon!} use assign_plist_from_pr() instead!

Global get_scaled_alipf_parameters (unsigned int n_seq)
Use vrna_exp_params_comparative() instead!

Global get_scaled_parameters (double temperature, vrna_md_t md)
Use vrna_params() instead!

Global get_scaled_pf_parameters (void)
Use vrna_exp_params() instead!

Global get_TwoDfold_variables (const char *seq, const char *structure1, const char *structure2, int circ)
Use the new API that relies on vrna_fold_compound_t and the corresponding functions
vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), and vrna_fold_compound_free() instead!

Global get_TwoDpfold_variables (const char *seq, const char *structure1, char *structure2, int circ)
Use the new API that relies on vrna_fold_compound_t and the corresponding functions
vrna_fold_compound_TwoD(), vrna_pf_TwoD(), and vrna_fold_compound_free() instead!

File hairpin_loops.h
Use ViennaRNA/loops/hairpin.h instead

Global HairpinE (int size, int type, int si1, int sj1, const char *string)
{This function is deprecated and will be removed soon. Use E_Hairpin() instead!}

Global hamming (const char *s1, const char *s2)
Use vrna_hamming_distance() instead!

636 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Global hamming_bound (const char *s1, const char *s2, int n)
Use vrna_hamming_distance_bound() instead!

Global iindx
Do not use this variable anymore!

Global init_co_pf_fold (int length)
{ This function is deprecated and will be removed soon!}

Global init_pf_fold (int length)
This function is obsolete and will be removed soon!

Global init_rand (void)
Use vrna_init_rand() instead!

Global initialize_cofold (int length)
{This function is obsolete and will be removed soon!}

Global initialize_fold (int length)
See vrna_mfe() and vrna_fold_compound_t for the usage of the new API!

Global int_urn (int from, int to)
Use vrna_int_urn() instead!

File interior_loops.h
Use ViennaRNA/loops/internal.h instead

Global Lfold (const char *string, const char *structure, int maxdist)
Use vrna_mfe_window() instead!

Global Lfoldz (const char *string, const char *structure, int maxdist, int zsc, double min_z)
Use vrna_mfe_window_zscore() instead!

File loop_energies.h
Use ViennaRNA/loops/all.h instead

Global loop_energy (short *ptable, short *s, short *s1, int i)
Use vrna_eval_loop_pt() instead!

Global LoopEnergy (int n1, int n2, int type, int type_2, int si1, int sj1, int sp1, int sq1)
{This function is deprecated and will be removed soon. Use E_IntLoop() instead!}

Global Make_bp_profile (int length)
This function is deprecated and will be removed soon! See Make_bp_profile_bppm() for a replacement

Global make_pair_table (const char *structure)
Use vrna_ptable() instead

Global make_pair_table_snoop (const char *structure)
Use vrna_pt_snoop_get() instead!

Global make_referenceBP_array (short *reference_pt, unsigned int turn)
Use vrna_refBPcnt_matrix() instead

Global MEA (plist *p, char *structure, double gamma)
Use vrna_MEA() or vrna_MEA_from_plist() instead!

7.17. Deprecated List 637

ViennaRNA, Release 2.6.4

Global mean_bp_dist (int length)
This function is not threadsafe and should not be used anymore. Use mean_bp_distance() instead!

Global mean_bp_distance (int length)
Use vrna_mean_bp_distance() or vrna_mean_bp_distance_pr() instead!

Global mean_bp_distance_pr (int length, FLT_OR_DBL *pr)
Use vrna_mean_bp_distance() or vrna_mean_bp_distance_pr() instead!

File multibranch_loops.h
Use ViennaRNA/loops/multibranch.h instead

File naview.h
Use ViennaRNA/plotting/naview/naview.h instead

Global nc_fact
See vrna_md_t.nc_fact, and vrna_mfe() to avoid using global variables

File neighbor.h
Use ViennaRNA/landscape/neighbor.h instead

Global nrerror (const char message[])
Use vrna_message_error() instead! (since v2.3.0)

Global pack_structure (const char *struc)
Use vrna_db_pack() as a replacement

Global PAIR
Use vrna_basepair_t instead!

Global pair_info
Use vrna_pinfo_t instead!

File params.h
Use ViennaRNA/params/basic.h instead

Global paramT
Use vrna_param_t instead!

Global parenthesis_structure (char *structure, vrna_bp_stack_t *bp, int length)
use vrna_parenthesis_structure() instead

Global parenthesis_zuker (char *structure, vrna_bp_stack_t *bp, int length)
use vrna_parenthesis_zuker instead

Global path_t
Use vrna_path_t instead!

Global pbacktrack_circ (char *sequence)
Use vrna_pbacktrack() instead.

Global pf_circ_fold (const char *sequence, char *structure)
Use vrna_pf() instead!

Global pf_fold_par (const char *sequence, char *structure, vrna_exp_param_t *parameters, int
calculate_bppm, int is_constrained, int is_circular)

Use vrna_pf() instead

638 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Global pf_paramT
Use vrna_exp_param_t instead!

Global plist
Use vrna_ep_t or vrna_elem_prob_s instead!

File plot_aln.h
Use ViennaRNA/plotting/alignments.h instead

File plot_layouts.h
Use ViennaRNA/plotting/layouts.h instead

File plot_structure.h
Use ViennaRNA/plotting/structures.h instead

File plot_utils.h
Use ViennaRNA/plotting/utils.h instead

Global pr
Do not use this variable anymore!

Global print_tty_constraint (unsigned int option)
Use vrna_message_constraints() instead!

Global print_tty_constraint_full (void)
Use vrna_message_constraint_options_all() instead!

Global print_tty_input_seq (void)
Use vrna_message_input_seq_simple() instead!

Global print_tty_input_seq_str (const char *s)
Use vrna_message_input_seq() instead!

Global PS_color_aln (const char *structure, const char *filename, const char *seqs[], const char *names[])
Use vrna_file_PS_aln() instead!

File PS_dot.h
Use ViennaRNA/plotting/probabilities.h instead

Global PS_dot_plot (char *string, char *file)
This function is deprecated and will be removed soon! Use PS_dot_plot_list() instead!

Global PS_rna_plot (char *string, char *structure, char *file)
Use vrna_file_PS_rnaplot() instead!

Global PS_rna_plot_a (char *string, char *structure, char *file, char *pre, char *post)
Use vrna_file_PS_rnaplot_a() instead!

Global PS_rna_plot_a_gquad (char *string, char *structure, char *ssfile, char *pre, char *post)
Use vrna_file_PS_rnaplot_a() instead!

Global random_string (int l, const char symbols[])
Use vrna_random_string() instead!

File read_epars.h
Use ViennaRNA/params/io.h instead

Global read_parameter_file (const char fname[])
Use vrna_params_load() instead!

7.17. Deprecated List 639

ViennaRNA, Release 2.6.4

Global read_record (char **header, char **sequence, char ***rest, unsigned int options)
This function is deprecated! Use vrna_file_fasta_read_record() as a replacment.

Global scale_parameters (void)
Use vrna_params() instead!

Global sect
Use vrna_sect_t instead!

Global set_model_details (vrna_md_t *md)
This function will vanish as soon as backward compatibility of RNAlib is dropped (expected in version
3). Use vrna_md_set_default() instead!

Global simple_circplot_coordinates (short *pair_table, float *x, float *y)
Consider switching to vrna_plot_coords_circular_pt() instead!

Global simple_xy_coordinates (short *pair_table, float *X, float *Y)
Consider switching to vrna_plot_coords_simple_pt() instead!

Global SOLUTION
Use vrna_subopt_solution_t instead!

Global space (unsigned size)
Use vrna_alloc() instead! (since v2.2.0)

Global st_back
set the uniq_ML flag in vrna_md_t before passing it to vrna_fold_compound().

Global stackProb (double cutoff)
Use vrna_stack_prob() instead!

Global str_DNA2RNA (char *sequence)
Use vrna_seq_toRNA() instead!

Global str_uppercase (char *sequence)
Use vrna_seq_toupper() instead!

File stream_output.h
Use ViennaRNA/datastructures/stream_output.h instead

File string_utils.h
Use ViennaRNA/utils/strings.h instead

File structure_utils.h
Use ViennaRNA/utils/structures.h instead

File svm_utils.h
Use ViennaRNA/utils/svm.h instead

Global temperature
Use vrna_md_defaults_temperature(), and vrna_md_defaults_temperature_get() to change, and read
the global default temperature settings

Global time_stamp (void)
Use vrna_time_stamp() instead!

Global TwoDfold_backtrack_f5 (unsigned int j, int k, int l, TwoDfold_vars *vars)
Use the new API that relies on vrna_fold_compound_t and the corresponding func-
tions vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), vrna_backtrack5_TwoD(), and
vrna_fold_compound_free() instead!

640 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Class TwoDfold_vars
This data structure will be removed from the library soon! Use vrna_fold_compound_t
and the corresponding functions vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), and
vrna_fold_compound_free() instead!

Global TwoDfoldList (TwoDfold_vars *vars, int distance1, int distance2)
Use the new API that relies on vrna_fold_compound_t and the corresponding functions
vrna_fold_compound_TwoD(), vrna_mfe_TwoD(), and vrna_fold_compound_free() instead!

Global TwoDpfold_pbacktrack (TwoDpfold_vars *vars, int d1, int d2)
Use the new API that relies on vrna_fold_compound_t and the corresponding func-
tions vrna_fold_compound_TwoD(), vrna_pf_TwoD(), vrna_pbacktrack_TwoD(), and
vrna_fold_compound_free() instead!

Global TwoDpfold_pbacktrack5 (TwoDpfold_vars *vars, int d1, int d2, unsigned int length)
Use the new API that relies on vrna_fold_compound_t and the corresponding func-
tions vrna_fold_compound_TwoD(), vrna_pf_TwoD(), vrna_pbacktrack5_TwoD(), and
vrna_fold_compound_free() instead!

Class TwoDpfold_vars
This data structure will be removed from the library soon! Use vrna_fold_compound_t and the corre-
sponding functions vrna_fold_compound_TwoD(), vrna_pf_TwoD(), and vrna_fold_compound_free()
instead!

Global TwoDpfoldList (TwoDpfold_vars *vars, int maxDistance1, int maxDistance2)
Use the new API that relies on vrna_fold_compound_t and the corresponding functions
vrna_fold_compound_TwoD(), vrna_pf_TwoD(), and vrna_fold_compound_free() instead!

File units.h
Use ViennaRNA/utils/units.h instead

Global unpack_structure (const char *packed)
Use vrna_db_unpack() as a replacement

Global update_alifold_params (void)
Usage of this function is discouraged! The new API uses vrna_fold_compound_t to lump all folding re-
lated necessities together, including the energy parameters. Use vrna_update_fold_params() to update
the energy parameters within a vrna_fold_compound_t.

Global update_co_pf_params (int length)
Use vrna_exp_params_subst() instead!

Global update_co_pf_params_par (int length, vrna_exp_param_t *parameters)
Use vrna_exp_params_subst() instead!

Global update_cofold_params (void)
See vrna_params_subst() for an alternative using the new API

Global update_cofold_params_par (vrna_param_t *parameters)
See vrna_params_subst() for an alternative using the new API

Global update_fold_params (void)
For non-default model settings use the new API with vrna_params_subst() and vrna_mfe() instead!

Global update_fold_params_par (vrna_param_t *parameters)
For non-default model settings use the new API with vrna_params_subst() and vrna_mfe() instead!

Global update_pf_params (int length)
Use vrna_exp_params_subst() instead

7.17. Deprecated List 641

ViennaRNA, Release 2.6.4

Global update_pf_params_par (int length, vrna_exp_param_t *parameters)
Use vrna_exp_params_subst() instead

Global urn (void)
Use vrna_urn() instead!

File utils.h
Use ViennaRNA/utils/basic.h instead

Use ViennaRNA/utils/basic.h instead

Global vrna_callback_free_auxdata (void *data)
Use vrna_auxdata_free_f(void *data) instead!

Global vrna_cofold (const char *sequence, char *structure)
This function is obsolete since vrna_mfe()/vrna_fold() can handle complexes multiple sequences since
v2.5.0. Use vrna_mfe()/vrna_fold() for connected component MFE instead and compute MFEs of
unconnected states separately.

Global VRNA_CONSTRAINT_FILE
Use 0 instead!

Global VRNA_CONSTRAINT_MULTILINE
see vrna_extract_record_rest_structure()

Global VRNA_CONSTRAINT_NO_HEADER
This mode is not supported anymore!

Global VRNA_CONSTRAINT_SOFT_MFE
This flag has no meaning anymore, since constraints are now always stored! (since v2.2.6)

Global VRNA_CONSTRAINT_SOFT_PF
Use VRNA_OPTION_PF instead!

Global vrna_exp_param_s::id
This attribute will be removed in version 3

Global vrna_extract_record_rest_constraint (char **cstruc, const char **lines, unsigned int option)
Use vrna_extract_record_rest_structure() instead!

Global vrna_fc_s::pscore_pf_compat
This attribute will vanish in the future!

Global vrna_fc_s::ptype_pf_compat
This attribute will vanish in the future! It’s meant for backward compatibility only!

Global vrna_mfe_dimer (vrna_fold_compound_t *fc, char *structure)
This function is obsolete since vrna_mfe() can handle complexes multiple sequences since v2.5.0. Use
vrna_mfe() for connected component MFE instead and compute MFEs of unconnected states separately.

File walk.h
Use ViennaRNA/landscape/walk.h instead

Global warn_user (const char message[])
Use vrna_message_warning() instead! (since v2.3.0)

Global write_parameter_file (const char fname[])
Use vrna_params_save() instead!

Global xrealloc (void *p, unsigned size)
Use vrna_realloc() instead! (since v2.2.0)

642 Chapter 7. Concepts and Algorithms

ViennaRNA, Release 2.6.4

Global zukersubopt (const char *string)
use vrna_zukersubopt() instead

Global zukersubopt_par (const char *string, vrna_param_t *parameters)
use vrna_zukersubopt() instead

7.17. Deprecated List 643

ViennaRNA, Release 2.6.4

644 Chapter 7. Concepts and Algorithms

CHAPTER

EIGHT

SWIG WRAPPERS

8.1 Introduction

For an easy integration into scripting languages, we provide an automatically generated interface to the RNAlib
C-library, generated with SWIG. Currently, we support Perl 5 and Python as target languages.

See also. . .
Python API

8.2 Function Renaming

To provide a namespace-like separation of function symbols from our C library and third-party code, we use the
prefix vrna_ or VRNA_ whenever possible. This, however, is not necessary for the scripting language interface, as
it uses the separate namespace or package RNA anyway. Consequently, symbols that appear to have the vrna_ or
VRNA_ prefix in the C-library have the corresponding prefix stripped away.

For instance, the C code

mfe = vrna_fold(sequence, structure);

translates to

my ($structure, $mfe) = RNA::fold($sequence)

in the Perl 5 interface, and

structure, mfe = RNA.fold(sequence)

for Python. Note, that in this example we also make use of the possibilty to return multiple data at once in the
scripting language, while the C library function uses additional parameters to return multiple data.

Functions that are dedicated to work on specific data structures only, e.g. the vrna_fold_compound_t, are usually
not exported at all. Instead, they are attached as object methods of a corresponding class (see Object Oriented
Interface for detailed information).

645

ViennaRNA, Release 2.6.4

8.2.1 Global Variables

For the Python interface(s) SWIG places global variables of the C-library into an additional namespace cvar. For
instance, changing the global temperature variable thus becomes

8.3 Object Oriented Interface

For data structures, typedefs, and enumerations the vrna_ prefixes are dropped as well, together with their suf-
fixes _s, _t, and _e, respectively. Furthermore, data structures are usually transformed into classes and relevant
functions of the C-library are attached as methods.

8.4 Examples

Examples on the basic usage of the scripting language interfaces can be found in the Perl 5 Examples and Python
Examples sections.

8.5 SWIG Wrapper notes

Special notes on how functions, structures, enums, and macro definitions are actually wrapped, can be found below

Global vrna_abstract_shapes (const char *structure, unsigned int level)
This function is available as an overloaded function abstract_shapes() where the optional second
parameter level defaults to 5. See, e.g. RNA.abstract_shapes() in the Python API .

Global vrna_abstract_shapes_pt (const short *pt, unsigned int level)
This function is available as an overloaded function abstract_shapes() where the optional second
parameter level defaults to 5. See, e.g. RNA.abstract_shapes() in the Python API .

Global vrna_alifold (const char **sequences, char *structure)
This function is available as function alifold() in the global namespace. The parameter structure
is returned along with the MFE und must not be provided. See e.g. RNA.alifold() in the Python
API .

Global vrna_aliLfold (const char **alignment, int maxdist, FILE *fp)
This function is available as overloaded function aliLfold() in the global namespace. The parameter
fp defaults to NULL and may be omitted. See e.g. RNA.aliLfold() in the Python API .

Global vrna_aliLfold_cb (const char **alignment, int maxdist, vrna_mfe_window_f cb, void *data)
This function is available as overloaded function aliLfold_cb() in the global namespace. The pa-
rameter data defaults to NULL and may be omitted. See e.g. RNA.aliLfold_cb() in the Python
API .

Global vrna_aln_consensus_mis (const char **alignment, const vrna_md_t *md_p)
This function is available as overloaded function aln_consensus_mis() where the last parameter

may be omitted, indicating md = NULL. See e.g. RNA.aln_consensus_mis() in the Python API .

Global vrna_aln_consensus_sequence (const char **alignment, const vrna_md_t *md_p)
This function is available as overloaded function aln_consensus_sequence() where the last param-
eter may be omitted, indicating md = NULL. See e.g. RNA.aln_consensus_sequence() in the Python
API .

646 Chapter 8. SWIG Wrappers

ViennaRNA, Release 2.6.4

Global vrna_aln_conservation_col (const char **alignment, const vrna_md_t *md_p, unsigned int options)
This function is available as overloaded function aln_conservation_col() where

the last two parameters may be omitted, indicating md = NULL, and options =
VRNA_MEASURE_SHANNON_ENTROPY , respectively. See e.g. RNA.aln_conservation_col()
in the Python API .

Global vrna_aln_conservation_struct (const char **alignment, const char *structure, const vrna_md_t
*md)

This function is available as overloaded function aln_conservation_struct() where the last pa-
rameter md may be omitted, indicating md = NULL. See, e.g. RNA.aln_conservation_struct() in
the Python API .

Global vrna_aln_mpi (const char **alignment)
This function is available as function aln_mpi(). See e.g. RNA.aln_mpi() in the Python API .

Global vrna_aln_pscore (const char **alignment, vrna_md_t *md)
This function is available as overloaded function aln_pscore() where the last parameter may be

omitted, indicating md = NULL. See e.g. RNA.aln_pscore() in the Python API .

Global vrna_backtrack5 (vrna_fold_compound_t *fc, unsigned int length, char *structure)
This function is attached as overloaded method backtrack() to objects of type fold_compound. The
parameter length defaults to the total length of the RNA sequence and may be omitted. The parameter
structure is returned along with the MFE und must not be provided. See e.g. RNA.fold_compound.
backtrack() in the Python API .

Global vrna_boustrophedon (size_t start, size_t end)
This function is available as overloaded global function boustrophedon(). See, e.g. RNA.
boustrophedon() in the Python API .

Global vrna_boustrophedon_pos (size_t start, size_t end, size_t pos)
This function is available as overloaded global function boustrophedon(). Omitting the pos argu-
ment yields the entire sequence from start to end. See, e.g. RNA.boustrophedon() in the Python
API .

Global vrna_bp_distance (const char *str1, const char *str2)
This function is available as an overloaded method bp_distance(). Note that the SWIG

wrapper takes two structure in dot-bracket notation and converts them into pair tables
using vrna_ptable_from_string(). The resulting pair tables are then internally passed to
vrna_bp_distance_pt(). To control which kind of matching brackets will be used during conversion,
the optional argument options can be used. See also the description of vrna_ptable_from_string()
for available options. (default: VRNA_BRACKETS_RND). See, e.g. RNA.bp_distance() in the
Python API .

Global vrna_bp_distance_pt (const short *pt1, const short *pt2)
This function is available as an overloaded method bp_distance(). See, e.g. RNA.bp_distance() in
the Python API .

Global vrna_circalifold (const char **sequences, char *structure)
This function is available as function circalifold() in the global namespace. The parameter
structure is returned along with the MFE und must not be provided. See e.g. RNA.circalifold()
in the Python API .

Global vrna_circfold (const char *sequence, char *structure)
This function is available as function circfold() in the global namespace. The parameter structure
is returned along with the MFE und must not be provided. See e.g. RNA.circfold() in the Python
API .

Global vrna_cofold (const char *sequence, char *structure)
This function is available as function cofold() in the global namespace. The parameter structure
is returned along with the MFE und must not be provided. See e.g. RNA.cofold() in the Python API .

8.5. SWIG Wrapper notes 647

ViennaRNA, Release 2.6.4

Global vrna_commands_apply (vrna_fold_compound_t *fc, vrna_cmd_t commands, unsigned int options)
This function is attached as method commands_apply() to objects of type fold_compound. See, e.g.
RNA.fold_compound.commands_apply() in the Python API .

Global vrna_db_flatten (char *structure, unsigned int options)
This function flattens an input structure string in-place! The second parameter is optional and defaults
to VRNA_BRACKETS_DEFAULT .

An overloaded version of this function exists, where an additional second parameter can be passed to
specify the target brackets, i.e. the type of matching pair characters all brackets will be flattened to.
Therefore, in the scripting language interface this function is a replacement for vrna_db_flatten_to().
See, e.g. RNA.db_flatten() in the Python API .

Global vrna_db_flatten_to (char *string, const char target[3], unsigned int options)
This function is available as an overloaded version of vrna_db_flatten(). See, e.g. RNA.db_flatten()
in the Python API .

Global vrna_db_from_probs (const FLT_OR_DBL *pr, unsigned int length)
This function is available as parameter-less method db_from_probs() bound to objects of type

fold_compound. Parameters pr and length are implicitely taken from the fold_compound object the
method is bound to. Upon missing base pair probabilities, this method returns an empty string. See,
e.g. RNA.db_from_probs() in the Python API .

Global vrna_db_pk_remove (const char *structure, unsigned int options)
This function is available as an overloaded function db_pk_remove() where the optional second pa-
rameter options defaults to VRNA_BRACKETS_ANY . See, e.g. RNA.db_pk_remove() in the Python
API .

Global vrna_ensemble_defect (vrna_fold_compound_t *fc, const char *structure)
This function is attached as method ensemble_defect() to objects of type fold_compound.

Note that the SWIG wrapper takes a structure in dot-bracket notation and converts it into a
pair table using vrna_ptable_from_string(). The resulting pair table is then internally passed
to vrna_ensemble_defect_pt(). To control which kind of matching brackets will be used dur-
ing conversion, the optional argument options can be used. See also the description of
vrna_ptable_from_string() for available options. (default: VRNA_BRACKETS_RND). See, e.g. RNA.
fold_compound.ensemble_defect() in the Python API .

Global vrna_ensemble_defect_pt (vrna_fold_compound_t *fc, const short *pt)
This function is attached as overloaded method ensemble_defect() to objects of type

fold_compound. See, e.g. RNA.fold_compound.ensemble_defect() in the Python API .

Global vrna_enumerate_necklaces (const unsigned int *type_counts)
This function is available as global function enumerate_necklaces() which accepts lists input, an
produces list of lists output. See, e.g. RNA.enumerate_necklaces() in the Python API .

Global vrna_eval_circ_consensus_structure (const char **alignment, const char *structure)
This function is available through an overloadeded version of vrna_eval_circ_structure(). Simply pass
a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second
argument. See, e.g. RNA.eval_circ_structure() in the Python API .

Global vrna_eval_circ_consensus_structure_v (const char **alignment, const char *structure, int
verbosity_level, FILE *file)

This function is available through an overloaded version of vrna_eval_circ_structure(). Simply pass
a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second
argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET and NULL,
respectively. See, e.g. RNA.eval_circ_structure() in the Python API .

Global vrna_eval_circ_gquad_consensus_structure (const char **alignment, const char *structure)
This function is available through an overloadeded version of vrna_eval_circ_gquad_structure(). Sim-
ply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. See, e.g. RNA.eval_circ_gquad_structure() in the Python API .

648 Chapter 8. SWIG Wrappers

ViennaRNA, Release 2.6.4

Global vrna_eval_circ_gquad_consensus_structure_v (const char **alignment, const char *structure, int
verbosity_level, FILE *file)

This function is available through an overloaded version of vrna_eval_circ_gquad_structure(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET and
NULL, respectively. See, e.g. RNA.eval_circ_gquad_structure() in the Python API .

Global vrna_eval_circ_gquad_structure (const char *string, const char *structure)
In the target scripting language, this function serves as a wrapper for

vrna_eval_circ_gquad_structure_v() and, thus, allows for two additional, optional arguments,
the verbosity level and a file handle which default to VRNA_VERBOSITY_QUIET and NULL,
respectively.. See, e.g. RNA.eval_circ_gquad_structure() in the Python API .

Global vrna_eval_circ_gquad_structure_v (const char *string, const char *structure, int verbosity_level,
FILE *file)

This function is available through an overloaded version of vrna_eval_circ_gquad_structure(). The
last two arguments for this function are optional and default to VRNA_VERBOSITY_QUIET and NULL,
respectively. See, e.g. RNA.eval_circ_gquad_structure() in the Python API .

Global vrna_eval_circ_structure (const char *string, const char *structure)
In the target scripting language, this function serves as a wrapper for vrna_eval_circ_structure_v() and,
thus, allows for two additional, optional arguments, the verbosity level and a file handle which default
to VRNA_VERBOSITY_QUIET and NULL, respectively.. See, e.g. RNA.eval_circ_structure() in
the Python API .

Global vrna_eval_circ_structure_v (const char *string, const char *structure, int verbosity_level, FILE
*file)

This function is available through an overloaded version of vrna_eval_circ_structure(). The last two
arguments for this function are optional and default to VRNA_VERBOSITY_QUIET and NULL, respec-
tively. See, e.g. RNA.eval_circ_structure() in the Python API .

Global vrna_eval_consensus_structure_pt_simple (const char **alignment, const short *pt)
This function is available through an overloadeded version of vrna_eval_structure_pt_simple(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. See, e.g. RNA.eval_structure_pt_simple() in the Python API .

Global vrna_eval_consensus_structure_pt_simple_v (const char **alignment, const short *pt, int
verbosity_level, FILE *file)

This function is available through an overloaded version of vrna_eval_structure_pt_simple(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET and
NULL, respectively. See, e.g. RNA.eval_structure_pt_simple() in the Python API .

Global vrna_eval_consensus_structure_simple (const char **alignment, const char *structure)
This function is available through an overloadeded version of vrna_eval_structure_simple(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. See, e.g. RNA.eval_structure_simple() in the Python API .

Global vrna_eval_consensus_structure_simple_v (const char **alignment, const char *structure, int
verbosity_level, FILE *file)

This function is available through an overloaded version of vrna_eval_structure_simple(). Simply pass
a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second
argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET and NULL,
respectively. See, e.g. RNA.eval_structure_simple() in the Python API .

Global vrna_eval_covar_structure (vrna_fold_compound_t *fc, const char *structure)
This function is attached as method eval_covar_structure() to objects of type fold_compound.
See, e.g. RNA.fold_compound.eval_covar_structure() in the Python API .

8.5. SWIG Wrapper notes 649

ViennaRNA, Release 2.6.4

Global vrna_eval_gquad_consensus_structure (const char **alignment, const char *structure)
This function is available through an overloadeded version of vrna_eval_gquad_structure(). Simply

pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. See, e.g. RNA.eval_gquad_structure() in the Python API .

Global vrna_eval_gquad_consensus_structure_v (const char **alignment, const char *structure, int
verbosity_level, FILE *file)

This function is available through an overloaded version of vrna_eval_gquad_structure(). Simply pass
a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second
argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET and NULL,
respectively. See, e.g. RNA.eval_gquad_structure() in the Python API .

Global vrna_eval_gquad_structure (const char *string, const char *structure)
In the target scripting language, this function serves as a wrapper for vrna_eval_gquad_structure_v()
and, thus, allows for two additional, optional arguments, the verbosity level and a file han-
dle which default to VRNA_VERBOSITY_QUIET and NULL, respectively.. See, e.g. RNA.
eval_gquad_structure() in the Python API .

Global vrna_eval_gquad_structure_v (const char *string, const char *structure, int verbosity_level, FILE
*file)

This function is available through an overloaded version of vrna_eval_gquad_structure(). The last
two arguments for this function are optional and default to VRNA_VERBOSITY_QUIET and NULL,
respectively. See, e.g. RNA.eval_gquad_structure() in the Python API .

Global vrna_eval_hp_loop (vrna_fold_compound_t *fc, int i, int j)
This function is attached as method eval_hp_loop() to objects of type fold_compound. See, e.g.
RNA.fold_compound.eval_hp_loop() in the Python API .

Global vrna_eval_int_loop (vrna_fold_compound_t *fc, int i, int j, int k, int l)
This function is attached as method eval_int_loop() to objects of type fold_compound. See, e.g.
RNA.fold_compound.eval_int_loop() in the Python API .

Global vrna_eval_loop_pt (vrna_fold_compound_t *fc, int i, const short *pt)
This function is attached as method eval_loop_pt() to objects of type fold_compound. See, e.g.
RNA.fold_compound.eval_loop_pt() in the Python API .

Global vrna_eval_move (vrna_fold_compound_t *fc, const char *structure, int m1, int m2)
This function is attached as method eval_move() to objects of type fold_compound. See, e.g. RNA.
fold_compound.eval_move() in the Python API .

Global vrna_eval_move_pt (vrna_fold_compound_t *fc, short *pt, int m1, int m2)
This function is attached as method eval_move_pt() to objects of type fold_compound. See, e.g.
RNA.fold_compound.eval_move_pt() in the Python API .

Global vrna_eval_structure (vrna_fold_compound_t *fc, const char *structure)
This function is attached as method eval_structure() to objects of type fold_compound. See, e.g.
RNA.fold_compound.eval_structure() in the Python API .

Global vrna_eval_structure_pt (vrna_fold_compound_t *fc, const short *pt)
This function is attached as method eval_structure_pt() to objects of type fold_compound. See,
e.g. RNA.fold_compound.eval_structure_pt() in the Python API .

Global vrna_eval_structure_pt_simple (const char *string, const short *pt)
In the target scripting language, this function serves as a wrapper for vrna_eval_structure_pt_v()

and, thus, allows for two additional, optional arguments, the verbosity level and a file han-
dle which default to VRNA_VERBOSITY_QUIET and NULL, respectively. See, e.g. RNA.
eval_structure_pt_simple() in the Python API .

Global vrna_eval_structure_pt_verbose (vrna_fold_compound_t *fc, const short *pt, FILE *file)
This function is attached as method eval_structure_pt_verbose() to objects of type

fold_compound. See, e.g. RNA.fold_compound.eval_structure_pt_verbose() in the Python
API .

650 Chapter 8. SWIG Wrappers

ViennaRNA, Release 2.6.4

Global vrna_eval_structure_simple (const char *string, const char *structure)
In the target scripting language, this function serves as a wrapper for vrna_eval_structure_simple_v()
and, thus, allows for two additional, optional arguments, the verbosity level and a file han-
dle which default to VRNA_VERBOSITY_QUIET and NULL, respectively.. See, e.g. RNA.
eval_structure_simple() in the Python API .

Global vrna_eval_structure_simple_v (const char *string, const char *structure, int verbosity_level, FILE
*file)

This function is available through an overloaded version of vrna_eval_structure_simple(). The last
two arguments for this function are optional and default to VRNA_VERBOSITY_QUIET and NULL,
respectively. See, e.g. RNA.eval_structure_simple() in the Python API .

Global vrna_eval_structure_verbose (vrna_fold_compound_t *fc, const char *structure, FILE *file)
This function is attached as method eval_structure_verbose() to objects of type

fold_compound. See, e.g. RNA.fold_compound.eval_structure_verbose() in the Python API
.

Global vrna_exp_params_rescale (vrna_fold_compound_t *fc, double *mfe)
This function is attached to vrna_fc_s objects as overloaded exp_params_rescale() method.

When no parameter is passed to this method, the resulting action is the same as passing NULL as second
parameter to vrna_exp_params_rescale(), i.e. default scaling of the partition function. Passing an en-
ergy in kcal/mol, e.g. as retrieved by a previous call to the mfe() method, instructs all subsequent calls
to scale the partition function accordingly. See, e.g. RNA.fold_compound.exp_params_rescale()
in the Python API .

Global vrna_exp_params_reset (vrna_fold_compound_t *fc, vrna_md_t *md)
This function is attached to vrna_fc_s objects as overloaded exp_params_reset() method.

When no parameter is passed to this method, the resulting action is the same as passing NULL as second
parameter to vrna_exp_params_reset(), i.e. global default model settings are used. Passing an object of
type vrna_md_s resets the fold compound according to the specifications stored within the vrna_md_s
object. See, e.g. RNA.fold_compound.exp_params_reset() in the Python API .

Global vrna_exp_params_subst (vrna_fold_compound_t *fc, vrna_exp_param_t *params)
This function is attached to vrna_fc_s objects as overloaded exp_params_subst() method.

When no parameter is passed, the resulting action is the same as passing NULL as second parame-
ter to vrna_exp_params_subst(), i.e. resetting the parameters to the global defaults. See, e.g. RNA.
fold_compound.exp_params_subst() in the Python API .

Class vrna_fc_s

This data structure is wrapped as class fold_compound with several related functions attached as
methods.

A new fold_compound can be obtained by calling one of its constructors:

• fold_compound(seq) - Initialize with a single sequence, or two concatenated sequences sepa-
rated by an ampersand character & (for cofolding)

• fold_compound(aln) - Initialize with a sequence alignment aln stored as a list of sequences
(with gap characters).

The resulting object has a list of attached methods which in most cases directly correspond to functions
that mainly operate on the corresponding C data structure:

• type() - Get the type of the fold_compound (See vrna_fc_type_e)

• length() - Get the length of the sequence(s) or alignment stored within the fold_compound.

See, e.g. RNA.fold_compound in the Python API .

8.5. SWIG Wrapper notes 651

ViennaRNA, Release 2.6.4

Global vrna_file_commands_apply (vrna_fold_compound_t *fc, const char *filename, unsigned int
options)

This function is attached as method file_commands_apply() to objects of type fold_compound.
See, e.g. RNA.fold_compound.file_commands_apply() in the Python API .

Global vrna_file_commands_read (const char *filename, unsigned int options)
This function is available as global function file_commands_read(). See, e.g. RNA.
file_commands_read() in the Python API .

Global vrna_file_msa_detect_format (const char *filename, unsigned int options)
This function exists as an overloaded version where the options parameter may be omitted! In that
case, the options parameter defaults to VRNA_FILE_FORMAT_MSA_DEFAULT . See, e.g. RNA.
file_msa_detect_format() in the Python API .

Global vrna_file_msa_read (const char *filename, char ***names, char ***aln, char **id, char
**structure, unsigned int options)

In the target scripting language, only the first and last argument, filename and options, are
passed to the corresponding function. The other arguments, which serve as output in the C-
library, are available as additional return values. This function exists as an overloaded version
where the options parameter may be omitted! In that case, the options parameter defaults to
VRNA_FILE_FORMAT_MSA_STOCKHOLM. See, e.g. RNA.file_msa_read() in the Python API
and Parsing Alignments in the Python examples.

Global vrna_file_msa_read_record (FILE *fp, char ***names, char ***aln, char **id, char **structure,
unsigned int options)

In the target scripting language, only the first and last argument, fp and options, are passed
to the corresponding function. The other arguments, which serve as output in the C-library,
are available as additional return values. This function exists as an overloaded version where
the options parameter may be omitted! In that case, the options parameter defaults to
VRNA_FILE_FORMAT_MSA_STOCKHOLM. See, e.g. RNA.file_msa_read_record() in the
Python API and Parsing Alignments in the Python examples.

Global vrna_file_msa_write (const char *filename, const char **names, const char **aln, const char *id,
const char *structure, const char *source, unsigned int options)

In the target scripting language, this function exists as a set of overloaded versions, where the
last four parameters may be omitted. If the options parameter is missing the options default to
(VRNA_FILE_FORMAT_MSA_STOCKHOLM | VRNA_FILE_FORMAT_MSA_APPEND). See, e.g.
RNA.file_msa_write() in the Python API .

Global vrna_file_PS_aln (const char *filename, const char **seqs, const char **names, const char
*structure, unsigned int columns)

This function is available as overloaded function file_PS_aln() with three additional pa-
rameters start, end, and offset before the columns argument. Thus, it resembles the
vrna_file_PS_aln_slice() function. The last four arguments may be omitted, indicating the de-
fault of start = 0, end = 0, offset = 0, and columns = 60. See, e.g. RNA.file_PS_aln() in the
Python API .

Global vrna_file_PS_aln_slice (const char *filename, const char **seqs, const char **names, const char
*structure, unsigned int start, unsigned int end, int offset, unsigned int columns)

This function is available as overloaded function file_PS_aln() where the last four parameter
may be omitted, indicating start = 0, end = 0, offset = 0, and columns = 60. See, e.g. RNA.
file_PS_aln() in the Python API .

Global vrna_fold (const char *sequence, char *structure)
This function is available as function fold() in the global namespace. The parameter structure is
returned along with the MFE und must not be provided. See e.g. RNA.fold() in the Python API .

Global vrna_hc_add_from_db (vrna_fold_compound_t *fc, const char *constraint, unsigned int options)
This function is attached as method hc_add_from_db() to objects of type fold_compound. See, e.g.
RNA.fold_compound.hc_add_from_db() in the Python API .

652 Chapter 8. SWIG Wrappers

ViennaRNA, Release 2.6.4

Global vrna_hc_init (vrna_fold_compound_t *fc)
This function is attached as method hc_init() to objects of type fold_compound. See, e.g. RNA.
fold_compound.hc_init() in the Python API .

Global vrna_heat_capacity (vrna_fold_compound_t *fc, float T_min, float T_max, float T_increment,
unsigned int mpoints)

This function is attached as overloaded method heat_capacity() to objects of type fold_compound.
If the optional function arguments T_min, T_max, T_increment, and mpoints are omitted, they de-
fault to 0.0, 100.0, 1.0 and 2, respectively. See, e.g. RNA.fold_compound.heat_capacity() in the
Python API .

Global vrna_heat_capacity_cb (vrna_fold_compound_t *fc, float T_min, float T_max, float T_increment,
unsigned int mpoints, vrna_heat_capacity_f cb, void *data)

This function is attached as method heat_capacity_cb() to objects of type fold_compound. See,
e.g. RNA.fold_compound.heat_capacity_cb() in the Python API .

Global vrna_heat_capacity_simple (const char *sequence, float T_min, float T_max, float T_increment,
unsigned int mpoints)

This function is available as overloaded function heat_capacity(). If the optional function argu-
ments T_min, T_max, T_increment, and mpoints are omitted, they default to 0.0, 100.0, 1.0 and 2,
respectively. See, e.g. RNA.head_capacity() in the Python API .

Global vrna_init_rand_seed (unsigned int seed)
This function is available as an overloaded function init_rand() where the argument seed is optional.
See, e.g. RNA.init_rand() in the Python API .

Global vrna_Lfold (const char *string, int window_size, FILE *file)
This function is available as overloaded function Lfold() in the global namespace. The parameter
file defaults to NULL and may be omitted. See e.g. RNA.Lfold() in the Python API .

Global vrna_Lfold_cb (const char *string, int window_size, vrna_mfe_window_f cb, void *data)
This function is available as overloaded function Lfold_cb() in the global namespace. The parameter
data defaults to NULL and may be omitted. See e.g. RNA.Lfold_cb() in the Python API .

Global vrna_Lfoldz_cb (const char *string, int window_size, double min_z, vrna_mfe_window_zscore_f
cb, void *data)

This function is available as overloaded function Lfoldz_cb() in the global namespace. The param-
eter data defaults to NULL and may be omitted. See e.g. RNA.Lfoldz_cb() in the Python API .

Global vrna_maximum_matching (vrna_fold_compound_t *fc)
This function is attached as method maximum_matching() to objects of type fold_compound. See
e.g. RNA.fold_compound.maximum_matching() in the Python API .

Global vrna_maximum_matching_simple (const char *sequence)
This function is available as global function maximum_matching(). See e.g. RNA.
maximum_matching() in the Python API .

Class vrna_md_s
This data structure is wrapped as an object md with multiple related functions attached as methods.

A new set of default parameters can be obtained by calling the constructure of md:

• md() — Initialize with default settings

The resulting object has a list of attached methods which directly correspond to functions that mainly
operate on the corresponding C data structure:

• reset() - vrna_md_set_default()

• set_from_globals() - set_model_details()

• option_string() - vrna_md_option_string()

8.5. SWIG Wrapper notes 653

ViennaRNA, Release 2.6.4

Note, that default parameters can be modified by directly setting any of the following global variables.
Internally, getting/setting default parameters using their global variable representative translates into
calls of the following functions, therefore these wrappers for these functions do not exist in the scripting
language interface(s):

Global vrna_MEA (vrna_fold_compound_t *fc, double gamma, float *mea)
This function is attached as overloaded method MEA(gamma = 1.) to objects of type fold_compound.
Note, that it returns the MEA structure and MEA value as a tuple (MEA_structure, MEA). See, e.g.
RNA.fold_compound.MEA() in the Python API .

Global vrna_MEA_from_plist (vrna_ep_t *plist, const char *sequence, double gamma, vrna_md_t *md,
float *mea)

This function is available as overloaded function MEA_from_plist(gamma = 1., md = NULL). Note,
that it returns the MEA structure and MEA value as a tuple (MEA_structure, MEA). See, e.g. RNA.
MEA_from_plist() in the Python API .

Global vrna_mean_bp_distance (vrna_fold_compound_t *fc)
This function is attached as method mean_bp_distance() to objects of type fold_compound. See,
e.g. RNA.fold_compound.mean_bp_distance() in the Python API .

Global vrna_mfe (vrna_fold_compound_t *fc, char *structure)
This function is attached as method mfe() to objects of type fold_compound. The parameter
structure is returned along with the MFE und must not be provided. See e.g. RNA.fold_compound.
mfe() in the Python API .

Global vrna_mfe_dimer (vrna_fold_compound_t *fc, char *structure)
This function is attached as method mfe_dimer() to objects of type fold_compound. The parameter
structure is returned along with the MFE und must not be provided. See e.g. RNA.fold_compound.
mfe_dimer() in the Python API .

Global vrna_mfe_window (vrna_fold_compound_t *fc, FILE *file)
This function is attached as overloaded method mfe_window() to objects of type fold_compound.

The parameter FILE has default value of NULL and can be omitted. See e.g. RNA.fold_compound.
mfe_window() in the Python API .

Global vrna_mfe_window_cb (vrna_fold_compound_t *fc, vrna_mfe_window_f cb, void *data)
This function is attached as overloaded method mfe_window_cb() to objects of type fold_compound.
The parameter data has default value of NULL and can be omitted. See e.g. RNA.fold_compound.
mfe_window_cb() in the Python API .

Global vrna_mfe_window_zscore (vrna_fold_compound_t *fc, double min_z, FILE *file)
This function is attached as overloaded method mfe_window_zscore() to objects of type

fold_compound. The parameter FILE has default value of NULL and can be omitted. See e.g. RNA.
fold_compound.mfe_window_zscore() in the Python API .

Global vrna_mfe_window_zscore_cb (vrna_fold_compound_t *fc, double min_z,
vrna_mfe_window_zscore_f cb, void *data)

This function is attached as overloaded method mfe_window_zscore_cb() to objects of type
fold_compound. The parameter data has default value of NULL and can be omitted. See e.g. RNA.
fold_compound.mfe_window_zscore() in the Python API .

Global vrna_neighbors (vrna_fold_compound_t *fc, const short *pt, unsigned int options)
This function is attached as an overloaded method neighbors() to objects of type fold_compound.
The optional parameter options defaults to VRNA_MOVESET_DEFAULT if it is omitted. See, e.g.
RNA.fold_compound.neighbors() in the Python API .

Global vrna_params_load (const char fname[], unsigned int options)
This function is available as overloaded function params_load(fname=””, op-

tions=VRNA_PARAMETER_FORMAT_DEFAULT). Here, the empty filename string indicates to

654 Chapter 8. SWIG Wrappers

ViennaRNA, Release 2.6.4

load default RNA parameters, i.e. this is equivalent to calling vrna_params_load_defaults(). See, e.g.
RNA.fold_compound.params_load() in the Python API .

Global vrna_params_load_defaults (void)
This function is available as overloaded function params_load(). See, e.g. RNA.params_load() in
the Python API .

Global vrna_params_load_DNA_Mathews1999 (void)
This function is available as function params_load_DNA_Mathews1999(). See, e.g. RNA.
params_load_DNA_Mathews1999() in the Python API .

Global vrna_params_load_DNA_Mathews2004 (void)
This function is available as function params_load_DNA_Mathews2004(). See, e.g. RNA.
params_load_DNA_Mathews2004() in the Python API .

Global vrna_params_load_from_string (const char *string, const char *name, unsigned int options)
This function is available as overloaded function params_load_from_string(string, name=””, op-
tions=VRNA_PARAMETER_FORMAT_DEFAULT). See, e.g. RNA.params_load_from_string()
in the Python API .

Global vrna_params_load_RNA_Andronescu2007 (void)
This function is available as function params_load_RNA_Andronescu2007(). See, e.g. RNA.
params_load_RNA_Andronescu2007() in the Python API .

Global vrna_params_load_RNA_Langdon2018 (void)
This function is available as function params_load_RNA_Langdon2018(). See, e.g. RNA.
params_load_RNA_Langdon2018() in the Python API .

Global vrna_params_load_RNA_misc_special_hairpins (void)
This function is available as function params_load_RNA_misc_special_hairpins(). See, e.g.
RNA.params_load_RNA_misc_special_hairpins() in the Python API .

Global vrna_params_load_RNA_Turner1999 (void)
This function is available as function params_load_RNA_Turner1999(). See, e.g. RNA.
params_load_RNA_Turner1999() in the Python API .

Global vrna_params_load_RNA_Turner2004 (void)
This function is available as function params_load_RNA_Turner2004(). See, e.g. RNA.
params_load_RNA_Turner2004() in the Python API .

Global vrna_params_reset (vrna_fold_compound_t *fc, vrna_md_t *md)
This function is attached to vrna_fc_s objects as overloaded params_reset() method.

When no parameter is passed to this method, the resulting action is the same as passing NULL as second
parameter to vrna_params_reset(), i.e. global default model settings are used. Passing an object of
type vrna_md_s resets the fold compound according to the specifications stored within the vrna_md_s
object. See, e.g. RNA.fold_compound.params_reset() in the Python API .

Global vrna_params_save (const char fname[], unsigned int options)
This function is available as overloaded function params_save(fname, op-

tions=VRNA_PARAMETER_FORMAT_DEFAULT). See, e.g. RNA.params_save() in the Python
API .

Global vrna_params_subst (vrna_fold_compound_t *fc, vrna_param_t *par)
This function is attached to vrna_fc_s objects as overloaded params_subst() method.

When no parameter is passed, the resulting action is the same as passing NULL as second param-
eter to vrna_params_subst(), i.e. resetting the parameters to the global defaults. See, e.g. RNA.
fold_compound.params_subst() in the Python API .

8.5. SWIG Wrapper notes 655

ViennaRNA, Release 2.6.4

Global vrna_path (vrna_fold_compound_t *fc, short *pt, unsigned int steps, unsigned int options)
This function is attached as an overloaded method path() to objects of type fold_compound. The

optional parameter options defaults to VRNA_PATH_DEFAULT if it is omitted. See, e.g. RNA.
fold_compound.path() in the Python API .

Global vrna_path_direct (vrna_fold_compound_t *fc, const char *s1, const char *s2, vrna_path_options_t
options)

This function is attached as an overloaded method path_direct() to objects of type fold_compound.
The optional parameter options defaults to NULL if it is omitted. See, e.g. RNA.fold_compound.
path_direct() in the Python API .

Global vrna_path_direct_ub (vrna_fold_compound_t *fc, const char *s1, const char *s2, int maxE,
vrna_path_options_t options)

This function is attached as an overloaded method path_direct() to objects of type fold_compound.
The optional parameter maxE defaults to #INT_MAX - 1 if it is omitted, while the optional parameter
options defaults to NULL. In case the function did not find a path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 it returns an
empty list. See, e.g. RNA.fold_compound.path_direct() in the Python API .

Global vrna_path_findpath (vrna_fold_compound_t *fc, const char *s1, const char *s2, int width)
This function is attached as an overloaded method path_findpath() to objects of type

fold_compound. The optional parameter width defaults to 1 if it is omitted. See, e.g. RNA.
fold_compound.path_findpath() in the Python API .

Global vrna_path_findpath_saddle (vrna_fold_compound_t *fc, const char *s1, const char *s2, int width)
This function is attached as an overloaded method path_findpath_saddle() to objects of type
fold_compound. The optional parameter width defaults to 1 if it is omitted. See, e.g. RNA.
fold_compound.path_findpath_saddle() in the Python API .

Global vrna_path_findpath_saddle_ub (vrna_fold_compound_t *fc, const char *s1, const char *s2, int
width, int maxE)

This function is attached as an overloaded method path_findpath_saddle() to objects of type
fold_compound. The optional parameter width defaults to 1 if it is omitted, while the optional pa-
rameter maxE defaults to INF. In case the function did not find a path with𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 the function
returns a NULL object, i.e. undef for Perl and None for Python. See, e.g. RNA.fold_compound.
path_findpath_saddle() in the Python API .

Global vrna_path_findpath_ub (vrna_fold_compound_t *fc, const char *s1, const char *s2, int width, int
maxE)

This function is attached as an overloaded method path_findpath() to objects of type
fold_compound. The optional parameter width defaults to 1 if it is omitted, while the optional pa-
rameter maxE defaults to INF. In case the function did not find a path with𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 the function
returns an empty list. See, e.g. RNA.fold_compound.path_findpath() in the Python API .

Global vrna_path_gradient (vrna_fold_compound_t *fc, short *pt, unsigned int options)
This function is attached as an overloaded method path_gradient() to objects of type

fold_compound. The optional parameter options defaults to VRNA_PATH_DEFAULT if it is omit-
ted. See, e.g. RNA.fold_compound.path_gradient() in the Python API .

Global vrna_path_options_findpath (int width, unsigned int type)
This function is available as overloaded function path_options_findpath(). The optional

parameter width defaults to 10 if omitted, while the optional parameter type defaults to
VRNA_PATH_TYPE_DOT_BRACKET . See, e.g. RNA.path_options_findpath() in the Python
API .

Global vrna_path_random (vrna_fold_compound_t *fc, short *pt, unsigned int steps, unsigned int options)
This function is attached as an overloaded method path_gradient() to objects of type

fold_compound. The optional parameter options defaults to VRNA_PATH_DEFAULT if it is omit-
ted. See, e.g. RNA.fold_compound.path_random() in the Python API .

656 Chapter 8. SWIG Wrappers

ViennaRNA, Release 2.6.4

Global vrna_pbacktrack (vrna_fold_compound_t *fc)
This function is attached as overloaded method pbacktrack() to objects of type fold_compound.

See, e.g. RNA.fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling
Python examples .

Global vrna_pbacktrack5 (vrna_fold_compound_t *fc, unsigned int length)
This function is attached as overloaded method pbacktrack5() to objects of type fold_compound.
See, e.g. RNA.fold_compound.pbacktrack5() in the Python API and the Boltzmann Sampling
Python examples .

Global vrna_pbacktrack5_cb (vrna_fold_compound_t *fc, unsigned int num_samples, unsigned int length,
vrna_bs_result_f cb, void *data, unsigned int options)

This function is attached as overloaded method pbacktrack5() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . See, e.g. RNA.
fold_compound.pbacktrack5() in the Python API and the Boltzmann Sampling Python examples
.

Global vrna_pbacktrack5_num (vrna_fold_compound_t *fc, unsigned int num_samples, unsigned int
length, unsigned int options)

This function is attached as overloaded method pbacktrack5() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . See, e.g. RNA.
fold_compound.pbacktrack5() in the Python API and the Boltzmann Sampling Python examples
.

Global vrna_pbacktrack5_resume (vrna_fold_compound_t *fc, unsigned int num_samples, unsigned int
length, vrna_pbacktrack_mem_t *nr_mem, unsigned int options)

This function is attached as overloaded method pbacktrack5() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In addition to the list of
structures, this function also returns the nr_mem data structure as first return value. See, e.g. RNA.
fold_compound.pbacktrack5() in the Python API and the Boltzmann Sampling Python examples
.

Global vrna_pbacktrack5_resume_cb (vrna_fold_compound_t *fc, unsigned int num_samples, unsigned
int length, vrna_bs_result_f cb, void *data, vrna_pbacktrack_mem_t *nr_mem, unsigned int options)

This function is attached as overloaded method pbacktrack5() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In addition to the number
of structures backtraced, this function also returns the nr_mem data structure as first return value. See,
e.g. RNA.fold_compound.pbacktrack5() in the Python API and the Boltzmann Sampling Python
examples .

Global vrna_pbacktrack_cb (vrna_fold_compound_t *fc, unsigned int num_samples, vrna_bs_result_f cb,
void *data, unsigned int options)

This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . See, e.g. RNA.
fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling Python examples
.

Global vrna_pbacktrack_num (vrna_fold_compound_t *fc, unsigned int num_samples, unsigned int
options)

This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . See, e.g. RNA.
fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling Python examples
.

Global vrna_pbacktrack_resume (vrna_fold_compound_t *fc, unsigned int num_samples,
vrna_pbacktrack_mem_t *nr_mem, unsigned int options)

This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In addition to the list of

8.5. SWIG Wrapper notes 657

ViennaRNA, Release 2.6.4

structures, this function also returns the nr_mem data structure as first return value. See, e.g. RNA.
fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling Python examples
.

Global vrna_pbacktrack_resume_cb (vrna_fold_compound_t *fc, unsigned int num_samples,
vrna_bs_result_f cb, void *data, vrna_pbacktrack_mem_t *nr_mem, unsigned int options)

This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In addition to the number
of structures backtraced, this function also returns the nr_mem data structure as first return value. See,
e.g. RNA.fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling Python
examples .

Global vrna_pbacktrack_sub (vrna_fold_compound_t *fc, unsigned int start, unsigned int end)
This function is attached as overloaded method pbacktrack_sub() to objects of type fold_compound.
See, e.g. RNA.fold_compound.pbacktrack_sub() in the Python API and the Boltzmann Sampling
Python examples .

Global vrna_pbacktrack_sub_cb (vrna_fold_compound_t *fc, unsigned int num_samples, unsigned int
start, unsigned int end, vrna_bs_result_f cb, void *data, unsigned int options)

This function is attached as overloaded method pbacktrack() to objects of type fold_compound
with optional last argument options = VRNA_PBACKTRACK_DEFAULT . See, e.g. RNA.
fold_compound.pbacktrack() in the Python API and the Boltzmann Sampling Python examples
.

Global vrna_pbacktrack_sub_num (vrna_fold_compound_t *fc, unsigned int num_samples, unsigned int
start, unsigned int end, unsigned int options)

This function is attached as overloaded method pbacktrack_sub() to objects of type
fold_compound with optional last argument options = VRNA_PBACKTRACK_DEFAULT . See, e.g.
RNA.fold_compound.pbacktrack_sub() in the Python API and the Boltzmann Sampling Python
examples .

Global vrna_pbacktrack_sub_resume (vrna_fold_compound_t *fc, unsigned int num_samples, unsigned
int start, unsigned int end, vrna_pbacktrack_mem_t *nr_mem, unsigned int options)

This function is attached as overloaded method pbacktrack_sub() to objects of type
fold_compound with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In ad-
dition to the list of structures, this function also returns the nr_mem data structure as first return value.
See, e.g. RNA.fold_compound.pbacktrack_sub() in the Python API and the Boltzmann Sampling
Python examples .

Global vrna_pbacktrack_sub_resume_cb (vrna_fold_compound_t *fc, unsigned int num_samples,
unsigned int start, unsigned int end, vrna_bs_result_f cb, void *data, vrna_pbacktrack_mem_t *nr_mem,
unsigned int options)

This function is attached as overloaded method pbacktrack_sub() to objects of type
fold_compound with optional last argument options = VRNA_PBACKTRACK_DEFAULT . In ad-
dition to the number of structures backtraced, this function also returns the nr_mem data structure as
first return value. See, e.g. RNA.fold_compound.pbacktrack_sub() in the Python API and the
Boltzmann Sampling Python examples .

Global vrna_pf (vrna_fold_compound_t *fc, char *structure)
This function is attached as method pf() to objects of type fold_compound. See, e.g. RNA.
fold_compound.pf() in the Python API .

Global vrna_pf_dimer (vrna_fold_compound_t *fc, char *structure)
This function is attached as method pf_dimer() to objects of type fold_compound. See, e.g. RNA.
fold_compound.pf_dimer() in the Python API .

Global vrna_plot_dp_EPS (const char *filename, const char *sequence, vrna_ep_t *upper, vrna_ep_t
*lower, vrna_dotplot_auxdata_t *auxdata, unsigned int options)

This function is available as overloaded function plot_dp_EPS() where the last three parameters may

658 Chapter 8. SWIG Wrappers

ViennaRNA, Release 2.6.4

be omitted. The default values for these parameters are lower = NULL, auxdata = NULL, options
= VRNA_PLOT_PROBABILITIES_DEFAULT . See, e.g. RNA.plot_dp_EPS() in the Python API .

Global vrna_positional_entropy (vrna_fold_compound_t *fc)
This function is attached as method positional_entropy() to objects of type fold_compound.

See, e.g. RNA.fold_compound.positional_entropy() in the Python API .

Global vrna_pr_energy (vrna_fold_compound_t *fc, double e)
This function is attached as method pr_energy() to objects of type fold_compound. See, e.g. RNA.
fold_compound.pr_energy() in the Python API .

Global vrna_pr_structure (vrna_fold_compound_t *fc, const char *structure)
This function is attached as method pr_structure() to objects of type fold_compound. See, e.g.
RNA.fold_compound.pr_structure() in the Python API .

Global vrna_ptable (const char *structure)
This functions is wrapped as overloaded function ptable() that takes an optional argument options
to specify which type of matching brackets should be considered during conversion. The default set is
round brackets, i.e. VRNA_BRACKETS_RND. See, e.g. RNA.ptable() in the Python API .

Global vrna_ptable_from_string (const char *structure, unsigned int options)
This functions is wrapped as overloaded function ptable() that takes an optional argument options
to specify which type of matching brackets should be considered during conversion. The default set is
round brackets, i.e. VRNA_BRACKETS_RND. See, e.g. RNA.ptable() in the Python API .

Global vrna_rotational_symmetry (const char *string)
This function is available as global function rotational_symmetry(). See

vrna_rotational_symmetry_pos() for details. See, e.g. RNA.rotational_symmetry() in the
Python API .

Global vrna_rotational_symmetry_db (vrna_fold_compound_t *fc, const char *structure)
This function is attached as method rotational_symmetry_db() to objects of type fold_compound
(i.e. vrna_fold_compound_t). See vrna_rotational_symmetry_db_pos() for details. See, e.g. RNA.
fold_compound.rotational_symmetry_db() in the Python API .

Global vrna_rotational_symmetry_db_pos (vrna_fold_compound_t *fc, const char *structure, unsigned int
**positions)

This function is attached as method rotational_symmetry_db() to objects of type fold_compound
(i.e. vrna_fold_compound_t). Thus, the first argument must be omitted. In contrast to our C-
implementation, this function doesn’t simply return the order of rotational symmetry of the secondary
structure, but returns the list position of cyclic permutation shifts that result in a rotationally sym-
metric structure. The length of the list then determines the order of rotational symmetry. See, e.g.
RNA.fold_compound.rotational_symmetry_db() in the Python API .

Global vrna_rotational_symmetry_num (const unsigned int *string, size_t string_length)
This function is available as global function rotational_symmetry(). See

vrna_rotational_symmetry_pos() for details. Note, that in the target language the length of the
list string is always known a-priori, so the parameter string_length must be omitted. See, e.g.
RNA.rotational_symmetry() in the Python API .

Global vrna_rotational_symmetry_pos (const char *string, unsigned int **positions)
This function is available as overloaded global function rotational_symmetry(). It

merges the functionalities of vrna_rotational_symmetry(), vrna_rotational_symmetry_pos(),
vrna_rotational_symmetry_num(), and vrna_rotational_symmetry_pos_num(). In contrast to
our C-implementation, this function doesn’t return the order of rotational symmetry as a single value,
but returns a list of cyclic permutation shifts that result in a rotationally symmetric string. The length
of the list then determines the order of rotational symmetry. See, e.g. RNA.rotational_symmetry()
in the Python API .

Global vrna_rotational_symmetry_pos_num (const unsigned int *string, size_t string_length, unsigned int
**positions)

8.5. SWIG Wrapper notes 659

ViennaRNA, Release 2.6.4

This function is available as global function rotational_symmetry(). See
vrna_rotational_symmetry_pos() for details. Note, that in the target language the length of the
list string is always known a-priori, so the parameter string_length must be omitted. See, e.g.
RNA.rotational_symmetry() in the Python API .

Global vrna_sc_add_bp (vrna_fold_compound_t *fc, int i, int j, FLT_OR_DBL energy, unsigned int
options)

This function is attached as an overloaded method sc_add_bp() to objects of type fold_compound.
The method either takes arguments for a single base pair (i,j) with the corresponding energy value:

Global vrna_sc_add_bt (vrna_fold_compound_t *fc, vrna_sc_bt_f f)
This function is attached as method sc_add_bt() to objects of type fold_compound. See, e.g. RNA.
fold_compound.sc_add_bt() in the Python API .

Global vrna_sc_add_data (vrna_fold_compound_t *fc, void *data, vrna_auxdata_free_f free_data)
This function is attached as method sc_add_data() to objects of type fold_compound. See, e.g.
RNA.fold_compound.sc_add_data() in the Python API .

Global vrna_sc_add_exp_f (vrna_fold_compound_t *fc, vrna_sc_exp_f exp_f)
This function is attached as method sc_add_exp_f() to objects of type fold_compound. See, e.g.
RNA.fold_compound.sc_add_exp_f() in the Python API .

Global vrna_sc_add_f (vrna_fold_compound_t *fc, vrna_sc_f f)
This function is attached as method sc_add_f() to objects of type fold_compound. See, e.g. RNA.
fold_compound.sc_add_f() in the Python API .

Global vrna_sc_add_hi_motif (vrna_fold_compound_t *fc, const char *seq, const char *structure,
FLT_OR_DBL energy, unsigned int options)

This function is attached as method sc_add_hi_motif() to objects of type fold_compound. The
last parameter is optional an defaults to options = VRNA_OPTION_DEFAULT . See, e.g. RNA.
fold_compound.sc_add_hi_motif() in the Python API .

Global vrna_sc_add_SHAPE_deigan (vrna_fold_compound_t *fc, const double *reactivities, double m,
double b, unsigned int options)

This function is attached as method sc_add_SHAPE_deigan() to objects of type fold_compound.
See, e.g. RNA.fold_compound.sc_add_SHAPE_deigan() in the Python API .

Global vrna_sc_add_SHAPE_deigan_ali (vrna_fold_compound_t *fc, const char **shape_files, const int
*shape_file_association, double m, double b, unsigned int options)

This function is attached as method sc_add_SHAPE_deigan_ali() to objects of type
fold_compound. See, e.g. RNA.fold_compound.sc_add_SHAPE_deigan_ali() in the Python
API .

Global vrna_sc_add_SHAPE_zarringhalam (vrna_fold_compound_t *fc, const double *reactivities,
double b, double default_value, const char *shape_conversion, unsigned int options)

This function is attached as method sc_add_SHAPE_zarringhalam() to objects of type
fold_compound. See, e.g. RNA.fold_compound.sc_add_SHAPE_zarringhalam() in the Python
API .

Global vrna_sc_add_up (vrna_fold_compound_t *fc, int i, FLT_OR_DBL energy, unsigned int options)
This function is attached as an overloaded method sc_add_up() to objects of type fold_compound.
The method either takes arguments for a single nucleotide 𝑖 with the corresponding energy value:

Global vrna_sc_init (vrna_fold_compound_t *fc)
This function is attached as method sc_init() to objects of type fold_compound. See, e.g. RNA.
fold_compound.sc_init() in the Python API .

Global vrna_sc_mod (vrna_fold_compound_t *fc, const vrna_sc_mod_param_t params, const unsigned int
*modification_sites, unsigned int options)

660 Chapter 8. SWIG Wrappers

ViennaRNA, Release 2.6.4

This function is attached as overloaded method sc_mod() to objects of type fold_compound with
default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.fold_compound.sc_mod() in the
Python API .

Global vrna_sc_mod_7DA (vrna_fold_compound_t *fc, const unsigned int *modification_sites, unsigned
int options)

This function is attached as overloaded method sc_mod_7DA() to objects of type fold_compoundwith
default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.fold_compound.sc_mod_7DA() in
the Python API .

Global vrna_sc_mod_dihydrouridine (vrna_fold_compound_t *fc, const unsigned int *modification_sites,
unsigned int options)

This function is attached as overloaded method sc_mod_dihydrouridine() to objects of
type fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_dihydrouridine() in the Python API .

Global vrna_sc_mod_inosine (vrna_fold_compound_t *fc, const unsigned int *modification_sites,
unsigned int options)

This function is attached as overloaded method sc_mod_inosine() to objects of type
fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_inosine() in the Python API .

Global vrna_sc_mod_json (vrna_fold_compound_t *fc, const char *json, const unsigned int
*modification_sites, unsigned int options)

This function is attached as overloaded method sc_mod_json() to objects of type fold_compound
with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.fold_compound.
sc_mod_json() in the Python API .

Global vrna_sc_mod_jsonfile (vrna_fold_compound_t *fc, const char *json_file, const unsigned int
*modification_sites, unsigned int options)

This function is attached as overloaded method sc_mod_jsonfile() to objects of type
fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_jsonfile() in the Python API .

Global vrna_sc_mod_m6A (vrna_fold_compound_t *fc, const unsigned int *modification_sites, unsigned
int options)

This function is attached as overloaded method sc_mod_m6A() to objects of type fold_compoundwith
default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.fold_compound.sc_mod_m6A() in
the Python API .

Global vrna_sc_mod_pseudouridine (vrna_fold_compound_t *fc, const unsigned int *modification_sites,
unsigned int options)

This function is attached as overloaded method sc_mod_pseudouridine() to objects of
type fold_compound with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.
fold_compound.sc_mod_pseudouridine() in the Python API .

Global vrna_sc_mod_purine (vrna_fold_compound_t *fc, const unsigned int *modification_sites,
unsigned int options)

This function is attached as overloaded method sc_mod_purine() to objects of type fold_compound
with default options = VRNA_SC_MOD_DEFAULT . See, e.g. RNA.fold_compound.
sc_mod_purine() in the Python API .

Global vrna_sc_mod_read_from_json (const char *json, vrna_md_t *md)
This function is available as an overloaded function sc_mod_read_from_json()where the md param-
eter may be omitted and defaults to NULL. See, e.g. RNA.sc_mod_read_from_json() in the Python
API .

Global vrna_sc_mod_read_from_jsonfile (const char *filename, vrna_md_t *md)
This function is available as an overloaded function sc_mod_read_from_jsonfile() where the md

8.5. SWIG Wrapper notes 661

ViennaRNA, Release 2.6.4

parameter may be omitted and defaults to NULL. See, e.g. RNA.sc_mod_read_from_jsonfile() in
the Python API .

Global vrna_sc_remove (vrna_fold_compound_t *fc)
This function is attached as method sc_remove() to objects of type fold_compound. See, e.g. RNA.
fold_compound.sc_remove() in the Python API .

Global vrna_sc_set_bp (vrna_fold_compound_t *fc, const FLT_OR_DBL **constraints, unsigned int
options)

This function is attached as method sc_set_bp() to objects of type fold_compound. See, e.g. RNA.
fold_compound.sc_set_bp() in the Python API .

Global vrna_sc_set_up (vrna_fold_compound_t *fc, const FLT_OR_DBL *constraints, unsigned int
options)

This function is attached as method sc_set_up() to objects of type fold_compound. See, e.g. RNA.
fold_compound.sc_set_up() in the Python API .

Global vrna_seq_encode (const char *sequence, vrna_md_t *md)
In the target scripting language, this function is wrapped as overloaded function seq_encode() where
the last parameter, the model_details data structure, is optional. If it is omitted, default model
settings are applied, i.e. default nucleotide letter conversion. The wrapped function returns a list/tuple
of integer representations of the input sequence. See, e.g. RNA.seq_encode() in the Python API .

Global vrna_strtrim (char *string, const char *delimiters, unsigned int keep, unsigned int options)
Since many scripting languages treat strings as immutable objects, this function does not modify the
input string directly. Instead, it returns the modified string as second return value, together with the
number of removed delimiters.

The scripting language interface provides an overloaded version of this function, with default parame-
ters delimiters=NULL, keep=0, and options=VRNA_TRIM_DEFAULT. See, e.g. RNA.strtrim() in
the Python API .

Global vrna_subopt (vrna_fold_compound_t *fc, int delta, int sorted, FILE *fp)
This function is attached as method subopt() to objects of type fold_compound. See, e.g. RNA.
fold_compound.subopt() in the Python API .

Global vrna_subopt_cb (vrna_fold_compound_t *fc, int delta, vrna_subopt_result_f cb, void *data)
This function is attached as method subopt_cb() to objects of type fold_compound. See, e.g. RNA.
fold_compound.subopt_cb() in the Python API .

Global vrna_subopt_zuker (vrna_fold_compound_t *fc)
This function is attached as method subopt_zuker() to objects of type fold_compound. See, e.g.
RNA.fold_compound.subopt_zuker() in the Python API .

Global vrna_ud_remove (vrna_fold_compound_t *fc)
This function is attached as method ud_remove() to objects of type fold_compound. See, e.g. RNA.
fold_compound.ud_remove() in the Python API .

Global vrna_ud_set_data (vrna_fold_compound_t *fc, void *data, vrna_auxdata_free_f free_cb)
This function is attached as method ud_set_data() to objects of type fold_compound. See, e.g.
RNA.fold_compound.ud_set_data() in the Python API .

Global vrna_ud_set_exp_prod_rule_cb (vrna_fold_compound_t *fc, vrna_ud_exp_production_f pre_cb,
vrna_ud_exp_f exp_e_cb)

This function is attached as method ud_set_exp_prod_rule_cb() to objects of type
fold_compound. See, e.g. RNA.fold_compound.ud_set_exp_prod_rule_cb() in the Python
API .

Global vrna_ud_set_prob_cb (vrna_fold_compound_t *fc, vrna_ud_add_probs_f setter,
vrna_ud_get_probs_f getter)

This function is attached as method ud_set_prob_cb() to objects of type fold_compound. See, e.g.
RNA.fold_compound.ud_set_prob_cb() in the Python API .

662 Chapter 8. SWIG Wrappers

ViennaRNA, Release 2.6.4

Global vrna_ud_set_prod_rule_cb (vrna_fold_compound_t *fc, vrna_ud_production_f pre_cb, vrna_ud_f
e_cb)

This function is attached as method ud_set_prod_rule_cb() to objects of type fold_compound.
See, e.g. RNA.fold_compound.ud_set_prod_rule_cb() in the Python API .

8.5. SWIG Wrapper notes 663

ViennaRNA, Release 2.6.4

664 Chapter 8. SWIG Wrappers

CHAPTER

NINE

PYTHON API

Almost all symbols of the API available in our RNAlib C-library is wrapped for use in Python using swig. That
makes our fast and efficient algorithms and tools available for third-party Python programs and scripting languages.

Note: Our Python API is automatically generated and translated from our C-library documentation. If you find
anything problematic or want to to help us improve the documentation, do not hesitate to contact us or make a PR
at our official github repository.

9.1 Installation

The Python interface is usually part of the installation of the ViennaRNA Package, see also Installation and Script-
ing Language Interfaces.

If for any reason your installation does not provide our Python interface or in cases where you don’t want to install
the full ViennaRNA Package but only the Python bindings to RNAlib, you may also install them via Pythons pip:

python -m pip install viennarna

9.2 Usage

To use our Python bindings simply import the RNA or ViennaRNA package like

import RNA

or

import ViennaRNA

The RNA module that provides access to our RNAlib C-library can also be imported directly using

from RNA import RNA

or

from ViennaRNA import RNA

Note: In previous release of the ViennaRNA Packge, only the RNA package/module has been available. Since ver-
sion 2.6.2 we maintain the ViennaRNA project at https://pypi.org. The former maintainer additionally introduced
the ViennaRNA package which we intend to keep and extend in future releases.

665

https://github.com/ViennaRNA/ViennaRNA
https://pypi.org/project/ViennaRNA/
https://pypi.org

ViennaRNA, Release 2.6.4

9.3 Global Variables

For the Python interface(s) SWIG places global variables of the C-library into an additional namespace cvar. For
instance, changing the global temperature variable thus becomes

RNA.cvar.temperature = 25

9.4 Pythonic interface

Since our library is written in C the functions we provide in our API might seem awkward for users more familiar
with Pythons object oriented fashion. Therefore, we spend some effort on creating a more pythonic interface here.
In particular, we tried to group together particular data structures and functions operating on them to derive classes
and objects with corresponding methods attached.

If you browse through our reference manual, many C-functions have additional SWIG Wrapper Notes in their
description. These descriptions should give an idea how the function is available in the Python interface. Usually,
our C functions, data structures, typedefs, and enumerations use the vrna_ prefixes and _s, _t, _e suffixes. Those
decorators are useful in C but of less use in the context of Python packages or modules. Therefore, these prefixes
and suffixes are dropped from the Python interface.

9.4.1 Object orientation

Consider the C-function vrna_fold_compound(). This creates a vrna_fold_compound_t data structure that
is then passed around to various functions, e.g. to vrna_mfe() to compute the MFE structure. A corresponding
C-code may look like this:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/mfe.h>

int
main(int argc,

char *argv[])
{
char *seq, *ss;
float mfe;
vrna_fold_compound_t *fc;

seq = "AGACGACAAGGUUGAAUCGCACCCACAGUCUAUGAGUCGGUG";
ss = vrna_alloc(sizeof(char) * (strlen(seq) + 1));
fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);
mfe = vrna_mfe(fc, ss);

printf("%s\n%s (%6.2f)\n", seq, ss, mfe);

return EXIT_SUCCESS;
}

In our Python interface, the vrna_fold_compound_t data structure becomes the RNA.fold_compound class,
the vrna_fold_compound() becomes one of its constructors and the vrna_mfe() function becomes the method
RNA.fold_compound.mfe(). So, the Python code would probably translate to something like

666 Chapter 9. Python API

ViennaRNA, Release 2.6.4

import RNA

seq = "AGACGACAAGGUUGAAUCGCACCCACAGUCUAUGAGUCGGUG"
fc = RNA.fold_compound(seq)
(ss, mfe) = fc.mfe()

print(f"{seq}\n{ss} ({mfe:6.2f})")

Note: The C-function vrna_mfe() actually returns two values, the MFE in units of kcal · mol−1 and the corre-
sponding MFE structure. The latter is written to the ss pointer. This is necessary since C functions can at most
return one single value. In Python, function and methods may return arbitrarily many values instead, and in addi-
tion, passing parameters to a function or method such that it changes its content is generally discouraged. Therefore,
our functions that return values through function parameters usually return them regularly in the Python interface.

9.4.2 Lists and Tuples

C-functions in our API that return or receive list-like data usually utilize pointers. Since there are no such things
in Python, they would be wrapped as particular kind of objects that would then be tedious to work with. For the
Python interface, we therefore tried to wrap the majority of these instances to native Python types, such as list or
tuple. Therefore, one can usually pass a list to a function that uses pointers to array in C, and expect to receive
a list or tuple from functions that return pointers to arrays.

9.5 Energy Parameters

Energy parameters are compiled into our library, so there is usually no necessity to load them from a file. All pa-
rameter files shipped with the ViennaRNA Package can be loaded by simply calling any of the dedicated functions:

• RNA.params_load_RNA_Turner2004() (default RNA parameters)

• RNA.params_load_DNA_Mathews2004() (default DNA parameters)

• RNA.params_load_DNA_Mathews1999() (old DNA parameters)

• RNA.params_load_RNA_Turner1999() (old RNA parameters)

• RNA.params_load_RNA_Andronescu2007() (trained RNA parameters)

• RNA.params_load_RNA_Langdon2018() (trained RNA parameters)

• RNA.params_load_RNA_misc_special_hairpins() (special hairpin loop parameters)

9.6 Examples

A few more Python code examples can be found here.

9.5. Energy Parameters 667

ViennaRNA, Release 2.6.4

9.7 The RNA Python module

A library for the prediction and comparison of RNA secondary structures.

Amongst other things, our implementations allow you to:

• predict minimum free energy secondary structures

• calculate the partition function for the ensemble of structures

• compute various equilibrium probabilities

• calculate suboptimal structures in a given energy range

• compute local structures in long sequences

• predict consensus secondary structures from a multiple sequence alignment

• predict melting curves

• search for sequences folding into a given structure

• compare two secondary structures

• predict interactions between multiple RNA molecules

class RNA.COORDINATE

Bases: object

this is a workarround for the SWIG Perl Wrapper RNA plot function that returns an array of type COORDI-
NATE

X

Type
float

Y

Type
float

C++ includes

Type
ViennaRNA/plotting/layouts.h

property X

property Y

get(i)

property thisown

The membership flag

class RNA.ConstCharVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

668 Chapter 9. Python API

ViennaRNA, Release 2.6.4

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

class RNA.CoordinateVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

9.7. The RNA Python module 669

ViennaRNA, Release 2.6.4

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

class RNA.DoubleDoubleVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

670 Chapter 9. Python API

ViennaRNA, Release 2.6.4

swap(v)

property thisown

The membership flag

class RNA.DoublePair(*args)
Bases: object

property first

property second

property thisown

The membership flag

class RNA.DoubleVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

9.7. The RNA Python module 671

ViennaRNA, Release 2.6.4

class RNA.DuplexVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

RNA.E_ExtLoop(type, si1, sj1, P)

RNA.E_Hairpin(size, type, si1, sj1, string, P)
Compute the Energy of a hairpin-loop.

To evaluate the free energy of a hairpin-loop, several parameters have to be known. A general hairpin-loop
has this structure:

a3 a4

a2 a5 a1 a6

X - Y | | 5’ 3’

where X-Y marks the closing pair [e.g. a (G,C) pair]. The length of this loop is 6 as there are

six unpaired nucleotides (a1-a6) enclosed by (X,Y). The 5’ mismatching nucleotide is a1 while the 3’ mis-
match is a6. The nucleotide sequence of this loop is “a1.a2.a3.a4.a5.a6”

672 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Parameters
• size (int) – The size of the loop (number of unpaired nucleotides)

• type (int) – The pair type of the base pair closing the hairpin

• si1 (int) – The 5’-mismatching nucleotide

• sj1 (int) – The 3’-mismatching nucleotide

• string (string) – The sequence of the loop (May be NULL, otherwise mst be at least
𝑠𝑖𝑧𝑒 + 2 long)

• P (RNA.param() *) – The datastructure containing scaled energy parameters

Returns
The Free energy of the Hairpin-loop in dcal/mol

Return type
int

Warning: Not (really) thread safe! A threadsafe implementation will replace this function in a future
release!

Energy evaluation may change due to updates in global variable “tetra_loop”

See also:
scale_parameters, RNA.param

Note: The parameter sequence should contain the sequence of the loop in capital letters of the nucleic acid
alphabet if the loop size is below 7. This is useful for unusually stable tri-, tetra- and hexa-loops which are
treated differently (based on experimental data) if they are tabulated.

RNA.E_IntLoop(n1, n2, type, type_2, si1, sj1, sp1, sq1, P)
This function computes the free energy ∆𝐺 of an interior-loop with the following structure:

3’ 5’ | | U - V

a_n b_1
.

a_1 b_m
X - Y | | 5’ 3’

This general structure depicts an interior-loop that is closed by the base pair (X,Y). The enclosed

base pair is (V,U) which leaves the unpaired bases a_1-a_n and b_1-b_n that constitute the loop. In this
example, the length of the interior-loop is (𝑛 + 𝑚) where n or m may be 0 resulting in a bulge-loop or base
pair stack. The mismatching nucleotides for the closing pair (X,Y) are:

5’-mismatch: a_1 3’-mismatch: b_m and for the enclosed base pair (V,U): 5’-mismatch: b_1
3’-mismatch: a_n

Parameters
• n1 (int) – The size of the ‘left’-loop (number of unpaired nucleotides)

• n2 (int) – The size of the ‘right’-loop (number of unpaired nucleotides)

• type (int) – The pair type of the base pair closing the interior loop

• type_2 (int) – The pair type of the enclosed base pair

• si1 (int) – The 5’-mismatching nucleotide of the closing pair

9.7. The RNA Python module 673

ViennaRNA, Release 2.6.4

• sj1 (int) – The 3’-mismatching nucleotide of the closing pair

• sp1 (int) – The 3’-mismatching nucleotide of the enclosed pair

• sq1 (int) – The 5’-mismatching nucleotide of the enclosed pair

• P (RNA.param() *) – The datastructure containing scaled energy parameters

Returns
The Free energy of the Interior-loop in dcal/mol

Return type
int

See also:
scale_parameters, RNA.param

Note: Base pairs are always denoted in 5’->3’ direction. Thus the enclosed base pair must be ‘turned
arround’ when evaluating the free energy of the interior-loop

This function is threadsafe

RNA.E_IntLoop_Co(type, type_2, i, j, p, q, cutpoint, si1, sj1, sp1, sq1, dangles, P)

RNA.E_MLstem(type, si1, sj1, P)

RNA.E_Stem(type, si1, sj1, extLoop, P)
Compute the energy contribution of a stem branching off a loop-region.

This function computes the energy contribution of a stem that branches off a loop region. This can be the
case in multiloops, when a stem branching off increases the degree of the loop but also immediately interior
base pairs of an exterior loop contribute free energy. To switch the behavior of the function according
to the evaluation of a multiloop- or exterior-loop-stem, you pass the flag ‘extLoop’. The returned energy
contribution consists of a TerminalAU penalty if the pair type is greater than 2, dangling end contributions
of mismatching nucleotides adjacent to the stem if only one of the si1, sj1 parameters is greater than 0
and mismatch energies if both mismatching nucleotides are positive values. Thus, to avoid incorporating
dangling end or mismatch energies just pass a negative number, e.g. -1 to the mismatch argument.

This is an illustration of how the energy contribution is assembled:
3’ 5’ | | X - Y

5’-si1 sj1-3’

Here, (X,Y) is the base pair that closes the stem that branches off a loop region. The nucleotides si1 and sj1
are the 5’- and 3’- mismatches, respectively. If the base pair type of (X,Y) is greater than 2 (i.e. an A-U or
G-U pair, the TerminalAU penalty will be included in the energy contribution returned. If si1 and sj1 are both
nonnegative numbers, mismatch energies will also be included. If one of si1 or sj1 is a negative value, only
5’ or 3’ dangling end contributions are taken into account. To prohibit any of these mismatch contributions
to be incorporated, just pass a negative number to both, si1 and sj1. In case the argument extLoop is 0, the
returned energy contribution also includes the internal-loop-penalty of a multiloop stem with closing pair
type.

Deprecated since version 2.6.3: Please use one of the functions RNA.E_ext_stem() and E_MLstem() instead!
Use the former for cases where extLoop != 0 and the latter otherwise.

See also:
E_MLstem , _ExtLoop

Note: This function is threadsafe

Parameters

674 Chapter 9. Python API

ViennaRNA, Release 2.6.4

• type (int) – The pair type of the first base pair un the stem

• si1 (int) – The 5’-mismatching nucleotide

• sj1 (int) – The 3’-mismatching nucleotide

• extLoop (int) – A flag that indicates whether the contribution reflects the one of an
exterior loop or not

• P (RNA.param() *) – The data structure containing scaled energy parameters

Returns
The Free energy of the branch off the loop in dcal/mol

Return type
int

RNA.E_ext_stem(type, n5d, n3d, p)
Evaluate a stem branching off the exterior loop.

Given a base pair (𝑖, 𝑗) encoded by type, compute the energy contribution including dangling-end/terminal-
mismatch contributions. Instead of returning the energy contribution per-se, this function returns the cor-
responding Boltzmann factor. If either of the adjacent nucleotides (𝑖 − 1) and (𝑗 + 1) must not contribute
stacking energy, the corresponding encoding must be −1.

Parameters
• type (unsigned int) – The base pair encoding

• n5d (int) – The encoded nucleotide directly adjacent at the 5’ side of the base pair (may
be -1)

• n3d (int) – The encoded nucleotide directly adjacent at the 3’ side of the base pair (may
be -1)

• p (RNA.param() *) – The pre-computed energy parameters

Returns
The energy contribution of the introduced exterior-loop stem

Return type
int

See also:
RNA.E_exp_stem

RNA.E_ml_rightmost_stem(i, j, fc)

class RNA.ElemProbVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

9.7. The RNA Python module 675

ViennaRNA, Release 2.6.4

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

class RNA.HeatCapacityVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

676 Chapter 9. Python API

ViennaRNA, Release 2.6.4

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

class RNA.HelixVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

9.7. The RNA Python module 677

ViennaRNA, Release 2.6.4

class RNA.IntIntVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

class RNA.IntVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

678 Chapter 9. Python API

ViennaRNA, Release 2.6.4

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

RNA.Lfold(sequence, window_size, nullfile=None)
Local MFE prediction using a sliding window approach (simplified interface)

This simplified interface to RNA.fold_compound.mfe_window() computes the MFE and locally optimal
secondary structure using default options. Structures are predicted using a sliding window approach, where
base pairs may not span outside the window. Memory required for dynamic programming (DP) matrices
will be allocated and free’d on-the-fly. Hence, after return of this function, the recursively filled matrices are
not available any more for any post-processing.

Parameters
• string (string) – The nucleic acid sequence

• window_size (int) – The window size for locally optimal structures

• file (FILE *) – The output file handle where predictions are written to (if NULL,
output is written to stdout)

See also:
RNA.fold_compound.mfe_window, RNA.Lfoldz, RNA.fold_compound.mfe_window_zscore

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you require
other conditions than specified by the default model details, use RNA.fold_compound.mfe_window(), and
the data structure RNA.fold_compound() instead.

RNA.Lfold_cb(char * string, int window_size, PyObject * PyFunc, PyObject * data)→ float

9.7. The RNA Python module 679

ViennaRNA, Release 2.6.4

RNA.Lfoldz(sequence, window_size, min_z, nullfile=None)
Local MFE prediction using a sliding window approach with z-score cut-off (simplified interface)

This simplified interface to RNA.fold_compound.mfe_window_zscore() computes the MFE and locally op-
timal secondary structure using default options. Structures are predicted using a sliding window approach,
where base pairs may not span outside the window. Memory required for dynamic programming (DP) matri-
ces will be allocated and free’d on-the-fly. Hence, after return of this function, the recursively filled matrices
are not available any more for any post-processing. This function is the z-score version of RNA.Lfold(), i.e.
only predictions above a certain z-score cut-off value are printed.

Parameters
• string (string) – The nucleic acid sequence

• window_size (int) – The window size for locally optimal structures

• min_z (double) – The minimal z-score for a predicted structure to appear in the output

• file (FILE *) – The output file handle where predictions are written to (if NULL,
output is written to stdout)

See also:
RNA.fold_compound.mfe_window_zscore, RNA.Lfold , RNA.fold_compound.mfe_window

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you require
other conditions than specified by the default model details, use RNA.fold_compound.mfe_window(), and
the data structure RNA.fold_compound() instead.

RNA.Lfoldz_cb(char * string, int window_size, double min_z, PyObject * PyFunc, PyObject * data)→ float

RNA.MEA_from_plist(*args)
Compute a MEA (maximum expected accuracy) structure from a list of probabilities.

The algorithm maximizes the expected accuracy

𝐴(𝑆) =
∑︁

(𝑖,𝑗)∈𝑆

2𝛾𝑝𝑖𝑗 +
∑︁
𝑖/∈𝑆

𝑝𝑢𝑖

Higher values of 𝛾 result in more base pairs of lower probability and thus higher sensitivity. Low values of 𝛾
result in structures containing only highly likely pairs (high specificity). The code of the MEA function also
demonstrates the use of sparse dynamic programming scheme to reduce the time and memory complexity
of folding.

SWIG Wrapper Notes
This function is available as overloaded function **MEA_from_plist**(gamma = 1., md = NULL).
Note, that it returns the MEA structure and MEA value as a tuple (MEA_structure, MEA)

Parameters
• plist (RNA.ep() *) – A list of base pair probabilities the MEA structure is computed

from

• sequence (string) – The RNA sequence that corresponds to the list of probability
values

• gamma (double) – The weighting factor for base pairs vs. unpaired nucleotides

• md (RNA.md() *) – A model details data structure (maybe NULL)

• mea (list-like(double)) – A pointer to a variable where the MEA value will be
written to

Returns
An MEA structure (or NULL on any error)

680 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
string

Note: The unpaired probabilities 𝑝𝑢𝑖 = 1 −
∑︀

𝑗 ̸=𝑖 𝑝𝑖𝑗 are usually computed from the supplied pairing
probabilities 𝑝𝑖𝑗 as stored in plist entries of type RNA.PLIST_TYPE_BASEPAIR. To overwrite individual
𝑝𝑢𝑜 values simply add entries with type RNA.PLIST_TYPE_UNPAIRED

To include G-Quadruplex support, the corresponding field in md must be set.

RNA.Make_bp_profile(length)
Deprecated since version 2.6.3: This function is deprecated and will be removed soon! See
Make_bp_profile_bppm() for a replacement

See also:
Make_bp_profile_bppm

Note: This function is NOT threadsafe

RNA.Make_bp_profile_bppm(bppm, length)
condense pair probability matrix into a vector containing probabilities for unpaired, upstream paired and
downstream paired.

This resulting probability profile is used as input for profile_edit_distance

Parameters
• bppm (list-like(double)) – A pointer to the base pair probability matrix

• length (int) – The length of the sequence

Returns
The bp profile

Return type
list-like(double)

RNA.Make_swString(string)
Convert a structure into a format suitable for string_edit_distance().

Parameters
string (string) –

Return type
swString *

class RNA.MoveVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

9.7. The RNA Python module 681

ViennaRNA, Release 2.6.4

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

RNA.PS_color_dot_plot(string, pi, filename)

RNA.PS_color_dot_plot_turn(seq, pi, filename, winSize)

RNA.PS_dot_plot(string, file)
Produce postscript dot-plot.

Wrapper to PS_dot_plot_list

Reads base pair probabilities produced by pf_fold() from the global array pr and the pair list base_pair
produced by fold() and produces a postscript “dot plot” that is written to ‘filename’. The “dot plot” represents
each base pairing probability by a square of corresponding area in a upper triangle matrix. The lower part
of the matrix contains the minimum free energy

Deprecated since version 2.6.3: This function is deprecated and will be removed soon! Use
PS_dot_plot_list() instead!

Note: DO NOT USE THIS FUNCTION ANYMORE SINCE IT IS NOT THREADSAFE

RNA.PS_dot_plot_list(seq, filename, pl, mf, comment)
Produce a postscript dot-plot from two pair lists.

This function reads two plist structures (e.g. base pair probabilities and a secondary structure) as produced
by assign_plist_from_pr() and assign_plist_from_db() and produces a postscript “dot plot” that is written to
‘filename’. Using base pair probabilities in the first and mfe structure in the second plist, the resulting “dot
plot” represents each base pairing probability by a square of corresponding area in a upper triangle matrix.
The lower part of the matrix contains the minimum free energy structure.

Parameters
• seq (string) – The RNA sequence

682 Chapter 9. Python API

ViennaRNA, Release 2.6.4

• filename (string) – A filename for the postscript output

• pl (RNA.ep() *) – The base pair probability pairlist

• mf (RNA.ep() *) – The mfe secondary structure pairlist

• comment (string) – A comment

Returns
1 if postscript was successfully written, 0 otherwise

Return type
int

See also:
assign_plist_from_pr, assign_plist_from_db

RNA.PS_dot_plot_turn(seq, pl, filename, winSize)

RNA.PS_rna_plot(string, structure, file)
Produce a secondary structure graph in PostScript and write it to ‘filename’.

Deprecated since version 2.6.3: Use RNA.file_PS_rnaplot() instead!

RNA.PS_rna_plot_a(string, structure, file, pre, post)
Produce a secondary structure graph in PostScript including additional annotation macros and write it to
‘filename’.

Deprecated since version 2.6.3: Use RNA.file_PS_rnaplot_a() instead!

RNA.PS_rna_plot_a_gquad(string, structure, ssfile, pre, post)
Produce a secondary structure graph in PostScript including additional annotation macros and write it to
‘filename’ (detect and draw g-quadruplexes)

Deprecated since version 2.6.3: Use RNA.file_PS_rnaplot_a() instead!

class RNA.PathVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

9.7. The RNA Python module 683

ViennaRNA, Release 2.6.4

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

class RNA.SOLUTION

Bases: object

property energy

get(i)

size()

property structure

property thisown

The membership flag

class RNA.SOLUTIONVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

684 Chapter 9. Python API

ViennaRNA, Release 2.6.4

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

class RNA.StringVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

9.7. The RNA Python module 685

ViennaRNA, Release 2.6.4

class RNA.SuboptVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

class RNA.SwigPyIterator(*args, **kwargs)
Bases: object

advance(n)

copy()

decr(n=1)

distance(x)

equal(x)

incr(n=1)

686 Chapter 9. Python API

ViennaRNA, Release 2.6.4

next()

previous()

property thisown

The membership flag

value()

class RNA.UIntVector(*args)
Bases: object

append(x)

assign(n, x)

back()

begin()

capacity()

clear()

empty()

end()

erase(*args)

front()

get_allocator()

insert(*args)

iterator()

pop()

pop_back()

push_back(x)

rbegin()

rend()

reserve(n)

resize(*args)

size()

swap(v)

property thisown

The membership flag

RNA.abstract_shapes(std::string structure, unsigned int level=5)→ std::string
RNA.abstract_shapes(IntVector pt, unsigned int level=5)→ std::string

9.7. The RNA Python module 687

ViennaRNA, Release 2.6.4

RNA.abstract_shapes(varArrayShort pt, unsigned int level=5)→ std::string
Convert a secondary structure in dot-bracket notation to its abstract shapes representation.

This function converts a secondary structure into its abstract shapes representation as presented by Giegerich
et al. 2004 [11].

SWIG Wrapper Notes
This function is available as an overloaded function abstract_shapes() where the optional second pa-
rameter level defaults to 5.

Parameters
• structure (string) – A secondary structure in dot-bracket notation

• level (unsigned int) – The abstraction level (integer in the range of 0 to 5)

Returns
The secondary structure in abstract shapes notation

Return type
string

See also:
RNA.abstract_shapes_pt

RNA.add_root(arg1)
Adds a root to an un-rooted tree in any except bracket notation.

Parameters
structure (string) –

Return type
string

RNA.aliLfold(alignment, window_size, nullfile=None)

RNA.aliLfold_cb(StringVector alignment, int window_size, PyObject * PyFunc, PyObject * data)→ float

RNA.aliduplex_subopt(StringVector alignment1, StringVector alignment2, int delta, int w)→ DuplexVector

RNA.aliduplexfold(StringVector alignment1, StringVector alignment2)→ duplex_list_t

RNA.alifold(*args)
Compute Minimum Free Energy (MFE), and a corresponding consensus secondary structure for an RNA
sequence alignment using a comparative method.

This simplified interface to RNA.fold_compound.mfe() computes the MFE and, if required, a consensus
secondary structure for an RNA sequence alignment using default options. Memory required for dynamic
programming (DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the
recursively filled matrices are not available any more for any post-processing, e.g. suboptimal backtracking,
etc.

Parameters
• sequences (const char **) – RNA sequence alignment

• structure (string) – A pointer to the character array where the secondary structure
in dot-bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

Return type
float

688 Chapter 9. Python API

ViennaRNA, Release 2.6.4

See also:
RNA.circalifold , RNA.fold_compound.mfe

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you require
other conditions than specified by the default model details, use RNA.fold_compound.mfe(), and the data
structure RNA.fold_compound() instead.

RNA.aln_consensus_mis(StringVector alignment, md md_p=None)→ std::string
Compute the Most Informative Sequence (MIS) for a given multiple sequence alignment.

The most informative sequence (MIS) [10] displays for each alignment column the nucleotides with fre-
quency greater than the background frequency, projected into IUPAC notation. Columns where gaps are
over-represented are in lower case.

Parameters
• alignment (const char **) – The input sequence alignment (last entry must be

NULL terminated)

• md_p (const RNA.md() *) – Model details that specify known nucleotides (Maybe
NULL)

Returns
The most informative sequence for the alignment

Return type
string

RNA.aln_consensus_sequence(StringVector alignment, md md_p=None)→ std::string
Compute the consensus sequence for a given multiple sequence alignment.

Parameters
• alignment (const char **) – The input sequence alignment (last entry must be

NULL terminated)

• md_p (const RNA.md() *) – Model details that specify known nucleotides (Maybe
NULL)

Returns
The consensus sequence of the alignment, i.e. the most frequent nucleotide for each align-
ment column

Return type
string

RNA.aln_conservation_col(StringVector alignment, md md=None, unsigned int options=)→ DoubleVector
Compute nucleotide conservation in an alignment.

This function computes the conservation of nucleotides in alignment columns. The simples measure is
Shannon Entropy and can be selected by passing the RNA.MEASURE_SHANNON_ENTROPY flag in the
options parameter.

SWIG Wrapper Notes
This function is available in an overloaded form where the last two parameters may be omitted, indi-
cating md = NULL, and options = RNA.MEASURE_SHANNON_ENTROPY, respectively.

Parameters
• alignment (const char **) – The input sequence alignment (last entry must be

NULL terminated)

• md – Model details that specify known nucleotides (Maybe NULL)

9.7. The RNA Python module 689

ViennaRNA, Release 2.6.4

• options (unsigned int) – A flag indicating which measure of conservation should
be applied

Returns
A 1-based vector of column conservations

Return type
list-like(double)

See also:
RNA.MEASURE_SHANNON_ENTROPY

Note: Currently, only RNA.MEASURE_SHANNON_ENTROPY is supported as conservation measure.

RNA.aln_conservation_struct(StringVector alignment, std::string structure, md md=None)→
DoubleVector

Compute base pair conservation of a consensus structure.

This function computes the base pair conservation (fraction of canonical base pairs) of a consensus structure
given a multiple sequence alignment. The base pair types that are considered canonical may be specified
using the RNA.md().pair array. Passing NULL as parameter md results in default pairing rules, i.e. canonical
Watson-Crick and GU Wobble pairs.

SWIG Wrapper Notes
This function is available in an overloaded form where the last parameter may be omitted, indicating
md = NULL

Parameters
• alignment (const char **) – The input sequence alignment (last entry must be

NULL terminated)

• structure (string) – The consensus structure in dot-bracket notation

• md (const RNA.md() *) – Model details that specify compatible base pairs (Maybe
NULL)

Returns
A 1-based vector of base pair conservations

Return type
list-like(double)

RNA.aln_mpi(StringVector alignment)→ int
Get the mean pairwise identity in steps from ?to?(ident)

Parameters
alignment (const char **) – Aligned sequences

Returns
The mean pairwise identity

Return type
int

RNA.aln_pscore(StringVector alignment, md md=None)→ IntIntVector

RNA.b2C(structure)
Converts the full structure from bracket notation to the a coarse grained notation using the ‘H’ ‘B’ ‘I’ ‘M’
and ‘R’ identifiers.

Deprecated since version 2.6.3: See RNA.db_to_tree_string() and
RNA.STRUCTURE_TREE_SHAPIRO_SHORT for a replacement

690 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Parameters
structure (string) –

Return type
string

RNA.b2HIT(structure)
Converts the full structure from bracket notation to the HIT notation including root.

Deprecated since version 2.6.3: See RNA.db_to_tree_string() and RNA.STRUCTURE_TREE_HIT for a
replacement

Parameters
structure (string) –

Return type
string

RNA.b2Shapiro(structure)
Converts the full structure from bracket notation to the weighted coarse grained notation using the ‘H’ ‘B’
‘I’ ‘M’ ‘S’ ‘E’ and ‘R’ identifiers.

Deprecated since version 2.6.3: See RNA.db_to_tree_string() and
RNA.STRUCTURE_TREE_SHAPIRO_WEIGHT for a replacement

Parameters
structure (string) –

Return type
string

class RNA.basepair

Bases: object

property i

property j

property thisown

The membership flag

RNA.boustrophedon(*args)
Generate a sequence of Boustrophedon distributed numbers.

This function generates a sequence of positive natural numbers within the interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] in a Bous-
trophedon fashion. That is, the numbers 𝑠𝑡𝑎𝑟𝑡, . . . , 𝑒𝑛𝑑 in the resulting list are alternating between left and
right ends of the interval while progressing to the inside, i.e. the list consists of a sequence of natural numbers
of the form:

𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑠𝑡𝑎𝑟𝑡 + 1, 𝑒𝑛𝑑− 1, 𝑠𝑡𝑎𝑟𝑡 + 2, 𝑒𝑛𝑑− 2, . . .

The resulting list is 1-based and contains the length of the sequence of numbers at it’s 0-th position.

Upon failure, the function returns NULL
SWIG Wrapper Notes

This function is available as overloaded global function boustrophedon().

Parameters
• start (size()) – The first number of the list (left side of the interval)

• end (size()) – The last number of the list (right side of the interval)

Returns
A list of alternating numbers from the interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] (or NULL on error)

9.7. The RNA Python module 691

ViennaRNA, Release 2.6.4

Return type
list-like(unsigned int)

See also:
RNA.boustrophedon_pos

RNA.bp_distance(std::string str1, std::string str2, unsigned int options=)→ int
RNA.bp_distance(IntVector pt1, IntVector pt2)→ int
RNA.bp_distance(varArrayShort pt1, varArrayShort pt2)→ int

Compute the “base pair” distance between two secondary structures s1 and s2.

This is a wrapper around RNA.bp_distance_pt(). The sequences should have the same length. dist = number
of base pairs in one structure but not in the other same as edit distance with open-pair close-pair as move-set

SWIG Wrapper Notes
This function is available as an overloaded method bp_distance(). Note that the SWIG
wrapper takes two structure in dot-bracket notation and converts them into pair tables
using RNA.ptable_from_string(). The resulting pair tables are then internally passed to
RNA.bp_distance_pt(). To control which kind of matching brackets will be used during conversion,
the optional argument options can be used. See also the description of RNA.ptable_from_string() for
available options. (default: RNA.BRACKETS_RND).

Parameters
• str1 (string) – First structure in dot-bracket notation

• str2 (string) – Second structure in dot-bracket notation

Returns
The base pair distance between str1 and str2

Return type
int

See also:
RNA.bp_distance_pt

RNA.cdata(ptr, nelements=1)

RNA.centroid(length, dist)
Deprecated since version 2.6.3: This function is deprecated and should not be used anymore as it is not
threadsafe!

See also:
get_centroid_struct_pl, get_centroid_struct_pr

RNA.circalifold(*args)
Compute MFE and according structure of an alignment of sequences assuming the sequences are circular
instead of linear.

Deprecated since version 2.6.3: Usage of this function is discouraged! Use RNA.alicircfold(), and
RNA.fold_compound.mfe()

instead!

Parameters
• strings (const char **) – A pointer to a NULL terminated array of character arrays

• structure (string) – A pointer to a character array that may contain a constraining
consensus structure (will be overwritten by a consensus structure that exhibits the MFE)

Returns
The free energy score in kcal/mol

692 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
float

See also:
RNA.alicircfold, RNA.alifold , RNA.fold_compound.mfe

RNA.circfold(*args)
Compute Minimum Free Energy (MFE), and a corresponding secondary structure for a circular RNA se-
quence.

This simplified interface to RNA.fold_compound.mfe() computes the MFE and, if required, a secondary
structure for a circular RNA sequence using default options. Memory required for dynamic programming
(DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the recursively
filled matrices are not available any more for any post-processing, e.g. suboptimal backtracking, etc.

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See [12]
for further details.

Parameters
• sequence (string) – RNA sequence

• structure (string) – A pointer to the character array where the secondary structure
in dot-bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

Return type
float

See also:
RNA.fold , RNA.fold_compound.mfe

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you require
other conditions than specified by the default model details, use RNA.fold_compound.mfe(), and the data
structure RNA.fold_compound() instead.

class RNA.cmd

Bases: object

property thisown

The membership flag

RNA.co_pf_fold(*args)

RNA.cofold(*args)
Compute Minimum Free Energy (MFE), and a corresponding secondary structure for two dimerized RNA
sequences.

This simplified interface to RNA.fold_compound.mfe() computes the MFE and, if required, a secondary
structure for two RNA sequences upon dimerization using default options. Memory required for dynamic
programming (DP) matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the
recursively filled matrices are not available any more for any post-processing, e.g. suboptimal backtracking,
etc.

Deprecated since version 2.6.3: This function is obsolete since RNA.mfe()/RNA.fold() can handle complexes
multiple sequences since v2.5.0. Use RNA.mfe()/RNA.fold() for connected component MFE instead and
compute MFEs of unconnected states separately.

9.7. The RNA Python module 693

ViennaRNA, Release 2.6.4

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you require
other conditions than specified by the default model details, use RNA.fold_compound.mfe(), and the data
structure RNA.fold_compound() instead.

Parameters
• sequence (string) – two RNA sequences separated by the ‘&’ character

• structure (string) – A pointer to the character array where the secondary structure
in dot-bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

Return type
float

See also:
RNA.fold , RNA.fold_compound.mfe, RNA.fold_compound , RNA.fold_compound , RNA.
cut_point_insert

RNA.consens_mis(alignment, md_p=None)

RNA.db_flatten(*args)
Substitute pairs of brackets in a string with parenthesis.

This function can be used to replace brackets of unusual types, such as angular brackets <> , to dot-bracket
format. The options parameter is used tpo specify which types of brackets will be replaced by round paren-
thesis ``() .

SWIG Wrapper Notes
This function flattens an input structure string in-place! The second parameter is optional and defaults
to RNA.BRACKETS_DEFAULT.

An overloaded version of this function exists, where an additional second parameter can be passed to
specify the target brackets, i.e. the type of matching pair characters all brackets will be flattened to.
Therefore, in the scripting language interface this function is a replacement for RNA.db_flatten_to().

Parameters
• structure (string) – The structure string where brackets are flattened in-place

• options (unsigned int) – A bitmask to specify which types of brackets should be
flattened out

See also:
RNA.db_flatten_to, RNA.BRACKETS_RND, RNA.BRACKETS_ANG, RNA.BRACKETS_CLY, RNA.
BRACKETS_SQR, RNA.BRACKETS_DEFAULT

RNA.db_from_WUSS(wuss)
Convert a WUSS annotation string to dot-bracket format.

Parameters
wuss (string) – The input string in WUSS notation

Returns
A dot-bracket notation of the input secondary structure

Return type
string

694 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Note: This function flattens all brackets, and treats pseudo-knots annotated by matching pairs of up-
per/lowercase letters as unpaired nucleotides

RNA.db_from_plist(ElemProbVector elem_probs, unsigned int length)→ std::string
Convert a list of base pairs into dot-bracket notation.

Parameters
• pairs (RNA.ep() *) – A RNA.ep() containing the pairs to be included in the dot-

bracket string

• n (unsigned int) – The length of the structure (number of nucleotides)

Returns
The dot-bracket string containing the provided base pairs

Return type
string

See also:
RNA.plist

RNA.db_from_ptable(IntVector pt)→ char
RNA.db_from_ptable(varArrayShort pt)→ char *

Convert a pair table into dot-parenthesis notation.

This function also converts pair table formatted structures that contain pseudoknots. Non-nested base pairs
result in additional pairs of parenthesis and brackets within the resulting dot- parenthesis string. The follow-
ing pairs are awailable: (), []. {}. <>, as well as pairs of matching upper-/lower-case characters from the
alphabet A-Z.

Parameters
pt (const short *) – The pair table to be copied

Returns
A char pointer to the dot-bracket string

Return type
string

Note: In cases where the level of non-nested base pairs exceeds the maximum number of 30 different base
pair indicators (4 parenthesis/brackets, 26 matching characters), a warning is printed and the remaining base
pairs are left out from the conversion.

RNA.db_pack(struc)
Pack secondary secondary structure, 5:1 compression using base 3 encoding.

Returns a binary string encoding of the secondary structure using a 5:1 compression scheme. The string
is NULL terminated and can therefore be used with standard string functions such as strcmp(). Useful for
programs that need to keep many structures in memory.

Parameters
struc (string) – The secondary structure in dot-bracket notation

Returns
The binary encoded structure

Return type
string

See also:
RNA.db_unpack

9.7. The RNA Python module 695

ViennaRNA, Release 2.6.4

RNA.db_pk_remove(std::string structure, unsigned int options=)→ std::string
Remove pseudo-knots from an input structure.

This function removes pseudo-knots from an input structure by determining the minimum number of base
pairs that need to be removed to make the structure pseudo-knot free.

To accomplish that, we use a dynamic programming algorithm similar to the Nussinov maxmimum matching
approach.

The input structure must be in a dot-bracket string like form where crossing base pairs are denoted by the use
of additional types of matching brackets, e.g. <>, {}, ``[], {}. Furthermore, crossing pairs may be annotated
by matching uppercase/lowercase letters from the alphabet A-Z. For the latter, the uppercase letter must be
the 5’ and the lowercase letter the 3’ nucleotide of the base pair. The actual type of brackets to be recognized
by this function must be specifed through the options parameter.

SWIG Wrapper Notes
This function is available as an overloaded function db_pk_remove() where the optional second param-
eter options defaults to RNA.BRACKETS_ANY.

Parameters
• structure (string) – Input structure in dot-bracket format that may include pseudo-

knots

• options (unsigned int) – A bitmask to specify which types of brackets should be
processed

Returns
The input structure devoid of pseudo-knots in dot-bracket notation

Return type
string

See also:
RNA.pt_pk_remove, RNA.db_flatten, RNA.BRACKETS_RND, RNA.BRACKETS_ANG, RNA.
BRACKETS_CLY, RNA.BRACKETS_SQR, RNA.BRACKETS_ALPHA, RNA.BRACKETS_DEFAULT, RNA.
BRACKETS_ANY

Note: Brackets in the input structure string that are not covered by the options bitmask will be silently
ignored!

RNA.db_to_element_string(structure)
Convert a secondary structure in dot-bracket notation to a nucleotide annotation of loop contexts.

Parameters
structure (string) – The secondary structure in dot-bracket notation

Returns
A string annotating each nucleotide according to it’s structural context

Return type
string

RNA.db_to_tree_string(std::string structure, unsigned int type)→ std::string
Convert a Dot-Bracket structure string into tree string representation.

This function allows one to convert a secondary structure in dot-bracket notation into one of the various tree
representations for secondary structures. The resulting tree is then represented as a string of parenthesis and
node symbols, similar to to the Newick format.

Currently we support conversion into the following formats, denoted by the value of parameter type:

696 Chapter 9. Python API

ViennaRNA, Release 2.6.4

• RNA.STRUCTURE_TREE_HIT - Homeomorphically Irreducible Tree (HIT) representation of a sec-
ondary structure. (See also Fontana et al. 1993 [9])

• RNA.STRUCTURE_TREE_SHAPIRO_SHORT - (short) Coarse Grained representation of a sec-
ondary structure (same as Shapiro 1988 [27], but with root node R and without S nodes for the stems)

• RNA.STRUCTURE_TREE_SHAPIRO - (full) Coarse Grained representation of a secondary structure
(See also Shapiro 1988 [27])

• RNA.STRUCTURE_TREE_SHAPIRO_EXT - (extended) Coarse Grained representation of a sec-
ondary structure (same as Shapiro 1988 [27], but external nodes denoted as E)

• RNA.STRUCTURE_TREE_SHAPIRO_WEIGHT - (weighted) Coarse Grained representation of a
secondary structure (same as RNA.STRUCTURE_TREE_SHAPIRO_EXT but with additional weights
for number of unpaired nucleotides in loop, and number of pairs in stems)

• RNA.STRUCTURE_TREE_EXPANDED - Expanded Tree representation of a secondary structure.

Parameters
• structure (string) – The null-terminated dot-bracket structure string

• type (unsigned int) – A switch to determine the type of tree string representation

Returns
A tree representation of the input structure

Return type
string

See also:
Tree

RNA.db_unpack(packed)
Unpack secondary structure previously packed with RNA.db_pack()

Translate a compressed binary string produced by RNA.db_pack() back into the familiar dot-bracket notation.

Parameters
packed (string) – The binary encoded packed secondary structure

Returns
The unpacked secondary structure in dot-bracket notation

Return type
string

See also:
RNA.db_pack

RNA.delete_doubleP(ary)

RNA.delete_floatP(ary)

RNA.delete_intP(ary)

RNA.delete_shortP(ary)

RNA.delete_ushortP(ary)

RNA.deref_any(ptr, index)

RNA.dist_mountain(str1, str2, p=1)

class RNA.doubleArray(nelements)
Bases: object

9.7. The RNA Python module 697

ViennaRNA, Release 2.6.4

cast()

static frompointer(t)

property thisown

The membership flag

RNA.doubleArray_frompointer(t)

RNA.doubleP_getitem(ary, index)

RNA.doubleP_setitem(ary, index, value)

class RNA.duplex_list_t

Bases: object

property energy

property i

property j

property structure

property thisown

The membership flag

RNA.duplex_subopt(std::string s1, std::string s2, int delta, int w)→ DuplexVector

RNA.duplexfold(std::string s1, std::string s2)→ duplex_list_t

RNA.encode_seq(sequence)

RNA.energy_of_circ_struct(string, structure)
Calculate the free energy of an already folded circular RNA

Deprecated since version 2.6.3: This function is deprecated and should not be used in future programs Use
energy_of_circ_structure() instead!

Note: This function is not entirely threadsafe! Depending on the state of the global variable eos_debug it
prints energy information to stdout or not. . .

Parameters
• string (string) – RNA sequence

• structure (string) – secondary structure in dot-bracket notation

Returns
the free energy of the input structure given the input sequence in kcal/mol

Return type
float

See also:
energy_of_circ_structure, energy_of_struct, energy_of_struct_pt

698 Chapter 9. Python API

ViennaRNA, Release 2.6.4

RNA.energy_of_circ_structure(string, structure, verbosity_level)
Calculate the free energy of an already folded circular RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Note: OpenMP: This function relies on several global model settings variables and thus is not to be con-
sidered threadsafe. See energy_of_circ_struct_par() for a completely threadsafe implementation.

Deprecated since version 2.6.3: Use RNA.fold_compound.eval_structure() or
RNA.fold_compound.eval_structure_verbose() instead!

Parameters
• string (string) – RNA sequence

• structure (string) – Secondary structure in dot-bracket notation

• verbosity_level (int) – A flag to turn verbose output on/off

Returns
The free energy of the input structure given the input sequence in kcal/mol

Return type
float

See also:
RNA.fold_compound.eval_structure

RNA.energy_of_gquad_structure(string, structure, verbosity_level)

RNA.energy_of_move(string, structure, m1, m2)
Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

Deprecated since version 2.6.3: Use RNA.fold_compound.eval_move() instead!

Parameters
• string (string) – RNA sequence

• structure (string) – secondary structure in dot-bracket notation

• m1 (int) – first coordinate of base pair

• m2 (int) – second coordinate of base pair

Returns
energy change of the move in kcal/mol

Return type
float

See also:
RNA.fold_compound.eval_move

RNA.energy_of_move_pt(pt, s, s1, m1, m2)
Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

Deprecated since version 2.6.3: Use RNA.fold_compound.eval_move_pt() instead!

Parameters

9.7. The RNA Python module 699

ViennaRNA, Release 2.6.4

• pt (list-like(int)) – the pair table of the secondary structure

• s (list-like(int)) – encoded RNA sequence

• s1 (list-like(int)) – encoded RNA sequence

• m1 (int) – first coordinate of base pair

• m2 (int) – second coordinate of base pair

Returns
energy change of the move in 10cal/mol

Return type
int

See also:
RNA.fold_compound.eval_move_pt

RNA.energy_of_struct(string, structure)
Calculate the free energy of an already folded RNA

Deprecated since version 2.6.3: This function is deprecated and should not be used in future programs! Use
energy_of_structure() instead!

Note: This function is not entirely threadsafe! Depending on the state of the global variable eos_debug it
prints energy information to stdout or not. . .

Parameters
• string (string) – RNA sequence

• structure (string) – secondary structure in dot-bracket notation

Returns
the free energy of the input structure given the input sequence in kcal/mol

Return type
float

See also:
energy_of_structure, energy_of_circ_struct, energy_of_struct_pt

RNA.energy_of_struct_pt(string, ptable, s, s1)
Calculate the free energy of an already folded RNA

Deprecated since version 2.6.3: This function is deprecated and should not be used in future programs! Use
energy_of_structure_pt() instead!

Note: This function is not entirely threadsafe! Depending on the state of the global variable eos_debug it
prints energy information to stdout or not. . .

Parameters
• string (string) – RNA sequence

• ptable (list-like(int)) – the pair table of the secondary structure

• s (list-like(int)) – encoded RNA sequence

• s1 (list-like(int)) – encoded RNA sequence

Returns
the free energy of the input structure given the input sequence in 10kcal/mol

700 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
int

See also:
make_pair_table, energy_of_structure

RNA.energy_of_structure(string, structure, verbosity_level)
Calculate the free energy of an already folded RNA using global model detail settings.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated since version 2.6.3: Use RNA.fold_compound.eval_structure() or
RNA.fold_compound.eval_structure_verbose() instead!

Note: OpenMP: This function relies on several global model settings variables and thus is not to be con-
sidered threadsafe. See energy_of_struct_par() for a completely threadsafe implementation.

Parameters
• string (string) – RNA sequence

• structure (string) – secondary structure in dot-bracket notation

• verbosity_level (int) – a flag to turn verbose output on/off

Returns
the free energy of the input structure given the input sequence in kcal/mol

Return type
float

See also:
RNA.fold_compound.eval_structure

RNA.energy_of_structure_pt(string, ptable, s, s1, verbosity_level)
Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated since version 2.6.3: Use RNA.fold_compound.eval_structure_pt() or
RNA.fold_compound.eval_structure_pt_verbose()

instead!

Note: OpenMP: This function relies on several global model settings variables and thus is not to be con-
sidered threadsafe. See energy_of_struct_pt_par() for a completely threadsafe implementation.

Parameters
• string (string) – RNA sequence

• ptable (list-like(int)) – the pair table of the secondary structure

• s (list-like(int)) – encoded RNA sequence

• s1 (list-like(int)) – encoded RNA sequence

• verbosity_level (int) – a flag to turn verbose output on/off

Returns
the free energy of the input structure given the input sequence in 10kcal/mol

9.7. The RNA Python module 701

ViennaRNA, Release 2.6.4

Return type
int

See also:
RNA.fold_compound.eval_structure_pt

RNA.enumerate_necklaces(entity_counts)
Enumerate all necklaces with fixed content.

This function implements A fast algorithm to generate necklaces with fixed content as published by Joe
Sawada in 2003 [25].

The function receives a list of counts (the elements on the necklace) for each type of object within a necklace.
The list starts at index 0 and ends with an entry that has a count of 0. The algorithm then enumerates all
non-cyclic permutations of the content, returned as a list of necklaces. This list, again, is zero-terminated,
i.e. the last entry of the list is a NULL pointer.

SWIG Wrapper Notes
This function is available as global function enumerate_necklaces() which accepts lists input, an pro-
duces list of lists output.

Parameters
type_counts (const unsigned int *) – A 0-terminated list of entity counts

Returns
A list of all non-cyclic permutations of the entities

Return type
list-like(list-like(unsigned int))

class RNA.ep(*args, **kwargs)
Bases: object

Data structure representing a single entry of an element probability list (e.g. list of pair probabilities)

See also:
RNA.plist, RNA.fold_compound.plist_from_probs, RNA.db_from_plist, RNA.
PLIST_TYPE_BASEPAIR, RNA.PLIST_TYPE_GQUAD, RNA.PLIST_TYPE_H_MOTIF, RNA.
PLIST_TYPE_I_MOTIF, RNA.PLIST_TYPE_UD_MOTIF, RNA.PLIST_TYPE_STACK

i

Start position (usually 5’ nucleotide that starts the element, e.g. base pair)

Type
int

j

End position (usually 3’ nucleotide that ends the element, e.g. base pair)

Type
int

p

Probability of the element.

Type
float

type

Type of the element.

Type
int

702 Chapter 9. Python API

ViennaRNA, Release 2.6.4

C++ includes

Type
ViennaRNA/utils/structures.h

property i

property j

property p

property thisown

The membership flag

property type

RNA.eval_circ_gquad_structure(*args)
Evaluate free energy of a sequence/structure pair, assume sequence to be circular, allow for G-Quadruplexes
in the structure, and print contributions per loop.

This function is the same as RNA.eval_structure_simple_v() but assumes the input sequence to be circular
and allows for annotated G-Quadruplexes in the dot-bracket structure input.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences must
be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-quadruplex:

SWIG Wrapper Notes
This function is available through an overloaded version of RNA.eval_circ_gquad_structure(). The last
two arguments for this function are optional and default to RNA.VERBOSITY_QUIET and NULL,
respectively.

Parameters
• string (string) – RNA sequence in uppercase letters

• structure (string) – Secondary structure in dot-bracket notation

• verbosity_level (int) – The level of verbosity of this function

• file (FILE *) – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

Return type
float

RNA.eval_circ_structure(*args)
Evaluate free energy of a sequence/structure pair, assume sequence to be circular and print contributions per
loop.

This function is the same as RNA.eval_structure_simple_v() but assumes the input sequence to be circular-
ized.

SWIG Wrapper Notes
This function is available through an overloaded version of RNA.eval_circ_structure(). The last two
arguments for this function are optional and default to RNA.VERBOSITY_QUIET and NULL, respec-
tively.

Parameters
• string (string) – RNA sequence in uppercase letters

• structure (string) – Secondary structure in dot-bracket notation

• verbosity_level (int) – The level of verbosity of this function

9.7. The RNA Python module 703

ViennaRNA, Release 2.6.4

• file (FILE *) – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

Return type
float

See also:
RNA.eval_structure_simple_v, RNA.eval_circ_structure, RNA.fold_compound.
eval_structure_verbose

RNA.eval_gquad_structure(*args)
Evaluate free energy of a sequence/structure pair, allow for G-Quadruplexes in the structure and print con-
tributions per loop.

This function is the same as RNA.eval_structure_simple_v() but allows for annotated G-Quadruplexes in the
dot-bracket structure input.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences must
be denoted by dots (‘.’) as they are considered unpaired. Below is an example of a 2-layer G-quadruplex:

SWIG Wrapper Notes
This function is available through an overloaded version of RNA.eval_gquad_structure(). The last
two arguments for this function are optional and default to RNA.VERBOSITY_QUIET and NULL,
respectively.

Parameters
• string (string) – RNA sequence in uppercase letters

• structure (string) – Secondary structure in dot-bracket notation

• verbosity_level (int) – The level of verbosity of this function

• file (FILE *) – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

Return type
float

See also:
RNA.eval_structure_simple_v, RNA.eval_gquad_structure, RNA.fold_compound.
eval_structure_verbose

RNA.eval_structure_pt_simple(*args)
Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is pro-
vided in pair_table format as obtained from RNA.ptable(). Model details, energy parameters, and possibly
soft constraints are used as provided via the parameter ‘fc’. The fold_compound does not need to contain
any DP matrices, but all the most basic init values as one would get from a call like this: In contrast to
RNA.fold_compound.eval_structure_pt_verbose() this function assumes default model details and default
energy parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as
a simple interface function for energy evaluation for situations where no changes on the energy model are
required.

Parameters
• string (string) – RNA sequence in uppercase letters

• pt (const short *) – Secondary structure as pair_table

• verbosity_level (int) – The level of verbosity of this function

704 Chapter 9. Python API

ViennaRNA, Release 2.6.4

• file (FILE *) – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in 10cal/mol

Return type
int

See also:
RNA.ptable, RNA.eval_structure_pt_v, RNA.eval_structure_simple

RNA.eval_structure_simple(*args)
Calculate the free energy of an already folded RNA and print contributions per loop.

This function allows for detailed energy evaluation of a given sequence/structure pair. In contrast to
RNA.fold_compound.eval_structure() this function prints detailed energy contributions based on individ-
ual loops to a file handle. If NULL is passed as file handle, this function defaults to print to stdout. Any
positive verbosity_level activates potential warning message of the energy evaluting functions, while values
≥ 1 allow for detailed control of what data is printed. A negative parameter verbosity_level turns off printing
all together.

In contrast to RNA.fold_compound.eval_structure_verbose() this function assumes default model details and
default energy parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves
as a simple interface function for energy evaluation for situations where no changes on the energy model are
required.

SWIG Wrapper Notes
This function is available through an overloaded version of RNA.eval_structure_simple(). The last
two arguments for this function are optional and default to RNA.VERBOSITY_QUIET and NULL,
respectively.

Parameters
• string (string) – RNA sequence in uppercase letters

• structure (string) – Secondary structure in dot-bracket notation

• verbosity_level (int) – The level of verbosity of this function

• file (FILE *) – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

Return type
float

See also:
RNA.fold_compound.eval_structure_verbose, RNA.fold_compound.eval_structure_pt, RNA.
fold_compound.eval_structure_pt_verbose

RNA.exp_E_ExtLoop(type, si1, sj1, P)
This is the partition function variant of E_ExtLoop()

Deprecated since version 2.6.3: Use RNA.fold_compound.exp_E_ext_stem() instead!

Returns
The Boltzmann weighted energy contribution of the introduced exterior-loop stem

Return type
double

See also:
E_ExtLoop

9.7. The RNA Python module 705

ViennaRNA, Release 2.6.4

RNA.exp_E_Hairpin(u, type, si1, sj1, string, P)
Compute Boltzmann weight 𝑒−Δ𝐺/𝑘𝑇 of a hairpin loop.

Parameters
• u (int) – The size of the loop (number of unpaired nucleotides)

• type (int) – The pair type of the base pair closing the hairpin

• si1 (short) – The 5’-mismatching nucleotide

• sj1 (short) – The 3’-mismatching nucleotide

• string (string) – The sequence of the loop (May be NULL, otherwise mst be at least
𝑠𝑖𝑧𝑒 + 2 long)

• P (RNA.exp_param() *) – The datastructure containing scaled Boltzmann weights of
the energy parameters

Returns
The Boltzmann weight of the Hairpin-loop

Return type
double

Warning: Not (really) thread safe! A threadsafe implementation will replace this function in a future
release!

Energy evaluation may change due to updates in global variable “tetra_loop”

See also:
get_scaled_pf_parameters, RNA.exp_param , E_Hairpin

Note: multiply by scale[u+2]

RNA.exp_E_IntLoop(u1, u2, type, type2, si1, sj1, sp1, sq1, P)
multiply by scale[u1+u2+2] for scaling

Parameters
• u1 (int) – The size of the ‘left’-loop (number of unpaired nucleotides)

• u2 (int) – The size of the ‘right’-loop (number of unpaired nucleotides)

• type (int) – The pair type of the base pair closing the interior loop

• type2 (int) – The pair type of the enclosed base pair

• si1 (short) – The 5’-mismatching nucleotide of the closing pair

• sj1 (short) – The 3’-mismatching nucleotide of the closing pair

• sp1 (short) – The 3’-mismatching nucleotide of the enclosed pair

• sq1 (short) – The 5’-mismatching nucleotide of the enclosed pair

• P (RNA.exp_param() *) – The datastructure containing scaled Boltzmann weights of
the energy parameters

Returns
The Boltzmann weight of the Interior-loop

Return type
double

706 Chapter 9. Python API

ViennaRNA, Release 2.6.4

See also:
get_scaled_pf_parameters, RNA.exp_param , E_IntLoop

Note: This function is threadsafe

RNA.exp_E_MLstem(type, si1, sj1, P)

RNA.exp_E_Stem(type, si1, sj1, extLoop, P)
This is the partition function variant of E_Stem()

Returns
The Boltzmann weighted energy contribution of the branch off the loop

Return type
double

See also:
E_Stem

Note: This function is threadsafe

RNA.exp_E_ext_stem(type, n5d, n3d, p)

class RNA.exp_param(model_details=None)
Bases: object

The data structure that contains temperature scaled Boltzmann weights of the energy parameters.

id

An identifier for the data structure.

Deprecated since version 2.6.3: This attribute will be removed in version 3

Type
int

expstack

Type
double

exphairpin

Type
double

expbulge

Type
double

expinternal

Type
double

expmismatchExt

Type
double

9.7. The RNA Python module 707

ViennaRNA, Release 2.6.4

expmismatchI

Type
double

expmismatch23I

Type
double

expmismatch1nI

Type
double

expmismatchH

Type
double

expmismatchM

Type
double

expdangle5

Type
double

expdangle3

Type
double

expint11

Type
double

expint21

Type
double

expint22

Type
double

expninio

Type
double

lxc

Type
double

expMLbase

Type
double

708 Chapter 9. Python API

ViennaRNA, Release 2.6.4

expMLintern

Type
double

expMLclosing

Type
double

expTermAU

Type
double

expDuplexInit

Type
double

exptetra

Type
double

exptri

Type
double

exphex

Type
double

Tetraloops

Type
char

expTriloop

Type
double

Triloops

Type
char

Hexaloops

Type
char

expTripleC

Type
double

expMultipleCA

Type
double

9.7. The RNA Python module 709

ViennaRNA, Release 2.6.4

expMultipleCB

Type
double

expgquad

Type
double

expgquadLayerMismatch

Type
double

gquadLayerMismatchMax

Type
int

kT

Type
double

pf_scale

Scaling factor to avoid over-/underflows.

Type
double

temperature

Temperature used for loop contribution scaling.

Type
double

alpha

Scaling factor for the thermodynamic temperature.

This allows for temperature scaling in Boltzmann factors independently from the energy contributions.
The resulting Boltzmann factors are then computed by 𝑒−𝐸/(𝛼·𝐾·𝑇)

Type
double

model_details

Model details to be used in the recursions.

Type
vrna_md_t

param_file

The filename the parameters were derived from, or empty string if they represent the default.

Type
char

expSaltStack

Type
double

expSaltLoop

Type
double

710 Chapter 9. Python API

ViennaRNA, Release 2.6.4

SaltLoopDbl

Type
double

SaltMLbase

Type
int

SaltMLintern

Type
int

SaltMLclosing

Type
int

SaltDPXInit

Type
int

C++ includes

Type
ViennaRNA/params/basic.h

property Hexaloops

property SaltDPXInit

property SaltLoopDbl

property SaltMLbase

property SaltMLclosing

property SaltMLintern

property Tetraloops

property Triloops

property alpha

property expDuplexInit

property expMLbase

property expMLclosing

property expMLintern

property expMultipleCA

property expMultipleCB

property expSaltLoop

property expSaltStack

property expTermAU

property expTriloop

9.7. The RNA Python module 711

ViennaRNA, Release 2.6.4

property expTripleC

property expbulge

property expdangle3

property expdangle5

property expgquad

property expgquadLayerMismatch

property exphairpin

property exphex

property expint11

property expint21

property expint22

property expinternal

property expmismatch1nI

property expmismatch23I

property expmismatchExt

property expmismatchH

property expmismatchI

property expmismatchM

property expninio

property expstack

property exptetra

property exptri

property gquadLayerMismatchMax

property id

property kT

property lxc

property model_details

property param_file

property pf_scale

property temperature

property thisown

The membership flag

712 Chapter 9. Python API

ViennaRNA, Release 2.6.4

RNA.expand_Full(structure)
Convert the full structure from bracket notation to the expanded notation including root.

Parameters
structure (string) –

Return type
string

RNA.expand_Shapiro(coarse)
Inserts missing ‘S’ identifiers in unweighted coarse grained structures as obtained from b2C().

Parameters
coarse (string) –

Return type
string

RNA.extract_record_rest_structure(lines, length, option)

RNA.fc_add_pycallback(vc, PyFunc)

RNA.fc_add_pydata(vc, data, PyFuncOrNone)

RNA.file_PS_aln(std::string filename, StringVector alignment, StringVector identifiers, std::string structure,
unsigned int start=0, unsigned int end=0, int offset=0, unsigned int columns=60)→ int

Create an annotated PostScript alignment plot.

Similar to RNA.file_PS_aln() but allows the user to print a particular slice of the alignment by specifying
a start and end position. The additional offset parameter allows for adjusting the alignment position ruler
value.

SWIG Wrapper Notes
This function is available as overloaded function file_PS_aln() where the last four parameter may be
omitted, indicating start = 0, end = 0, offset = 0, and columns = 60.

Parameters
• filename (string) – The output file name

• seqs (const char **) – The aligned sequences

• names (const char **) – The names of the sequences

• structure (string) – The consensus structure in dot-bracket notation

• start (unsigned int) – The start of the alignment slice (a value of 0 indicates the
first position of the alignment, i.e. no slicing at 5’ side)

• end (unsigned int) – The end of the alignment slice (a value of 0 indicates the last
position of the alignment, i.e. no slicing at 3’ side)

• offset (int) – The alignment coordinate offset for the position ruler.

• columns (unsigned int) – The number of columns before the alignment is wrapped
as a new block (a value of 0 indicates no wrapping)

See also:
RNA.file_PS_aln_slice

RNA.file_PS_rnaplot(*args)

RNA.file_PS_rnaplot_a(*args)

RNA.file_RNAstrand_db_read_record(fp, options=0)

9.7. The RNA Python module 713

ViennaRNA, Release 2.6.4

RNA.file_SHAPE_read(file_name, length, default_value)
Read data from a given SHAPE reactivity input file.

This function parses the informations from a given file and stores the result in the preallocated string sequence
and the double array values.

Parameters
• file_name (string) – Path to the constraints file

• length (int) – Length of the sequence (file entries exceeding this limit will cause an
error)

• default_value (double) – Value for missing indices

• sequence (string) – Pointer to an array used for storing the sequence obtained from
the SHAPE reactivity file

• values (list-like(double)) – Pointer to an array used for storing the values obtained
from the SHAPE reactivity file

RNA.file_commands_read(std::string filename, unsigned int options=)→ cmd
Extract a list of commands from a command file.

Read a list of commands specified in the input file and return them as list of abstract commands

Parameters
• filename (string) – The filename

• options (unsigned int) – Options to limit the type of commands read from the file

Returns
A list of abstract commands

Return type
RNA.cmd()

See also:
RNA.fold_compound.commands_apply, RNA.file_commands_apply, RNA.commands_free

RNA.file_connect_read_record(fp, remainder, options=0)

RNA.file_fasta_read(FILE * file, unsigned int options=0)→ int
Get a (fasta) data set from a file or stdin.

This function may be used to obtain complete datasets from a filehandle or stdin. A dataset is always defined
to contain at least a sequence. If data starts with a fasta header, i.e. a line like

>some header info then RNA.file_fasta_read_record() will assume that the sequence that follows

the header may span over several lines. To disable this behavior and to assign a single line to the argument
‘sequence’ one can pass RNA.INPUT_NO_SPAN in the ‘options’ argument. If no fasta header is read in the
beginning of a data block, a sequence must not span over multiple lines!

Unless the options RNA.INPUT_NOSKIP_COMMENTS or RNA.INPUT_NOSKIP_BLANK_LINES are
passed, a sequence may be interrupted by lines starting with a comment character or empty lines.

A sequence is regarded as completely read if it was either assumed to not span over multiple lines,

a secondary structure or structure constraint follows the sequence on the next line, or a new header marks
the beginning of a new sequence. . .

All lines following the sequence (this includes comments) that do not initiate a new dataset according to
the above definition are available through the line-array ‘rest’. Here one can usually find the structure con-
straint or other information belonging to the current dataset. Filling of ‘rest’ may be prevented by passing
RNA.INPUT_NO_REST to the options argument.

714 Chapter 9. Python API

ViennaRNA, Release 2.6.4

The main purpose of this function is to be able to easily parse blocks of data in the header of a loop where
all calculations for the appropriate data is done inside the loop. The loop may be then left on certain return
values, e.g.:

In the example above, the while loop will be terminated when RNA.file_fasta_read_record() returns either
an error, EOF, or a user initiated quit request.

As long as data is read from stdin (we are passing NULL as the file pointer), the id is printed if it is available
for the current block of data. The sequence will be printed in any case and if some more lines belong to the
current block of data each line will be printed as well.

Parameters
• header (char **) – A pointer which will be set such that it points to the header of the

record

• sequence (char **) – A pointer which will be set such that it points to the sequence
of the record

• rest (char ***) – A pointer which will be set such that it points to an array of lines
which also belong to the record

• file (FILE *) – A file handle to read from (if NULL, this function reads from stdin)

• options (unsigned int) – Some options which may be passed to alter the behavior
of the function, use 0 for no options

Returns
A flag with information about what the function actually did read

Return type
unsigned int

Note:
This function will exit any program with an error message if no sequence could be read!

This function is NOT threadsafe! It uses a global variable to store information about the next data

block. Do not forget to free the memory occupied by header, sequence and rest!

RNA.file_msa_detect_format(std::string filename, unsigned int options=)→ unsigned int
Detect the format of a multiple sequence alignment file.

This function attempts to determine the format of a file that supposedly contains a multiple sequence align-
ment (MSA). This is useful in cases where a MSA file contains more than a single record and therefore
RNA.file_msa_read() can not be applied, since it only retrieves the first. Here, one can try to guess the cor-
rect file format using this function and then loop over the file, record by record using one of the low-level
record retrieval functions for the corresponding MSA file format.

SWIG Wrapper Notes
This function exists as an overloaded version where the options parameter may be omitted! In that case,
the options parameter defaults to RNA.FILE_FORMAT_MSA_DEFAULT.

Parameters
• filename (string) – The name of input file that contains the alignment

• options (unsigned int) – Options to manipulate the behavior of this function

Returns
The MSA file format, or RNA.FILE_FORMAT_MSA_UNKNOWN

Return type
unsigned int

9.7. The RNA Python module 715

ViennaRNA, Release 2.6.4

See also:
RNA.file_msa_read , RNA.file_stockholm_read_record, RNA.file_clustal_read_record,
RNA.file_fasta_read_record

Note: This function parses the entire first record within the specified file. As a result, it returns
RNA.FILE_FORMAT_MSA_UNKNOWN not only if it can’t detect the file’s format, but also in cases where
the file doesn’t contain sequences!

RNA.file_msa_read(std::string filename, unsigned int options=)→ int
Read a multiple sequence alignment from file.

This function reads the (first) multiple sequence alignment from an input file. The read alignment is split into
the sequence id/name part and the actual sequence information and stored in memory as arrays of ids/names
and sequences. If the alignment file format allows for additional information, such as an ID of the entire
alignment or consensus structure information, this data is retrieved as well and made available. The options
parameter allows to specify the set of alignment file formats that should be used to retrieve the data. If 0 is
passed as option, the list of alignment file formats defaults to RNA.FILE_FORMAT_MSA_DEFAULT.

Currently, the list of parsable multiple sequence alignment file formats consists of:

• ClustalW format

• Stockholm 1.0 format

• FASTA (Pearson) format

• MAF format

SWIG Wrapper Notes
In the target scripting language, only the first and last argument, filename and options, are passed to the
corresponding function. The other arguments, which serve as output in the C-library, are available as
additional return values. Hence, a function call in python may look like this:

Parameters
• filename (string) – The name of input file that contains the alignment

• names (char ***) – An address to the pointer where sequence identifiers should be
written to

• aln (char ***) – An address to the pointer where aligned sequences should be written
to

• id (char **) – An address to the pointer where the alignment ID should be written to
(Maybe NULL)

• structure (char **) – An address to the pointer where consensus structure informa-
tion should be written to (Maybe NULL)

• options (unsigned int) – Options to manipulate the behavior of this function

Returns
The number of sequences in the alignment, or -1 if no alignment record could be found

Return type
int

See also:
RNA.file_msa_read_record , RNA.FILE_FORMAT_MSA_CLUSTAL, RNA.
FILE_FORMAT_MSA_STOCKHOLM, RNA.FILE_FORMAT_MSA_FASTA, RNA.FILE_FORMAT_MSA_MAF,
RNA.FILE_FORMAT_MSA_DEFAULT, RNA.FILE_FORMAT_MSA_NOCHECK

716 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Note: After successfully reading an alignment, this function performs a validation of the data that includes
uniqueness of the sequence identifiers, and equal sequence lengths. This check can be deactivated by passing
RNA.FILE_FORMAT_MSA_NOCHECK in the options parameter.

It is the users responsibility to free any memory occupied by the output arguments names, aln,

id, and structure after calling this function. The function automatically sets the latter two arguments to NULL
in case no corresponding data could be retrieved from the input alignment.

After successfully reading the first record, the variable num_seq contains the number of sequences in the
alignment (the actual return value of the C-function), while the variables names, aln, id, and structure are
lists of the sequence names and aligned sequences, as well as strings holding the alignment ID and the
structure as stated in the SS_cons line, respectively. Note, the last two return values may be empty strings in
case the alignment does not provide the required data.

This function exists as an overloaded version where the options parameter may be omitted! In that case, the
options parameter defaults to RNA.FILE_FORMAT_MSA_STOCKHOLM.

RNA.file_msa_read_record(FILE * filehandle, unsigned int options=)→ int
Read a multiple sequence alignment from file handle.

Similar to RNA.file_msa_read(), this function reads a multiple sequence alignment from an input file handle.
Since using a file handle, this function is not limited to the first alignment record, but allows for looping over
all alignments within the input.

The read alignment is split into the sequence id/name part and the actual sequence information and stored in
memory as arrays of ids/names and sequences. If the alignment file format allows for additional information,
such as an ID of the entire alignment or consensus structure information, this data is retrieved as well and
made available. The options parameter allows to specify the alignment file format used to retrieve the data. A
single format must be specified here, see RNA.file_msa_detect_format() for helping to determine the correct
MSA file format.

Currently, the list of parsable multiple sequence alignment file formats consists of:

• ClustalW format

• Stockholm 1.0 format

• FASTA (Pearson) format

• MAF format

SWIG Wrapper Notes
In the target scripting language, only the first and last argument, fp and options, are passed to the
corresponding function. The other arguments, which serve as output in the C-library, are available as
additional return values. Hence, a function call in python may look like this:

Parameters
• fp (FILE *) – The file pointer the data will be retrieved from

• names (char ***) – An address to the pointer where sequence identifiers should be
written to

• aln (char ***) – An address to the pointer where aligned sequences should be written
to

• id (char **) – An address to the pointer where the alignment ID should be written to
(Maybe NULL)

• structure (char **) – An address to the pointer where consensus structure informa-
tion should be written to (Maybe NULL)

• options (unsigned int) – Options to manipulate the behavior of this function

9.7. The RNA Python module 717

ViennaRNA, Release 2.6.4

Returns
The number of sequences in the alignment, or -1 if no alignment record could be found

Return type
int

See also:
RNA.file_msa_read , RNA.file_msa_detect_format, RNA.FILE_FORMAT_MSA_CLUSTAL, RNA.
FILE_FORMAT_MSA_STOCKHOLM, RNA.FILE_FORMAT_MSA_FASTA, RNA.FILE_FORMAT_MSA_MAF,
RNA.FILE_FORMAT_MSA_DEFAULT, RNA.FILE_FORMAT_MSA_NOCHECK

Note: After successfully reading an alignment, this function performs a validation of the data that includes
uniqueness of the sequence identifiers, and equal sequence lengths. This check can be deactivated by passing
RNA.FILE_FORMAT_MSA_NOCHECK in the options parameter.

It is the users responsibility to free any memory occupied by the output arguments names, aln,

id, and structure after calling this function. The function automatically sets the latter two arguments to NULL
in case no corresponding data could be retrieved from the input alignment.

After successfully reading the first record, the variable num_seq contains the number of sequences in the
alignment (the actual return value of the C-function), while the variables names, aln, id, and structure are
lists of the sequence names and aligned sequences, as well as strings holding the alignment ID and the
structure as stated in the SS_cons line, respectively. Note, the last two return values may be empty strings in
case the alignment does not provide the required data.

This function exists as an overloaded version where the options parameter may be omitted! In that case, the
options parameter defaults to RNA.FILE_FORMAT_MSA_STOCKHOLM.

RNA.file_msa_write(std::string filename, StringVector names, StringVector alignment, std::string id="",
std::string structure="", std::string source="", unsigned int op-
tions=VRNA_FILE_FORMAT_MSA_STOCKHOLM|VRNA_FILE_FORMAT_MSA_APPEND)
→ int

Write multiple sequence alignment file.

SWIG Wrapper Notes
In the target scripting language, this function exists as a set of overloaded versions, where the
last four parameters may be omitted. If the options parameter is missing the options default to
(RNA.FILE_FORMAT_MSA_STOCKHOLM | RNA.FILE_FORMAT_MSA_APPEND).

Parameters
• filename (string) – The output filename

• names (const char **) – The array of sequence names / identifies

• aln (const char **) – The array of aligned sequences

• id (string) – An optional ID for the alignment

• structure (string) – An optional consensus structure

• source (string) – A string describing the source of the alignment

• options (unsigned int) – Options to manipulate the behavior of this function

Returns
Non-null upon successfully writing the alignment to file

Return type
int

718 Chapter 9. Python API

ViennaRNA, Release 2.6.4

See also:
RNA.FILE_FORMAT_MSA_STOCKHOLM, RNA.FILE_FORMAT_MSA_APPEND, RNA.FILE_FORMAT_MSA_MIS

Note: Currently, we only support Stockholm 1.0 format output

RNA.filename_sanitize(*args)
Sanitize a file name.

Returns a new file name where all invalid characters are substituted by a replacement character. If no re-
placement character is supplied, invalid characters are simply removed from the filename. File names may
also never exceed a length of 255 characters. Longer file names will undergo a ‘smart’ truncation process,
where the filenames suffix, i.e. everything after the last dot .’, is attempted to be kept intact. Hence, only
the filename part before the suffix is reduced in such a way that the total filename complies to the length
restriction of 255 characters. If no suffix is present or the suffix itself already exceeds the maximum length,
the filename is simply truncated from the back of the string.

For now we consider the following characters invalid:

• backslash ‘'

• slash ‘/’

• question mark ‘?’

• percent sign ‘’

• asterisk ‘*’

• colon ‘:’

• pipe symbol ‘|’

• double quote ‘”’

• triangular brackets ‘<’ and ‘>’

Furthermore, the (resulting) file name must not be a reserved file name, such as:

• ‘.’

• ‘..’

Parameters
• name (string) – The input file name

• replacement (string) – The replacement character, or NULL

Returns
The sanitized file name, or NULL

Return type
string

Note: This function allocates a new block of memory for the sanitized string. It also may return (a) NULL
if the input is pointing to NULL, or (b) an empty string if the input only consists of invalid characters which
are simply removed!

RNA.find_saddle(seq, s1, s2, width)
Find energy of a saddle point between 2 structures (search only direct path)

Deprecated since version 2.6.3: Use RNA.path_findpath_saddle() instead!

Parameters

9.7. The RNA Python module 719

ViennaRNA, Release 2.6.4

• seq (string) – RNA sequence

• s1 (string) – A pointer to the character array where the first secondary structure in
dot-bracket notation will be written to

• s2 (string) – A pointer to the character array where the second secondary structure in
dot-bracket notation will be written to

• width (int) – integer how many strutures are being kept during the search

Returns
the saddle energy in 10cal/mol

Return type
int

class RNA.floatArray(nelements)
Bases: object

cast()

static frompointer(t)

property thisown

The membership flag

RNA.floatArray_frompointer(t)

RNA.floatP_getitem(ary, index)

RNA.floatP_setitem(ary, index, value)

RNA.fold(string) -> (structure, mfe)fold(string) -> (structure, mfe)
Compute Minimum Free Energy (MFE), and a corresponding secondary structure for an RNA sequence.

This simplified interface to RNA.fold_compound.mfe() computes the MFE and, if required, a secondary
structure for an RNA sequence using default options. Memory required for dynamic programming (DP)
matrices will be allocated and free’d on-the-fly. Hence, after return of this function, the recursively filled
matrices are not available any more for any post-processing, e.g. suboptimal backtracking, etc.

Parameters
• sequence (string) – RNA sequence

• structure (string) – A pointer to the character array where the secondary structure
in dot-bracket notation will be written to

Returns
the minimum free energy (MFE) in kcal/mol

Return type
float

See also:
RNA.circfold , RNA.fold_compound.mfe

Note: In case you want to use the filled DP matrices for any subsequent post-processing step, or you require
other conditions than specified by the default model details, use RNA.fold_compound.mfe(), and the data
structure RNA.fold_compound() instead.

class RNA.fold_compound(*args)
Bases: object

The most basic data structure required by many functions throughout the RNAlib.

720 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Note: Please read the documentation of this data structure carefully! Some attributes are only available for
specific types this data structure can adopt.

Warning: Reading/Writing from/to attributes that are not within the scope of the current type usually
result in undefined behavior!

See also:
RNA.fold_compound().type, RNA.fold_compound(), RNA.fold_compound_comparative(),
RNA.fold_compound_free(), RNA.FC_TYPE_SINGLE, RNA.FC_TYPE_COMPARATIVE

SWIG Wrapper Notes
This data structure is wrapped as an object fold_compound with several related functions at-
tached as methods.

A new fold_compound can be obtained by calling one of its constructors:

• fold_compound(seq)– Initialize with a single sequence, or two concatenated sequences sep-
arated by an ampersand character ‘&’ (for cofolding)

• fold_compound(aln)– Initialize with a sequence alignment aln stored as a list of sequences
(with gap characters)

The resulting object has a list of attached methods which in most cases directly correspond to
functions that mainly operate on the corresponding C data structure:

• type()– Get the type of the fold_compound (See RNA.fc_type)

• length()– Get the length of the sequence(s) or alignment stored within the fold_compound

type

The type of the RNA.fold_compound().

Currently possible values are RNA.FC_TYPE_SINGLE, and RNA.FC_TYPE_COMPARATIVE

Warning: Do not edit this attribute, it will be automagically set by the corresponding get() meth-
ods for the RNA.fold_compound(). The value specified in this attribute dictates the set of other
attributes to use within this data structure.

Type
const vrna_fc_type_e

length

The length of the sequence (or sequence alignment)

Type
unsigned int

cutpoint

The position of the (cofold) cutpoint within the provided sequence. If there is no cutpoint, this field
will be set to -1.

Type
int

strand_number

The strand number a particular nucleotide is associated with.

Type
list-like(unsigned int)

9.7. The RNA Python module 721

ViennaRNA, Release 2.6.4

strand_order

The strand order, i.e. permutation of current concatenated sequence.

Type
list-like(unsigned int)

strand_order_uniq

The strand order array where identical sequences have the same ID.

Type
list-like(unsigned int)

strand_start

The start position of a particular strand within the current concatenated sequence.

Type
list-like(unsigned int)

strand_end

The end (last) position of a particular strand within the current concatenated sequence.

Type
list-like(unsigned int)

strands

Number of interacting strands.

Type
unsigned int

nucleotides

Set of nucleotide sequences.

Type
vrna_seq_t *

alignment

Set of alignments.

Type
vrna_msa_t *

hc

The hard constraints data structure used for structure prediction.

Type
vrna_hc_t *

matrices

The MFE DP matrices.

Type
vrna_mx_mfe_t *

exp_matrices

The PF DP matrices

Type
vrna_mx_pf_t *

params

The precomputed free energy contributions for each type of loop.

Type
param

722 Chapter 9. Python API

ViennaRNA, Release 2.6.4

exp_params

The precomputed free energy contributions as Boltzmann factors

Type
exp_param

iindx

DP matrix accessor

Type
int *

jindx

DP matrix accessor

Type
int *

stat_cb

Recursion status callback (usually called just before, and after recursive computations in the library.

See also:
RNA.recursion_status, RNA.fold_compound.add_callback

Type
vrna_recursion_status_f

auxdata

A pointer to auxiliary, user-defined data.

See also:
RNA.fold_compound.add_auxdata, RNA.fold_compound

Type
void *

free_auxdata

A callback to free auxiliary user data whenever the fold_compound itself is free’d.

See also:
RNA.fold_compound , RNA.auxdata_free

Type
vrna_auxdata_free_f

domains_struc

Additional structured domains.

Type
vrna_sd_t *

domains_up

Additional unstructured domains.

Type
vrna_ud_t *

aux_grammar

Additional decomposition grammar rules.

Type
vrna_gr_aux_t *

9.7. The RNA Python module 723

ViennaRNA, Release 2.6.4

sequence

The input sequence string.

Warning: Only available if

type==RNA.FC_TYPE_SINGLE

Type
string

sequence_encoding

Numerical encoding of the input sequence.

See also:
RNA.sequence_encode

Warning: Only available if

type==RNA.FC_TYPE_SINGLE

Type
list-like(int)

encoding5

Type
list-like(int)

encoding3

Type
list-like(int)

sequence_encoding2

Type
list-like(int)

ptype

Pair type array.

Contains the numerical encoding of the pair type for each pair (i,j) used in MFE, Partition function and
Evaluation computations.

Note: This array is always indexed via jindx, in contrast to previously different indexing between mfe
and pf variants!

Warning: Only available if

type==RNA.FC_TYPE_SINGLE

See also:
RNA.idx_col_wise, RNA.ptypes

Type
string

724 Chapter 9. Python API

ViennaRNA, Release 2.6.4

ptype_pf_compat

ptype array indexed via iindx

Deprecated since version 2.6.3: This attribute will vanish in the future! It’s meant for backward com-
patibility only!

Warning: Only available if

type==RNA.FC_TYPE_SINGLE

Type
string

sc

The soft constraints for usage in structure prediction and evaluation.

Warning: Only available if

type==RNA.FC_TYPE_SINGLE

Type
vrna_sc_t *

sequences

The aligned sequences.

Note: The end of the alignment is indicated by a NULL pointer in the second dimension

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
char **

n_seq

The number of sequences in the alignment.

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
unsigned int

cons_seq

The consensus sequence of the aligned sequences.

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

9.7. The RNA Python module 725

ViennaRNA, Release 2.6.4

Type
string

S_cons

Numerical encoding of the consensus sequence.

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
list-like(int)

S

Numerical encoding of the sequences in the alignment.

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
short **

S5

S5[s][i] holds next base 5’ of i in sequence s.

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
short **

S3

Sl[s][i] holds next base 3’ of i in sequence s.

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
short **

Ss

Type
char **

a2s

Type
list-like(list-like(unsigned int))

726 Chapter 9. Python API

ViennaRNA, Release 2.6.4

pscore

Precomputed array of pair types expressed as pairing scores.

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
int *

pscore_local

Precomputed array of pair types expressed as pairing scores.

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
int **

pscore_pf_compat

Precomputed array of pair types expressed as pairing scores indexed via iindx.

Deprecated since version 2.6.3: This attribute will vanish in the future!

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
list-like(int)

scs

A set of soft constraints (for each sequence in the alignment)

Warning: Only available if

type==RNA.FC_TYPE_COMPARATIVE

Type
vrna_sc_t **

oldAliEn

Type
int

maxD1

Maximum allowed base pair distance to first reference.

Type
unsigned int

9.7. The RNA Python module 727

ViennaRNA, Release 2.6.4

maxD2

Maximum allowed base pair distance to second reference.

Type
unsigned int

reference_pt1

A pairtable of the first reference structure.

Type
list-like(int)

reference_pt2

A pairtable of the second reference structure.

Type
list-like(int)

referenceBPs1

Matrix containing number of basepairs of reference structure1 in interval [i,j].

Type
list-like(unsigned int)

referenceBPs2

Matrix containing number of basepairs of reference structure2 in interval [i,j].

Type
list-like(unsigned int)

bpdist

Matrix containing base pair distance of reference structure 1 and 2 on interval [i,j].

Type
list-like(unsigned int)

mm1

Maximum matching matrix, reference struct 1 disallowed.

Type
list-like(unsigned int)

mm2

Maximum matching matrix, reference struct 2 disallowed.

Type
list-like(unsigned int)

window_size

window size for local folding sliding window approach

Type
int

ptype_local

Pair type array (for local folding)

Type
char **

zscore_data

Data structure with settings for z-score computations.

Type
vrna_zsc_dat_t

728 Chapter 9. Python API

ViennaRNA, Release 2.6.4

@17

Type
union vrna_fc_s::@16

C++ includes

Type
ViennaRNA/fold_compound.h

E_ext_hp_loop(i, j)
Evaluate the free energy of an exterior hairpin loop and consider possible hard constraints.

Note: This function is polymorphic! The provided RNA.fold_compound() may be of type
RNA.FC_TYPE_SINGLE or RNA.FC_TYPE_COMPARATIVE

E_ext_int_loop(i, j)

E_hp_loop(i, j)
Evaluate the free energy of a hairpin loop and consider hard constraints if they apply.

This function evaluates the free energy of a hairpin loop

In case the base pair is not allowed due to a constraint conflict, this function returns INF.

Parameters
• i (int) – The 5’ nucleotide of the base pair (3’ to evaluate the pair as exterior hairpin

loop)

• j (int) – The 3’ nucleotide of the base pair (5’ to evaluate the pair as exterior hairpin
loop)

Returns
The free energy of the hairpin loop in 10cal/mol

Return type
int

Note: This function is polymorphic! The provided RNA.fold_compound() may be of type
RNA.FC_TYPE_SINGLE or RNA.FC_TYPE_COMPARATIVE

E_int_loop(i, j)

E_stack(i, j)

MEA(fold_compound self)→ char
MEA(fold_compound self, double gamma)→ char *

Compute a MEA (maximum expected accuracy) structure.

The algorithm maximizes the expected accuracy

𝐴(𝑆) =
∑︁

(𝑖,𝑗)∈𝑆

2𝛾𝑝𝑖𝑗 +
∑︁
𝑖/∈𝑆

𝑝𝑢𝑖

Higher values of 𝛾 result in more base pairs of lower probability and thus higher sensitivity. Low values
of 𝛾 result in structures containing only highly likely pairs (high specificity). The code of the MEA
function also demonstrates the use of sparse dynamic programming scheme to reduce the time and
memory complexity of folding.

Precondition
RNA.fold_compound.pf() must be executed on input parameter fc

9.7. The RNA Python module 729

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes
This function is attached as overloaded method **MEA**(gamma = 1.) to objects of
type fold_compound. Note, that it returns the MEA structure and MEA value as a tuple
(MEA_structure, MEA)

Parameters
• gamma (double) – The weighting factor for base pairs vs. unpaired nucleotides

• mea (list-like(double)) – A pointer to a variable where the MEA value will be
written to

Returns
An MEA structure (or NULL on any error)

Return type
string

add_auxdata(fold_compound self, PyObject * data, PyObject * PyFuncOrNone=Py_None)→ PyObject
*

Add auxiliary data to the RNA.fold_compound().

This function allows one to bind arbitrary data to a RNA.fold_compound() which may later on be used
by one of the callback functions, e.g. RNA.recursion_status(). To allow for proper cleanup of the mem-
ory occupied by this auxiliary data, the user may also provide a pointer to a cleanup function that free’s
the corresponding memory. This function will be called automatically when the RNA.fold_compound()
is free’d with RNA.fold_compound_free().

Parameters
• data (void *) – A pointer to an arbitrary data structure

• f (RNA.auxdata_free) – A pointer to function that free’s memory occupied by the
arbitrary data (May be NULL)

See also:
RNA.auxdata_free

Note: Before attaching the arbitrary data pointer, this function will call the RNA.auxdata_free() on
any pre-existing data that is already attached.

add_callback(fold_compound self, PyObject * PyFunc)→ PyObject *
Add a recursion status callback to the RNA.fold_compound().

Binding a recursion status callback function to a RNA.fold_compound() allows one to perform arbitrary
operations just before, or after an actual recursive computations, e.g. MFE prediction, is performed by
the RNAlib. The callback function will be provided with a pointer to its RNA.fold_compound(), and a
status message. Hence, it has complete access to all variables that incluence the recursive computations.

Parameters
f (RNA.recursion_status) – The pointer to the recursion status callback function

See also:
RNA.recursion_status, RNA.fold_compound , RNA.STATUS_MFE_PRE, RNA.STATUS_MFE_POST,
RNA.STATUS_PF_PRE, RNA.STATUS_PF_POST

backtrack(fold_compound self, unsigned int length)→ char
backtrack(fold_compound self)→ char *

Backtrack an MFE (sub)structure.

This function allows one to backtrack the MFE structure for a (sub)sequence

730 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Precondition
Requires pre-filled MFE dynamic programming matrices, i.e. one has to call

RNA.fold_compound.mfe() prior to
calling this function

SWIG Wrapper Notes
This function is attached as overloaded method backtrack() to objects of type fold_compound
with default parameter length equal to the total length of the RNA.

Parameters
• length (unsigned int) – The length of the subsequence, starting from the 5’ end

• structure (string) – A pointer to the character array where the secondary structure
in dot-bracket notation will be written to. (Must have size of at least $p length + 1)

Returns
The minimum free energy (MFE) for the specified length in kcal/mol and a corresponding
secondary structure in dot-bracket notation (stored in structure)

Return type
float

See also:
RNA.fold_compound.mfe, RNA.fold_compound.pbacktrack5

Note: On error, the function returns INF / 100. and stores the empty string in structure.

bpp()

centroid(fold_compound self)→ char *
Get the centroid structure of the ensemble.

The centroid is the structure with the minimal average distance to all other structures < 𝑑(𝑆) >=∑︀
(𝑖,𝑗)∈𝑆(1 − 𝑝𝑖𝑗) +

∑︀
(𝑖,𝑗)/∈𝑆 𝑝𝑖𝑗 Thus, the centroid is simply the structure containing all pairs with

𝑝𝑖𝑗 > 0.5 The distance of the centroid to the ensemble is written to the memory adressed by dist.

Parameters
dist (list-like(double)) – A pointer to the distance variable where the centroid
distance will be written to

Returns
The centroid structure of the ensemble in dot-bracket notation (NULL on error)

Return type
string

commands_apply(fold_compound self, cmd commands, unsigned int options=)→ int
Apply a list of commands to a RNA.fold_compound().

Parameters
• commands (RNA.cmd()) – The commands to apply

• options (unsigned int) – Options to limit the type of commands read from the file

Returns
The number of commands successfully applied

Return type
int

9.7. The RNA Python module 731

ViennaRNA, Release 2.6.4

constraints_add(fold_compound self, char const * constraint, unsigned int options=)
Add constraints to a RNA.fold_compound() data structure.

Use this function to add/update the hard/soft constraints The function allows for passing a string
‘constraint’ that can either be a filename that points to a constraints definition file or it may be
a pseudo dot-bracket notation indicating hard constraints. For the latter, the user has to pass the
RNA.CONSTRAINT_DB option. Also, the user has to specify, which characters are allowed to be
interpreted as constraints by passing the corresponding options via the third parameter.

The following is an example for adding hard constraints given in pseudo dot-bracket notation. Here,
fc is the RNA.fold_compound() object, structure is a char array with the hard constraint in dot-bracket
notation, and enforceConstraints is a flag indicating whether or not constraints for base pairs should be
enforced instead of just doing a removal of base pair that conflict with the constraint.

In constrat to the above, constraints may also be read from file:

Parameters
• constraint (string) – A string with either the filename of the constraint definitions

or a pseudo dot-bracket notation of the hard constraint. May be NULL.

• options (unsigned int) – The option flags

See also:
RNA.fold_compound.hc_add_from_db, RNA.fold_compound.hc_add_up, RNA.
hc_add_up_batch, RNA.hc_add_bp_unspecific, RNA.fold_compound.hc_add_bp,
RNA.fold_compound.hc_init, RNA.fold_compound.sc_set_up, RNA.fold_compound.
sc_set_bp, RNA.fold_compound.sc_add_SHAPE_deigan, RNA.fold_compound.
sc_add_SHAPE_zarringhalam , RNA.hc_free, RNA.sc_free, RNA.CONSTRAINT_DB, RNA.
CONSTRAINT_DB_DEFAULT, RNA.CONSTRAINT_DB_PIPE, RNA.CONSTRAINT_DB_DOT, RNA.
CONSTRAINT_DB_X, RNA.CONSTRAINT_DB_ANG_BRACK, RNA.CONSTRAINT_DB_RND_BRACK,
RNA.CONSTRAINT_DB_INTRAMOL, RNA.CONSTRAINT_DB_INTERMOL, RNA.CONSTRAINT_DB_GQUAD

db_from_probs()

ensemble_defect(*args)
Compute the Ensemble Defect for a given target structure.

This is a wrapper around RNA.ensemble_defect_pt(). Given a target structure 𝑠, compute the average
dissimilarity of a randomly drawn structure from the ensemble, i.e.:

𝐸𝐷(𝑠) = 1 − 1

𝑛

∑︁
𝑖𝑗,(𝑖,𝑗)∈𝑠

𝑝𝑖𝑗 −
1

𝑛

∑︁
𝑖

(1 − 𝑠𝑖)𝑞𝑖

with sequence length 𝑛, the probability 𝑝𝑖𝑗 of a base pair (𝑖, 𝑗), the probability 𝑞𝑖 = 1 −
∑︀

𝑗 𝑝𝑖𝑗 of
nucleotide 𝑖 being unpaired, and the indicator variable 𝑠𝑖 = 1 if ∃(𝑖, 𝑗) ∈ 𝑠, and 𝑠𝑖 = 0 otherwise.

Precondition
The RNA.fold_compound() input parameter fc must contain a valid base pair probability matrix.
This means that partition function and base pair probabilities must have been computed using fc
before execution of this function!

SWIG Wrapper Notes
This function is attached as method ensemble_defect() to objects of type fold_compound. Note
that the SWIG wrapper takes a structure in dot-bracket notation and converts it into a pair
table using RNA.ptable_from_string(). The resulting pair table is then internally passed to
RNA.ensemble_defect_pt(). To control which kind of matching brackets will be used dur-
ing conversion, the optional argument options can be used. See also the description of
RNA.ptable_from_string() for available options. (default: RNA.BRACKETS_RND).

Parameters
structure (string) – A target structure in dot-bracket notation

732 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Returns
The ensemble defect with respect to the target structure, or -1. upon failure, e.g. pre-
conditions are not met

Return type
double

See also:
RNA.fold_compound.pf , RNA.pairing_probs, RNA.ensemble_defect_pt

eval_covar_structure(structure)
Calculate the pseudo energy derived by the covariance scores of a set of aligned sequences.

Consensus structure prediction is driven by covariance scores of base pairs in rows of the provided
alignment. This function allows one to retrieve the total amount of this covariance pseudo energy
scores. The RNA.fold_compound() does not need to contain any DP matrices, but requires all most
basic init values as one would get from a call like this:

SWIG Wrapper Notes
This function is attached as method eval_covar_structure() to objects of type fold_compound

Parameters
structure (string) – Secondary (consensus) structure in dot-bracket notation

Returns
The covariance pseudo energy score of the input structure given the input sequence align-
ment in kcal/mol

Return type
float

See also:
RNA.fold_compound_comparative, RNA.fold_compound.eval_structure

Note: Accepts RNA.fold_compound() of type RNA.FC_TYPE_COMPARATIVE only!

eval_ext_hp_loop(i, j)
Evaluate free energy of an exterior hairpin loop.

eval_ext_stem(i, j)
Evaluate the free energy of a base pair in the exterior loop.

Evalue the free energy of a base pair connecting two nucleotides in the exterior loop and take hard
constraints into account.

Typically, this is simply dangling end contributions of the adjacent nucleotides, potentially a terminal
A-U mismatch penalty, and maybe some generic soft constraint contribution for that decomposition.

Parameters
• i (int) – 5’ position of the base pair

• j (int) – 3’ position of the base pair

Returns
Free energy contribution that arises when this pair is formed in the exterior loop

Return type
int

9.7. The RNA Python module 733

ViennaRNA, Release 2.6.4

Note: For dangles == 1 || 3 this function also evaluates the three additional pairs (i + 1, j), (i, j - 1),
and (i + 1, j - 1) and returns the minimum for all four possibilities in total.

eval_hp_loop(fold_compound self, int i, int j)→ int
Evaluate free energy of a hairpin loop.

SWIG Wrapper Notes
This function is attached as method eval_hp_loop() to objects of type fold_compound

Parameters
• i (int) – 5’-position of the base pair

• j (int) – 3’-position of the base pair

Returns
Free energy of the hairpin loop closed by (𝑖, 𝑗) in deka-kal/mol

Return type
int

Note: This function is polymorphic! The provided RNA.fold_compound() may be of type
RNA.FC_TYPE_SINGLE or RNA.FC_TYPE_COMPARATIVE

eval_int_loop(fold_compound self, int i, int j, int k, int l)→ int
Evaluate the free energy contribution of an interior loop with delimiting base pairs (𝑖, 𝑗) and (𝑘, 𝑙).

SWIG Wrapper Notes
This function is attached as method eval_int_loop() to objects of type fold_compound

Note: This function is polymorphic, i.e. it accepts RNA.fold_compound() of type
RNA.FC_TYPE_SINGLE as well as RNA.FC_TYPE_COMPARATIVE

eval_loop_pt(*args)
Calculate energy of a loop.

SWIG Wrapper Notes
This function is attached as method eval_loop_pt() to objects of type fold_compound

Parameters
• i (int) – position of covering base pair

• pt (const short *) – the pair table of the secondary structure

Returns
free energy of the loop in 10cal/mol

Return type
int

eval_move(structure, m1, m2)
Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

SWIG Wrapper Notes
This function is attached as method eval_move() to objects of type fold_compound

734 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Parameters
• structure (string) – secondary structure in dot-bracket notation

• m1 (int) – first coordinate of base pair

• m2 (int) – second coordinate of base pair

Returns
energy change of the move in kcal/mol (INF / 100. upon any error)

Return type
float

See also:
RNA.fold_compound.eval_move_pt

eval_move_pt(*args)
Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

SWIG Wrapper Notes
This function is attached as method eval_move_pt() to objects of type fold_compound

Parameters
• pt (list-like(int)) – the pair table of the secondary structure

• m1 (int) – first coordinate of base pair

• m2 (int) – second coordinate of base pair

Returns
energy change of the move in 10cal/mol

Return type
int

See also:
RNA.fold_compound.eval_move

eval_structure(structure)
Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given pair of structure and sequence (alignment). Model
details, energy parameters, and possibly soft constraints are used as provided via the parameter ‘fc’.
The RNA.fold_compound() does not need to contain any DP matrices, but requires all most basic init
values as one would get from a call like this:

SWIG Wrapper Notes
This function is attached as method eval_structure() to objects of type fold_compound

Parameters
structure (string) – Secondary structure in dot-bracket notation

Returns
The free energy of the input structure given the input sequence in kcal/mol

Return type
float

9.7. The RNA Python module 735

ViennaRNA, Release 2.6.4

See also:
RNA.fold_compound.eval_structure_pt, RNA.fold_compound.eval_structure_verbose,
RNA.fold_compound.eval_structure_pt_verbose, RNA.fold_compound , RNA.
fold_compound_comparative, RNA.fold_compound.eval_covar_structure

Note: Accepts RNA.fold_compound() of type RNA.FC_TYPE_SINGLE and
RNA.FC_TYPE_COMPARATIVE

eval_structure_pt(*args)
Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is
provided in pair_table format as obtained from RNA.ptable(). Model details, energy parameters, and
possibly soft constraints are used as provided via the parameter ‘fc’. The fold_compound does not need
to contain any DP matrices, but all the most basic init values as one would get from a call like this:

SWIG Wrapper Notes
This function is attached as method eval_structure_pt() to objects of type fold_compound

Parameters
pt (const short *) – Secondary structure as pair_table

Returns
The free energy of the input structure given the input sequence in 10cal/mol

Return type
int

See also:
RNA.ptable, RNA.fold_compound.eval_structure, RNA.fold_compound.
eval_structure_pt_verbose

eval_structure_pt_verbose(*args)
Calculate the free energy of an already folded RNA.

This function is a simplyfied version of RNA.eval_structure_simple_v() that uses the default verbosity
level.

SWIG Wrapper Notes
This function is attached as method eval_structure_pt_verbose() to objects of type
fold_compound

Parameters
• pt (const short *) – Secondary structure as pair_table

• file (FILE *) – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in 10cal/mol

Return type
int

See also:
RNA.eval_structure_pt_v, RNA.ptable, RNA.fold_compound.eval_structure_pt, RNA.
fold_compound.eval_structure_verbose

736 Chapter 9. Python API

ViennaRNA, Release 2.6.4

eval_structure_verbose(structure, nullfile=None)
Calculate the free energy of an already folded RNA and print contributions on a per-loop base.

This function is a simplyfied version of RNA.eval_structure_v() that uses the default verbosity level.

SWIG Wrapper Notes
This function is attached as method eval_structure_verbose() to objects of type fold_compound

Parameters
• structure (string) – Secondary structure in dot-bracket notation

• file (FILE *) – A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

Return type
float

See also:
RNA.fold_compound.eval_structure_pt, RNA.fold_compound.eval_structure_verbose,
RNA.fold_compound.eval_structure_pt_verbose

exp_E_ext_stem(i, j)
Evaluate a stem branching off the exterior loop (Boltzmann factor version)

Given a base pair (𝑖, 𝑗) encoded by type, compute the energy contribution including dangling-
end/terminal-mismatch contributions. Instead of returning the energy contribution per-se, this function
returns the corresponding Boltzmann factor. If either of the adjacent nucleotides (𝑖 − 1) and (𝑗 + 1)
must not contribute stacking energy, the corresponding encoding must be −1.

Parameters
• type (unsigned int) – The base pair encoding

• n5d (int) – The encoded nucleotide directly adjacent at the 5’ side of the base pair
(may be -1)

• n3d (int) – The encoded nucleotide directly adjacent at the 3’ side of the base pair
(may be -1)

• p (RNA.exp_param() *) – The pre-computed energy parameters (Boltzmann factor
version)

Returns
The Boltzmann weighted energy contribution of the introduced exterior-loop stem

Return type
double

See also:
RNA.E_ext_stem

exp_E_hp_loop(i, j)
High-Level function for hairpin loop energy evaluation (partition function variant)

See also:
RNA.fold_compound.E_hp_loop

Note: This function is polymorphic! The provided RNA.fold_compound() may be of type
RNA.FC_TYPE_SINGLE or RNA.FC_TYPE_COMPARATIVE

9.7. The RNA Python module 737

ViennaRNA, Release 2.6.4

exp_E_int_loop(i, j)

exp_E_interior_loop(i, j, k, l)

property exp_matrices

property exp_params

exp_params_rescale(*args)
Rescale Boltzmann factors for partition function computations.

This function may be used to (automatically) rescale the Boltzmann factors used in partition function
computations. Since partition functions over subsequences can easily become extremely large, the
RNAlib internally rescales them to avoid numerical over- and/or underflow. Therefore, a proper scaling
factor 𝑠 needs to be chosen that in turn is then used to normalize the corresponding partition functions
𝑞[𝑖, 𝑗] = 𝑞[𝑖, 𝑗]/𝑠(𝑗−𝑖+1).

This function provides two ways to automatically adjust the scaling factor.

1. Automatic guess

2. Automatic adjustment according to MFE

Passing NULL as second parameter activates the automatic guess mode. Here, the scaling factor is
recomputed according to a mean free energy of 184.3*length cal for random sequences. On the other
hand, if the MFE for a sequence is known, it can be used to recompute a more robust scaling factor,
since it represents the lowest free energy of the entire ensemble of structures, i.e. the highest Boltzmann
factor. To activate this second mode of automatic adjustment according to MFE, a pointer to the MFE
value needs to be passed as second argument. This value is then taken to compute the scaling factor
as 𝑠 = 𝑒𝑥𝑝((𝑠𝑓𝑎𝑐𝑡 *𝑀𝐹𝐸)/𝑘𝑇/𝑙𝑒𝑛𝑔𝑡ℎ), where sfact is an additional scaling weight located in the
RNA.md() data structure of exp_params in fc.

Note: This recomputation only takes place if the pf_scale attribute of the exp_params data structure
contained in fc has a value below 1.0.

The computed scaling factor 𝑠 will be stored as pf_scale attribute of the exp_params data structure in
fc.

SWIG Wrapper Notes
This function is attached to RNA.fc() objects as overloaded exp_params_rescale() method.

When no parameter is passed to this method, the resulting action is the same as passing NULL
as second parameter to RNA.fold_compound.exp_params_rescale(), i.e. default scaling of the
partition function. Passing an energy in kcal/mol, e.g. as retrieved by a previous call to the mfe()
method, instructs all subsequent calls to scale the partition function accordingly.

Parameters
mfe (list-like(double)) – A pointer to the MFE (in kcal/mol) or NULL

See also:
RNA.fold_compound.exp_params_subst, RNA.md , RNA.exp_param , RNA.fold_compound

exp_params_reset(md=None)
Reset Boltzmann factors for partition function computations within a RNA.fold_compound() according
to provided, or default model details.

This function allows one to rescale Boltzmann factors for subsequent partition function computations
according to a set of model details, e.g. temperature values. To do so, the caller provides either a
pointer to a set of model details to be used for rescaling, or NULL if global default setting should be
used.

738 Chapter 9. Python API

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes
This function is attached to RNA.fc() objects as overloaded exp_params_reset() method.

When no parameter is passed to this method, the resulting action is the same as passing NULL
as second parameter to RNA.fold_compound.exp_params_reset(), i.e. global default model set-
tings are used. Passing an object of type RNA.md() resets the fold compound according to the
specifications stored within the RNA.md() object.

Parameters
md (RNA.md() *) – A pointer to the new model details (or NULL for reset to defaults)

See also:
RNA.fold_compound.params_reset, RNA.fold_compound.exp_params_subst, RNA.
fold_compound.exp_params_rescale

exp_params_subst(par)
Update the energy parameters for subsequent partition function computations.

This function can be used to properly assign new energy parameters for partition function computations
to a RNA.fold_compound(). For this purpose, the data of the provided pointer params will be copied
into fc and a recomputation of the partition function scaling factor is issued, if the pf_scale attribute of
params is less than 1.0.

Passing NULL as second argument leads to a reset of the energy parameters within fc to their default
values

SWIG Wrapper Notes
This function is attached to RNA.fc() objects as overloaded exp_params_subst() method.

When no parameter is passed, the resulting action is the same as passing NULL as second pa-
rameter to RNA.fold_compound.exp_params_subst(), i.e. resetting the parameters to the global
defaults.

Parameters
params (RNA.exp_param() *) – A pointer to the new energy parameters

See also:
RNA.fold_compound.exp_params_reset, RNA.fold_compound.exp_params_rescale, RNA.
exp_param , RNA.md , RNA.exp_params

file_commands_apply(fold_compound self, std::string filename, unsigned int options=)→ int

property hc

hc_add_bp(fold_compound self, int i, int j, unsigned int
option=VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS)

Favorize/Enforce a certain base pair (i,j)

Parameters
• i (int) – The 5’ located nucleotide position of the base pair (1-based)

• j (int) – The 3’ located nucleotide position of the base pair (1-based)

• option (unsigned char) – The options flag indicating how/where to store the hard
constraints

See also:
RNA.fold_compound.hc_add_bp_nonspecific, RNA.fold_compound.hc_add_up,
RNA.fold_compound.hc_init, RNA.CONSTRAINT_CONTEXT_EXT_LOOP, RNA.
CONSTRAINT_CONTEXT_HP_LOOP, RNA.CONSTRAINT_CONTEXT_INT_LOOP, RNA.
CONSTRAINT_CONTEXT_INT_LOOP_ENC, RNA.CONSTRAINT_CONTEXT_MB_LOOP, RNA.

9.7. The RNA Python module 739

ViennaRNA, Release 2.6.4

CONSTRAINT_CONTEXT_MB_LOOP_ENC, RNA.CONSTRAINT_CONTEXT_ENFORCE, RNA.
CONSTRAINT_CONTEXT_ALL_LOOPS

hc_add_bp_nonspecific(fold_compound self, int i, int d, unsigned int
option=VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS)

Enforce a nucleotide to be paired (upstream/downstream)

Parameters
• i (int) – The position that needs to stay unpaired (1-based)

• d (int) – The direction of base pairing (𝑑 < 0: pairs upstream, 𝑑 > 0: pairs down-
stream, 𝑑 == 0: no direction)

• option (unsigned char) – The options flag indicating in which loop type context
the pairs may appear

See also:
RNA.fold_compound.hc_add_bp, RNA.fold_compound.hc_add_up, RNA.fold_compound.
hc_init, RNA.CONSTRAINT_CONTEXT_EXT_LOOP, RNA.CONSTRAINT_CONTEXT_HP_LOOP,
RNA.CONSTRAINT_CONTEXT_INT_LOOP, RNA.CONSTRAINT_CONTEXT_INT_LOOP_ENC,
RNA.CONSTRAINT_CONTEXT_MB_LOOP, RNA.CONSTRAINT_CONTEXT_MB_LOOP_ENC, RNA.
CONSTRAINT_CONTEXT_ALL_LOOPS

hc_add_from_db(fold_compound self, char const * constraint, unsigned int options=)→ int
Add hard constraints from pseudo dot-bracket notation.

This function allows one to apply hard constraints from a pseudo dot-bracket notation.
The options parameter controls, which characters are recognized by the parser. Use the
RNA.CONSTRAINT_DB_DEFAULT convenience macro, if you want to allow all known characters

SWIG Wrapper Notes
This function is attached as method hc_add_from_db() to objects of type fold_compound

Parameters
• constraint (string) – A pseudo dot-bracket notation of the hard constraint.

• options (unsigned int) – The option flags

See also:
RNA.CONSTRAINT_DB_PIPE, RNA.CONSTRAINT_DB_DOT, RNA.CONSTRAINT_DB_X,
RNA.CONSTRAINT_DB_ANG_BRACK, RNA.CONSTRAINT_DB_RND_BRACK, RNA.
CONSTRAINT_DB_INTRAMOL, RNA.CONSTRAINT_DB_INTERMOL, RNA.CONSTRAINT_DB_GQUAD

hc_add_up(fold_compound self, int i, unsigned int
option=VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS)

Make a certain nucleotide unpaired.

Parameters
• i (int) – The position that needs to stay unpaired (1-based)

• option (unsigned char) – The options flag indicating how/where to store the hard
constraints

See also:
RNA.fold_compound.hc_add_bp, RNA.fold_compound.hc_add_bp_nonspecific,
RNA.fold_compound.hc_init, RNA.CONSTRAINT_CONTEXT_EXT_LOOP, RNA.
CONSTRAINT_CONTEXT_HP_LOOP, RNA.CONSTRAINT_CONTEXT_INT_LOOP, RNA.
CONSTRAINT_CONTEXT_MB_LOOP, RNA.CONSTRAINT_CONTEXT_ALL_LOOPS

740 Chapter 9. Python API

ViennaRNA, Release 2.6.4

hc_init()

Initialize/Reset hard constraints to default values.

This function resets the hard constraints to their default values, i.e. all positions may be unpaired in
all contexts, and base pairs are allowed in all contexts, if they resemble canonical pairs. Previously set
hard constraints will be removed before initialization.

SWIG Wrapper Notes
This function is attached as method hc_init() to objects of type fold_compound

See also:
RNA.fold_compound.hc_add_bp, RNA.fold_compound.hc_add_bp_nonspecific, RNA.
fold_compound.hc_add_up

heat_capacity(fold_compound self, float T_min=0., float T_max=100., float T_increment=1., unsigned
int mpoints=2)→ HeatCapacityVector

Compute the specific heat for an RNA.

This function computes an RNAs specific heat in a given temperature range from the partition function
by numeric differentiation. The result is returned as a list of pairs of temperature in C and specific heat
in Kcal/(Mol*K).

Users can specify the temperature range for the computation from T_min to T_max, as well as the
increment step size T_increment. The latter also determines how many times the partition function is
computed. Finally, the parameter mpoints determines how smooth the curve should be. The algorithm
itself fits a parabola to 2·𝑚𝑝𝑜𝑖𝑛𝑡𝑠+1 data points to calculate 2nd derivatives. Increasing this parameter
produces a smoother curve.

SWIG Wrapper Notes
This function is attached as overloaded method heat_capacity() to objects of type fold_compound.
If the optional function arguments T_min, T_max, T_increment, and mpoints are omitted, they
default to 0.0, 100.0, 1.0 and 2, respectively.

Parameters
• T_min (float) – Lowest temperature in C

• T_max (float) – Highest temperature in C

• T_increment (float) – Stepsize for temperature incrementation in C (a reasonable
choice might be 1C)

• mpoints (unsigned int) – The number of interpolation points to calculate 2nd
derivative (a reasonable choice might be 2, min: 1, max: 100)

Returns
A list of pairs of temperatures and corresponding heat capacity or NULL upon any failure.
The last entry of the list is indicated by a temperature field set to a value smaller than
T_min

Return type
RNA.heat_capacity() *

See also:
RNA.fold_compound.heat_capacity_cb, RNA.heat_capacity, RNA.heat_capacity

heat_capacity_cb(fold_compound self, float T_min, float T_max, float T_increment, unsigned int
mpoints, PyObject * PyFunc, PyObject * data=Py_None)→ PyObject *

Compute the specific heat for an RNA (callback variant)

Similar to RNA.fold_compound.heat_capacity(), this function computes an RNAs specific heat in a
given temperature range from the partition function by numeric differentiation. Instead of returning a
list of temperature/specific heat pairs, however, this function returns the individual results through a
callback mechanism. The provided function will be called for each result and passed the corresponding

9.7. The RNA Python module 741

ViennaRNA, Release 2.6.4

temperature and specific heat values along with the arbitrary data as provided through the data pointer
argument.

Users can specify the temperature range for the computation from T_min to T_max, as well as the
increment step size T_increment. The latter also determines how many times the partition function is
computed. Finally, the parameter mpoints determines how smooth the curve should be. The algorithm
itself fits a parabola to 2·𝑚𝑝𝑜𝑖𝑛𝑡𝑠+1 data points to calculate 2nd derivatives. Increasing this parameter
produces a smoother curve.

SWIG Wrapper Notes
This function is attached as method heat_capacity_cb() to objects of type fold_compound

Parameters
• T_min (float) – Lowest temperature in C

• T_max (float) – Highest temperature in C

• T_increment (float) – Stepsize for temperature incrementation in C (a reasonable
choice might be 1C)

• mpoints (unsigned int) – The number of interpolation points to calculate 2nd
derivative (a reasonable choice might be 2, min: 1, max: 100)

• cb (RNA.heat_capacity) – The user-defined callback function that receives the in-
dividual results

• data (void *) – An arbitrary data structure that will be passed to the callback in
conjunction with the results

Returns
Returns 0 upon failure, and non-zero otherwise

Return type
int

See also:
RNA.fold_compound.heat_capacity, RNA.heat_capacity

property iindx

property jindx

property length

property matrices

maxmimum_matching()

mean_bp_distance()

Get the mean base pair distance in the thermodynamic ensemble.

< 𝑑 >=
∑︁
𝑎,𝑏

𝑝𝑎𝑝𝑏𝑑(𝑆𝑎, 𝑆𝑏)

this can be computed from the pair probs 𝑝𝑖𝑗 as

< 𝑑 >=
∑︁
𝑖𝑗

𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)

SWIG Wrapper Notes
This function is attached as method mean_bp_distance() to objects of type fold_compound

Returns
The mean pair distance of the structure ensemble

742 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
double

mfe()

Compute minimum free energy and an appropriate secondary structure of an RNA sequence, or RNA
sequence alignment.

Depending on the type of the provided RNA.fold_compound(), this function predicts the MFE for a
single sequence (or connected component of multiple sequences), or an averaged MFE for a sequence
alignment. If backtracking is activated, it also constructs the corresponding secondary structure, or
consensus structure. Therefore, the second parameter, structure, has to point to an allocated block of
memory with a size of at least strlen(sequence) + 1 to store the backtracked MFE structure. (For
consensus structures, this is the length of the alignment + 1. If NULL is passed, no backtracking will
be performed.

SWIG Wrapper Notes
This function is attached as method mfe() to objects of type fold_compound

Parameters
structure (string) – A pointer to the character array where the secondary structure in
dot-bracket notation will be written to (Maybe NULL)

Returns
the minimum free energy (MFE) in kcal/mol

Return type
float

See also:
RNA.fold_compound , RNA.fold_compound , RNA.fold , RNA.circfold , RNA.
fold_compound_comparative, RNA.alifold , RNA.circalifold

Note: This function is polymorphic. It accepts RNA.fold_compound() of type
RNA.FC_TYPE_SINGLE, and RNA.FC_TYPE_COMPARATIVE.

mfe_dimer(fold_compound self)→ char *
Compute the minimum free energy of two interacting RNA molecules.

The code is analog to the RNA.fold_compound.mfe() function.

Deprecated since version 2.6.3: This function is obsolete since RNA.fold_compound.mfe() can handle
complexes multiple sequences

since v2.5.0.
Use RNA.fold_compound.mfe() for connected component MFE instead and compute MFEs of
unconnected

states
separately.

SWIG Wrapper Notes
This function is attached as method mfe_dimer() to objects of type fold_compound

Parameters
structure (string) – Will hold the barcket dot structure of the dimer molecule

Returns
minimum free energy of the structure

Return type
float

9.7. The RNA Python module 743

ViennaRNA, Release 2.6.4

See also:
RNA.fold_compound.mfe

mfe_window(nullfile=None)
Local MFE prediction using a sliding window approach.

Computes minimum free energy structures using a sliding window approach, where base pairs may not
span outside the window. In contrast to RNA.fold_compound.mfe(), where a maximum base pair span
may be set using the RNA.md().max_bp_span attribute and one globally optimal structure is predicted,
this function uses a sliding window to retrieve all locally optimal structures within each window. The
size of the sliding window is set in the RNA.md().window_size attribute, prior to the retrieval of the
RNA.fold_compound() using RNA.fold_compound() with option RNA.OPTION_WINDOW

The predicted structures are written on-the-fly, either to stdout, if a NULL pointer is passed as file
parameter, or to the corresponding filehandle.

SWIG Wrapper Notes
This function is attached as method mfe_window() to objects of type fold_compound

Parameters
file (FILE *) – The output file handle where predictions are written to (maybe NULL)

See also:
RNA.fold_compound , RNA.fold_compound.mfe_window_zscore, RNA.fold_compound.mfe,
RNA.Lfold , RNA.Lfoldz, RNA.OPTION_WINDOW, RNA.md , RNA.md

mfe_window_cb(fold_compound self, PyObject * PyFunc, PyObject * data=Py_None)→ float

mfe_window_zscore(min_z, nullfile=None)
Local MFE prediction using a sliding window approach (with z-score cut-off)

Computes minimum free energy structures using a sliding window approach, where
base pairs may not span outside the window. This function is the z-score version of
RNA.fold_compound.mfe_window(), i.e. only predictions above a certain z-score cut-off value
are printed. As for RNA.fold_compound.mfe_window(), the size of the sliding window is set in
the RNA.md().window_size attribute, prior to the retrieval of the RNA.fold_compound() using
RNA.fold_compound() with option RNA.OPTION_WINDOW.

The predicted structures are written on-the-fly, either to stdout, if a NULL pointer is passed as file
parameter, or to the corresponding filehandle.

Parameters
• min_z (double) – The minimal z-score for a predicted structure to appear in the output

• file (FILE *) – The output file handle where predictions are written to (maybe
NULL)

See also:
RNA.fold_compound , RNA.fold_compound.mfe_window_zscore, RNA.fold_compound.mfe,
RNA.Lfold , RNA.Lfoldz, RNA.OPTION_WINDOW, RNA.md , RNA.md

mfe_window_zscore_cb(fold_compound self, double min_z, PyObject * PyFunc, PyObject *
data=Py_None)→ float

move_neighbor_diff(self, pt, move, options=4 | 8)→ varArrayMove
move_neighbor_diff(fold_compound self, varArrayShort pt, move move, PyObject * PyFunc, PyObject

* data=Py_None, unsigned int options=(4|8))→ int
Apply a move to a secondary structure and indicate which neighbors have changed consequentially.

Similar to RNA.move_neighbor_diff_cb(), this function applies a move to a secondary structure and
reports back the neighbors of the current structure become affected by this move. Instead of executing
a callback for each of the affected neighbors, this function compiles two lists of neighbor moves, one

744 Chapter 9. Python API

ViennaRNA, Release 2.6.4

that is returned and consists of all moves that are novel or may have changed in energy, and a second,
invalid_moves, that consists of all the neighbor moves that become invalid, respectively.

Parameters
• ptable (list-like(int)) – The current structure as pair table

• move (RNA.move()) – The move to apply

• invalid_moves (RNA.move() **) – The address of a move list where the function
stores those moves that become invalid

• options (unsigned int) – Options to modify the behavior of this function, .e.g
available move set

Returns
A list of moves that might have changed in energy or are novel compared to the structure
before application of the move

Return type
RNA.move() *

neighbors(fold_compound self, varArrayShort pt, unsigned int options=(4|8))→ varArrayMove
Generate neighbors of a secondary structure.

This function allows one to generate all structural neighbors (according to a particular move set) of an
RNA secondary structure. The neighborhood is then returned as a list of transitions / moves required
to transform the current structure into the actual neighbor.

SWIG Wrapper Notes
This function is attached as an overloaded method neighbors() to objects of type fold_compound.
The optional parameter options defaults to RNA.MOVESET_DEFAULT if it is omitted.

Parameters
• pt (const short *) – The pair table representation of the structure

• options (unsigned int) – Options to modify the behavior of this function, e.g.
available move set

Returns
Neighbors as a list of moves / transitions (the last element in the list has both of its fields
set to 0)

Return type
RNA.move() *

See also:
RNA.neighbors_successive, RNA.move_apply, RNA.MOVESET_INSERTION, RNA.
MOVESET_DELETION, RNA.MOVESET_SHIFT, RNA.MOVESET_DEFAULT

property params

params_reset(md=None)
Reset free energy parameters within a RNA.fold_compound() according to provided, or default model
details.

This function allows one to rescale free energy parameters for subsequent structure prediction or eval-
uation according to a set of model details, e.g. temperature values. To do so, the caller provides either
a pointer to a set of model details to be used for rescaling, or NULL if global default setting should be
used.

SWIG Wrapper Notes
This function is attached to RNA.fc() objects as overloaded params_reset() method.

9.7. The RNA Python module 745

ViennaRNA, Release 2.6.4

When no parameter is passed to this method, the resulting action is the same as passing NULL as
second parameter to RNA.fold_compound.params_reset(), i.e. global default model settings are
used. Passing an object of type RNA.md() resets the fold compound according to the specifications
stored within the RNA.md() object.

Parameters
md (RNA.md() *) – A pointer to the new model details (or NULL for reset to defaults)

See also:
RNA.fold_compound.exp_params_reset, RNA.params_subs

params_subst(par=None)
Update/Reset energy parameters data structure within a RNA.fold_compound().

Passing NULL as second argument leads to a reset of the energy parameters within fc to their default
values. Otherwise, the energy parameters provided will be copied over into fc.

SWIG Wrapper Notes
This function is attached to RNA.fc() objects as overloaded params_subst() method.

When no parameter is passed, the resulting action is the same as passing NULL as second param-
eter to RNA.fold_compound.params_subst(), i.e. resetting the parameters to the global defaults.

Parameters
par (RNA.param() *) – The energy parameters used to substitute those within fc
(Maybe NULL)

See also:
RNA.fold_compound.params_reset, RNA.param , RNA.md , RNA.params

path(fold_compound self, IntVector pt, unsigned int steps, unsigned int options=)→ MoveVector
path(fold_compound self, varArrayShort pt, unsigned int steps, unsigned int options=)→ MoveVector

Compute a path, store the final structure, and return a list of transition moves from the start to the final
structure.

This function computes, given a start structure in pair table format, a transition path, updates
the pair table to the final structure of the path. Finally, if not requested otherwise by using the
RNA.PATH_NO_TRANSITION_OUTPUT flag in the options field, this function returns a list of in-
dividual transitions that lead from the start to the final structure if requested.

The currently available transition paths are

• Steepest Descent / Gradient walk (flag: RNA.PATH_STEEPEST_DESCENT)

• Random walk (flag: RNA.PATH_RANDOM)

The type of transitions must be set through the options parameter

SWIG Wrapper Notes
This function is attached as an overloaded method path() to objects of type fold_compound. The
optional parameter options defaults to RNA.PATH_DEFAULT if it is omitted.

Parameters
• pt (list-like(int)) – The pair table containing the start structure. Used to update

to the final structure after execution of this function

• options (unsigned int) – Options to modify the behavior of this function

Returns
A list of transition moves (default), or NULL (if options &
RNA.PATH_NO_TRANSITION_OUTPUT)

746 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
RNA.move() *

See also:
RNA.fold_compound.path_gradient, RNA.fold_compound.path_random , RNA.ptable,
RNA.ptable_copy, RNA.fold_compound , RNA.PATH_RANDOM, RNA.MOVESET_DEFAULT, RNA.
MOVESET_SHIFT, RNA.PATH_NO_TRANSITION_OUTPUT

Note: Since the result is written to the input structure you may want to use RNA.ptable_copy() before
calling this function to keep the initial structure

path_direct(fold_compound self, std::string s1, std::string s2, int maxE=INT_MAX-1, path_options
options=None)→ PathVector

Determine an optimal direct (re-)folding path between two secondary structures.

This function is similar to RNA.path_direct(), but allows to specify an upper-bound for the saddle point
energy. The underlying algorithms will stop determining an (optimal) (re-)folding path, if none can be
found that has a saddle point below the specified upper-bound threshold maxE.

SWIG Wrapper Notes
This function is attached as an overloaded method path_direct() to objects of type fold_compound.
The optional parameter maxE defaults to #INT_MAX - 1 if it is omitted, while the optional pa-
rameter options defaults to NULL. In case the function did not find a path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥

it returns an empty list.

Parameters
• s1 (string) – The start structure in dot-bracket notation

• s2 (string) – The target structure in dot-bracket notation

• maxE (int) – Upper bound for the saddle point along the (re-)folding path

• options (RNA.path_options()) – An options data structure that specifies the path
heuristic and corresponding settings (maybe NULL)

Returns
An optimal (re-)folding path between the two input structures

Return type
RNA.path() *

Warning: The argument maxE enables one to specify an upper bound, or maximum free energy
for the saddle point between the two input structures. If no path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 is found, the
function simply returns NULL

See also:
RNA.fold_compound.path_direct, RNA.path_options_findpath , RNA.
path_options_free, RNA.path_free

path_findpath(fold_compound self, std::string s1, std::string s2, int width=1, int maxE=INT_MAX-1)
→ PathVector

path_findpath_saddle(fold_compound self, std::string s1, std::string s2, int width=1, int
maxE=INT_MAX)→ PyObject *

Find energy of a saddle point between 2 structures (search only direct path)

This function uses an inplementation of the findpath algorithm [8] for near-optimal direct refolding
path prediction.

9.7. The RNA Python module 747

ViennaRNA, Release 2.6.4

Model details, and energy parameters are used as provided via the parameter ‘fc’. The
RNA.fold_compound() does not require memory for any DP matrices, but requires all most basic init
values as one would get from a call like this:

SWIG Wrapper Notes
This function is attached as an overloaded method path_findpath_saddle() to objects of type
fold_compound. The optional parameter width defaults to 1 if it is omitted, while the optional
parameter maxE defaults to INF. In case the function did not find a path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 the
function returns a NULL object, i.e. undef for Perl and None for Python.

Parameters
• s1 (string) – The start structure in dot-bracket notation

• s2 (string) – The target structure in dot-bracket notation

• width (int) – A number specifying how many strutures are being kept at each step
during the search

• maxE (int) – An upper bound for the saddle point energy in 10cal/mol

Returns
The saddle energy in 10cal/mol

Return type
int

Warning: The argument maxE (𝐸𝑚𝑎𝑥) enables one to specify an upper bound, or maximum free
energy for the saddle point between the two input structures. If no path with 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 < 𝐸𝑚𝑎𝑥 is
found, the function simply returns maxE

See also:
RNA.path_findpath_saddle, RNA.fold_compound , RNA.fold_compound , RNA.
path_findpath

path_gradient(fold_compound self, IntVector pt, unsigned int options=)→ MoveVector
path_gradient(fold_compound self, varArrayShort pt, unsigned int options=)→ MoveVector

Compute a steepest descent / gradient path, store the final structure, and return a list of transition moves
from the start to the final structure.

This function computes, given a start structure in pair table format, a steepest descent path, updates
the pair table to the final structure of the path. Finally, if not requested otherwise by using the
RNA.PATH_NO_TRANSITION_OUTPUT flag in the options field, this function returns a list of in-
dividual transitions that lead from the start to the final structure if requested.

SWIG Wrapper Notes
This function is attached as an overloaded method path_gradient() to objects of type
fold_compound. The optional parameter options defaults to RNA.PATH_DEFAULT if it is omit-
ted.

Parameters
• pt (list-like(int)) – The pair table containing the start structure. Used to update

to the final structure after execution of this function

• options (unsigned int) – Options to modify the behavior of this function

Returns
A list of transition moves (default), or NULL (if options &
RNA.PATH_NO_TRANSITION_OUTPUT)

748 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
RNA.move() *

See also:
RNA.fold_compound.path_random , RNA.fold_compound.path , RNA.ptable, RNA.
ptable_copy, RNA.fold_compound , RNA.MOVESET_SHIFT, RNA.PATH_NO_TRANSITION_OUTPUT

Note: Since the result is written to the input structure you may want to use RNA.ptable_copy() before
calling this function to keep the initial structure

path_random(fold_compound self, IntVector pt, unsigned int steps, unsigned int options=)→ MoveVector
path_random(fold_compound self, varArrayShort pt, unsigned int steps, unsigned int options=)→

MoveVector
Generate a random walk / path of a given length, store the final structure, and return a list of transition
moves from the start to the final structure.

This function generates, given a start structure in pair table format, a random walk / path, updates
the pair table to the final structure of the path. Finally, if not requested otherwise by using the
RNA.PATH_NO_TRANSITION_OUTPUT flag in the options field, this function returns a list of in-
dividual transitions that lead from the start to the final structure if requested.

SWIG Wrapper Notes
This function is attached as an overloaded method path_gradient() to objects of type
fold_compound. The optional parameter options defaults to RNA.PATH_DEFAULT if it is omit-
ted.

Parameters
• pt (list-like(int)) – The pair table containing the start structure. Used to update

to the final structure after execution of this function

• steps (unsigned int) – The length of the path, i.e. the total number of transitions /
moves

• options (unsigned int) – Options to modify the behavior of this function

Returns
A list of transition moves (default), or NULL (if options &
RNA.PATH_NO_TRANSITION_OUTPUT)

Return type
RNA.move() *

See also:
RNA.fold_compound.path_gradient, RNA.fold_compound.path , RNA.ptable, RNA.
ptable_copy, RNA.fold_compound , RNA.MOVESET_SHIFT, RNA.PATH_NO_TRANSITION_OUTPUT

Note: Since the result is written to the input structure you may want to use RNA.ptable_copy() before
calling this function to keep the initial structure

pbacktrack(fold_compound self)→ char
pbacktrack(fold_compound self, unsigned int num_samples, unsigned int options=)→ StringVector
pbacktrack(fold_compound self, unsigned int num_samples, pbacktrack_mem nr_memory, unsigned int

options=)→ StringVector
pbacktrack(self, num_samples, PyFunc, data=Py_None, options=0)→ unsigned int

Parameters

9.7. The RNA Python module 749

ViennaRNA, Release 2.6.4

• num_samples (unsigned int) –

• PyFunc (PyObject *) –

• data (PyObject *) –

• options (unsigned int) –

• pbacktrack(self –

• num_samples –

• PyFunc –

• data –

• nr_memory (vrna_pbacktrack_mem_t *) –

• int (options=0) -> unsigned) –

• num_samples –

• PyFunc –

• data –

• nr_memory –

• options –

Sample a secondary structure from the Boltzmann ensemble according its probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a secondary
structure.

The structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according to
its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Precondition
Unique multiloop decomposition has to be active upon creation of fc with RNA.fold_compound()
or similar. This can be done easily by passing RNA.fold_compound() a model details parameter
with RNA.md().uniq_ML = 1. RNA.fold_compound.pf() has to be called first to fill the partition

function
matrices

SWIG Wrapper Notes
This function is attached as overloaded method pbacktrack() to objects of type fold_compound.
See also Python Examples - Boltzmann Sampling

Returns
A sampled secondary structure in dot-bracket notation (or NULL on error)

Return type
string

See also:
RNA.fold_compound.pbacktrack5, RNA.pbacktrack_num, RNA.pbacktrack_cb

Note: This function is polymorphic. It accepts RNA.fold_compound() of type
RNA.FC_TYPE_SINGLE, and RNA.FC_TYPE_COMPARATIVE.

750 Chapter 9. Python API

ViennaRNA, Release 2.6.4

pbacktrack5(fold_compound self, unsigned int length)→ char
pbacktrack5(fold_compound self, unsigned int num_samples, unsigned int length, unsigned int

options=)→ StringVector
pbacktrack5(fold_compound self, unsigned int num_samples, unsigned int length, pbacktrack_mem

nr_memory, unsigned int options=)→ StringVector
pbacktrack5(fold_compound self, unsigned int num_samples, unsigned int length, PyObject * PyFunc,

PyObject * data=Py_None, unsigned int options=0)→ unsigned int
pbacktrack5(fold_compound self, unsigned int num_samples, unsigned int length, PyObject * PyFunc,

PyObject * data, pbacktrack_mem nr_memory, unsigned int options=0)→ unsigned int
Sample a secondary structure of a subsequence from the Boltzmann ensemble according its probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a secondary
structure. The parameter length specifies the length of the substructure starting from the 5’ end.

The structure 𝑠 with free energy 𝐸(𝑠) is picked from the Boltzmann distributed ensemble according to
its probability

𝑝(𝑠) =
𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇)

𝑍

with partition function 𝑍 =
∑︀

𝑠 𝑒𝑥𝑝(−𝐸(𝑠)/𝑘𝑇), Boltzmann constant 𝑘 and thermodynamic temper-
ature 𝑇 .

Precondition
Unique multiloop decomposition has to be active upon creation of fc with RNA.fold_compound()
or similar. This can be done easily by passing RNA.fold_compound() a model details parameter
with RNA.md().uniq_ML = 1. RNA.fold_compound.pf() has to be called first to fill the partition

function
matrices

SWIG Wrapper Notes
This function is attached as overloaded method pbacktrack5() to objects of type fold_compound.
See also Python Examples - Boltzmann Sampling

Parameters
length (unsigned int) – The length of the subsequence to consider (starting with 5’
end)

Returns
A sampled secondary structure in dot-bracket notation (or NULL on error)

Return type
string

See also:
RNA.pbacktrack5_num, RNA.pbacktrack5_cb, RNA.fold_compound.pbacktrack

Note: This function is polymorphic. It accepts RNA.fold_compound() of type
RNA.FC_TYPE_SINGLE, and RNA.FC_TYPE_COMPARATIVE.

pbacktrack_sub(fold_compound self, unsigned int start, unsigned int end)→ char
pbacktrack_sub(fold_compound self, unsigned int num_samples, unsigned int start, unsigned int end,

unsigned int options=)→ StringVector
pbacktrack_sub(fold_compound self, unsigned int num_samples, unsigned int start, unsigned int end,

pbacktrack_mem nr_memory, unsigned int options=)→ StringVector
pbacktrack_sub(fold_compound self, unsigned int num_samples, unsigned int start, unsigned int end,

PyObject * PyFunc, PyObject * data=Py_None, unsigned int options=0)→ unsigned
int

9.7. The RNA Python module 751

ViennaRNA, Release 2.6.4

pbacktrack_sub(fold_compound self, unsigned int num_samples, unsigned int start, unsigned int end,
PyObject * PyFunc, PyObject * data, pbacktrack_mem nr_memory, unsigned int
options=0)→ unsigned int

Sample a secondary structure of a subsequence from the Boltzmann ensemble according its probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a secondary
structure. The parameters start and end specify the interval [𝑠𝑡𝑎𝑟𝑡 : 𝑒𝑛𝑑] of the subsequence with
1 ≤ 𝑠𝑡𝑎𝑟𝑡 < 𝑒𝑛𝑑 ≤ 𝑛 for sequence length 𝑛, the structure 𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 should be drawn from.

The resulting substructure 𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 with free energy 𝐸(𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑) is picked from the Boltzmann
distributed sub ensemble of all structures within the interval [𝑠𝑡𝑎𝑟𝑡 : 𝑒𝑛𝑑] according to its probability

𝑝(𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑) =
𝑒𝑥𝑝(−𝐸(𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑)/𝑘𝑇)

𝑍𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑

with partition function 𝑍𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 =
∑︀

𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑
𝑒𝑥𝑝(−𝐸(𝑠𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑)/𝑘𝑇), Boltzmann constant 𝑘 and

thermodynamic temperature 𝑇 .

Precondition
Unique multiloop decomposition has to be active upon creation of fc with RNA.fold_compound()
or similar. This can be done easily by passing RNA.fold_compound() a model details parameter
with RNA.md().uniq_ML = 1. RNA.fold_compound.pf() has to be called first to fill the partition

function
matrices

SWIG Wrapper Notes
This function is attached as overloaded method pbacktrack_sub() to objects of type
fold_compound. See also Python Examples - Boltzmann Sampling

Parameters
• start (unsigned int) – The start of the subsequence to consider, i.e. 5’-end

position(1-based)

• end (unsigned int) – The end of the subsequence to consider, i.e. 3’-end position
(1-based)

Returns
A sampled secondary structure in dot-bracket notation (or NULL on error)

Return type
string

See also:
RNA.pbacktrack_sub_num, RNA.pbacktrack_sub_cb, RNA.fold_compound.pbacktrack

Note: This function is polymorphic. It accepts RNA.fold_compound() of type
RNA.FC_TYPE_SINGLE, and RNA.FC_TYPE_COMPARATIVE.

pf()

Compute the partition function 𝑄 for a given RNA sequence, or sequence alignment.

If structure is not a NULL pointer on input, it contains on return a string consisting of the letters ” . , | {
} () ” denoting bases that are essentially unpaired, weakly paired, strongly paired without preference,
weakly upstream (downstream) paired, or strongly up- (down-)stream paired bases, respectively. If the
model’s compute_bpp is set to 0 base pairing probabilities will not be computed (saving CPU time),
otherwise after calculations took place pr will contain the probability that bases i and j pair.

SWIG Wrapper Notes
This function is attached as method pf() to objects of type fold_compound

752 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Parameters
structure (string) – A pointer to the character array where position-wise pairing
propensity will be stored. (Maybe NULL)

Returns
The ensemble free energy 𝐺 = −𝑅𝑇 · log(𝑄) in kcal/mol

Return type
double

See also:
RNA.fold_compound , RNA.fold_compound , RNA.pf_fold , RNA.pf_circfold, RNA.
fold_compound_comparative, RNA.pf_alifold, RNA.pf_circalifold, RNA.db_from_probs,
RNA.exp_params, RNA.aln_pinfo

Note: This function is polymorphic. It accepts RNA.fold_compound() of type
RNA.FC_TYPE_SINGLE, and RNA.FC_TYPE_COMPARATIVE. Also, this function may re-
turn INF / 100. in case of contradicting constraints or numerical over-/underflow. In the latter case, a
corresponding warning will be issued to stdout.

pf_dimer()

Calculate partition function and base pair probabilities of nucleic acid/nucleic acid dimers.

This is the cofold partition function folding.

SWIG Wrapper Notes
This function is attached as method pf_dimer() to objects of type fold_compound

Parameters
structure (string) – Will hold the structure or constraints

Returns
RNA.dimer_pf() structure containing a set of energies needed for concentration compu-
tations.

Return type
RNA.dimer_pf()

See also:
RNA.fold_compound

Note: This function may return INF / 100. for the FA, FB, FAB, F0AB members of the output data
structure in case of contradicting constraints or numerical over-/underflow. In the latter case, a corre-
sponding warning will be issued to stdout.

plist_from_probs(fold_compound self, double cutoff)→ ElemProbVector
Create a RNA.ep() from base pair probability matrix.

The probability matrix provided via the RNA.fold_compound() is parsed and all pair probabilities
above the given threshold are used to create an entry in the plist

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be
used to stop looping over its entries

Parameters
cut_off (double) – The cutoff value

Returns
A pointer to the plist that is to be created

9.7. The RNA Python module 753

ViennaRNA, Release 2.6.4

Return type
RNA.ep() *

positional_entropy()

Compute a vector of positional entropies.

This function computes the positional entropies from base pair probabilities as

𝑆(𝑖) = −
∑︁
𝑗

𝑝𝑖𝑗 log(𝑝𝑖𝑗) − 𝑞𝑖 log(𝑞𝑖)

with unpaired probabilities 𝑞𝑖 = 1 −
∑︀

𝑗 𝑝𝑖𝑗 .

Low entropy regions have little structural flexibility and the reliability of the predicted structure is
high. High entropy implies many structural alternatives. While these alternatives may be functionally
important, they make structure prediction more difficult and thus less reliable.

Precondition
This function requires pre-computed base pair probabilities! Thus, RNA.fold_compound.pf()
must

be called
beforehand.

SWIG Wrapper Notes
This function is attached as method positional_entropy() to objects of type fold_compound

Returns
A 1-based vector of positional entropies 𝑆(𝑖). (position 0 contains the sequence length)

Return type
list-like(double)

pr_energy(e)

SWIG Wrapper Notes
This function is attached as method pr_energy() to objects of type fold_compound

pr_structure(structure)
Compute the equilibrium probability of a particular secondary structure.

The probability 𝑝(𝑠) of a particular secondary structure 𝑠 can be computed as

𝑝(𝑠) =
𝑒𝑥𝑝(−𝛽𝐸(𝑠)

𝑍

from the structures free energy 𝐸(𝑠) and the partition function

𝑍 =
∑︁
𝑠

𝑒𝑥𝑝(−𝛽𝐸(𝑠)), with 𝛽 =
1

𝑅𝑇

where 𝑅 is the gas constant and 𝑇 the thermodynamic temperature.

Precondition
The fold compound fc must have went through a call to RNA.fold_compound.pf() to fill the

dynamic
programming matrices with the corresponding partition function.

SWIG Wrapper Notes
This function is attached as method pr_structure() to objects of type fold_compound

Parameters
structure (string) – The secondary structure to compute the probability for in dot-
bracket notation

754 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Returns
The probability of the input structure (range [0 : 1])

Return type
double

probs_window(fold_compound self, int ulength, unsigned int options, PyObject * PyFunc, PyObject *
data=Py_None)→ int

Compute various equilibrium probabilities under a sliding window approach.

This function applies a sliding window scan for the sequence provided with the argument fc and reports
back equilibrium probabilities through the callback function cb. The data reported to the callback
depends on the options flag.

Options: .. note:

The parameter `ulength` only affects computation and resulting data if␣
→˓unpaired probability
computations are requested through the `options` flag.

* RNA.PROBS_WINDOW_BPP - Trigger base pairing probabilities.
* RNA.PROBS_WINDOW_UP - Trigger unpaired probabilities.
* RNA.PROBS_WINDOW_UP_SPLIT - Trigger detailed unpaired probabilities␣
→˓split up into different

loop type contexts.

Options may be OR-ed together

Parameters
• ulength (int) – The maximal length of an unpaired segment (only for unpaired prob-

ability computations)

• cb (RNA.probs_window) – The callback function which collects the pair probability
data for further processing

• data (void *) – Some arbitrary data structure that is passed to the callback cb

• options (unsigned int) – Option flags to control the behavior of this function

Returns
0 on failure, non-zero on success

Return type
int

See also:
RNA.pfl_fold_cb, RNA.pfl_fold_up_cb

rotational_symmetry_db(structure)
Determine the order of rotational symmetry for a dot-bracket structure.

Given a (permutation of multiple) RNA strand(s) and a particular secondary structure in dot-bracket
notation, compute the degree of rotational symmetry. In case there is only a single linear RNA strand,
the structure always has degree 1, as there are no rotational symmetries due to the direction of the
nucleic acid sequence and the fixed positions of 5’ and 3’ ends. However, for circular RNAs, rotational
symmetries might arise if the sequence consists of a concatenation of 𝑘 identical subsequences.

If the argument positions is not NULL, the function stores an array of string start positions for rotational
shifts that map the string back onto itself. This array has length of order of rotational symmetry, i.e.
the number returned by this function. The first element positions`[0] always contains a shift value of
`0 representing the trivial rotation.

9.7. The RNA Python module 755

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes
This function is attached as method rotational_symmetry_db() to objects of type fold_compound
(i.e. RNA.fold_compound()). Thus, the first argument must be omitted. In contrast to our C-
implementation, this function doesn’t simply return the order of rotational symmetry of the sec-
ondary structure, but returns the list position of cyclic permutation shifts that result in a rotationally
symmetric structure. The length of the list then determines the order of rotational symmetry.

Parameters
• structure (string) – The dot-bracket structure the degree of rotational symmetry

is checked for

• positions (list-like(list-like(unsigned int))) – A pointer to an (unde-
fined) list of alternative string start positions that lead to an identity mapping (may be
NULL)

Returns
The degree of rotational symmetry of the structure (0 in case of any errors)

Return type
unsigned int

See also:
RNA.rotational_symmetry_db, RNA.rotational_symmetry_pos, RNA.
rotational_symmetry_pos_num

Note: Do not forget to release the memory occupied by positions after a successful execution of this
function.

sc_add_SHAPE_deigan(fold_compound self, DoubleVector reactivities, double m, double b, unsigned int
options=)→ int

Add SHAPE reactivity data as soft constraints (Deigan et al. method)

This approach of SHAPE directed RNA folding uses the simple linear ansatz

∆𝐺SHAPE(𝑖) = 𝑚 ln(SHAPE reactivity(𝑖) + 1) + 𝑏

to convert SHAPE reactivity values to pseudo energies whenever a nucleotide 𝑖 contributes to a stacked
pair. A positive slope𝑚 penalizes high reactivities in paired regions, while a negative intercept 𝑏 results
in a confirmatory `bonus’ free energy for correctly predicted base pairs. Since the energy evaluation of
a base pair stack involves two pairs, the pseudo energies are added for all four contributing nucleotides.
Consequently, the energy term is applied twice for pairs inside a helix and only once for pairs adja-
cent to other structures. For all other loop types the energy model remains unchanged even when the
experimental data highly disagrees with a certain motif.

SWIG Wrapper Notes
This function is attached as method sc_add_SHAPE_deigan() to objects of type fold_compound

Parameters
• reactivities (const double *) – A vector of normalized SHAPE reactivities

• m (double) – The slope of the conversion function

• b (double) – The intercept of the conversion function

• options (unsigned int) – The options flag indicating how/where to store the soft
constraints

Returns
1 on successful extraction of the method, 0 on errors

756 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
int

See also:
RNA.fold_compound.sc_remove, RNA.fold_compound.sc_add_SHAPE_zarringhalam , RNA.
sc_minimize_pertubation

Note: For further details, we refer to [7].

sc_add_SHAPE_deigan_ali(fold_compound self, StringVector shape_files, IntVector
shape_file_association, double m, double b, unsigned int options=)→ int

Add SHAPE reactivity data from files as soft constraints for consensus structure prediction (Deigan et
al. method)

SWIG Wrapper Notes
This function is attached as method sc_add_SHAPE_deigan_ali() to objects of type
fold_compound

Parameters
• shape_files (const char **) – A set of filenames that contain normalized SHAPE

reactivity data

• shape_file_association (const int *) – An array of integers that associate the
files with sequences in the alignment

• m (double) – The slope of the conversion function

• b (double) – The intercept of the conversion function

• options (unsigned int) – The options flag indicating how/where to store the soft
constraints

Returns
1 on successful extraction of the method, 0 on errors

Return type
int

sc_add_SHAPE_zarringhalam(fold_compound self, DoubleVector reactivities, double b, double
default_value, char const * shape_conversion, unsigned int options=)
→ int

Add SHAPE reactivity data as soft constraints (Zarringhalam et al. method)

This method first converts the observed SHAPE reactivity of nucleotide 𝑖 into a probability 𝑞𝑖 that
position 𝑖 is unpaired by means of a non-linear map. Then pseudo-energies of the form

∆𝐺SHAPE(𝑥, 𝑖) = 𝛽 |𝑥𝑖 − 𝑞𝑖|

are computed, where 𝑥𝑖 = 0 if position 𝑖 is unpaired and 𝑥𝑖 = 1 if 𝑖 is paired in a given secondary
structure. The parameter 𝛽 serves as scaling factor. The magnitude of discrepancy between prediction
and experimental observation is represented by |𝑥𝑖 − 𝑞𝑖|.

SWIG Wrapper Notes
This function is attached as method sc_add_SHAPE_zarringhalam() to objects of type
fold_compound

Parameters
• reactivities (const double *) – A vector of normalized SHAPE reactivities

• b (double) – The scaling factor 𝛽 of the conversion function

9.7. The RNA Python module 757

ViennaRNA, Release 2.6.4

• default_value (double) – The default value for a nucleotide where reactivity data
is missing for

• shape_conversion (string) – A flag that specifies how to convert reactivities to
probabilities

• options (unsigned int) – The options flag indicating how/where to store the soft
constraints

Returns
1 on successful extraction of the method, 0 on errors

Return type
int

See also:
RNA.fold_compound.sc_remove, RNA.fold_compound.sc_add_SHAPE_deigan, RNA.
sc_minimize_pertubation

Note: For further details, we refer to [33]

sc_add_bp(*args)
Add soft constraints for paired nucleotides.

SWIG Wrapper Notes
This function is attached as an overloaded method sc_add_bp() to objects of type
fold_compound. The method either takes arguments for a single base pair (i,j) with
the corresponding energy value:

or an entire 2-dimensional matrix with dimensions n x n that stores free energy contributions
for

any base pair (i,j) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛: In both variants, the options argument is optional can may be
omitted.

Parameters
• i (int) – The 5’ position of the base pair the soft constraint is added for

• j (int) – The 3’ position of the base pair the soft constraint is added for

• energy (double) – The free energy (soft-constraint) in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

• options (unsigned int) – The options flag indicating how/where to store the soft
constraints

Returns
Non-zero on successful application of the constraint, 0 otherwise.

Return type
int

See also:
RNA.fold_compound.sc_set_bp, RNA.fold_compound.sc_set_up, RNA.fold_compound.
sc_add_up

sc_add_bt(fold_compound self, PyObject * PyFunc)→ int
Bind a backtracking function pointer for generic soft constraint feature.

This function allows one to easily bind a function pointer to the soft constraint part RNA.sc() of the
RNA.fold_compound(). The provided function should be used for backtracking purposes in loop re-
gions that were altered via the generic soft constraint feature. It has to return an array of RNA.basepair()
data structures, were the last element in the list is indicated by a value of -1 in it’s i position.

758 Chapter 9. Python API

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes
This function is attached as method sc_add_bt() to objects of type fold_compound

Parameters
f (RNA.sc_bt) – A pointer to the function that returns additional base pairs

Returns
Non-zero on successful binding the callback function, 0 otherwise

Return type
int

See also:
RNA.fold_compound.sc_add_data, RNA.fold_compound.sc_add, RNA.fold_compound.
sc_add_exp

sc_add_data(fold_compound self, PyObject * data, PyObject * callback=Py_None)→ int
Add an auxiliary data structure for the generic soft constraints callback function.

SWIG Wrapper Notes
This function is attached as method sc_add_data() to objects of type fold_compound

Parameters
• data (void *) – A pointer to the data structure that holds required data for function

‘f’

• free_data (RNA.auxdata_free) – A pointer to a function that free’s the memory
occupied by data (Maybe NULL)

Returns
Non-zero on successful binding the data (and free-function), 0 otherwise

Return type
int

See also:
RNA.fold_compound.sc_add, RNA.fold_compound.sc_add_exp, RNA.fold_compound.
sc_add_bt

sc_add_exp_f(fold_compound self, PyObject * PyFunc)→ int
Bind a function pointer for generic soft constraint feature (PF version)

This function allows one to easily bind a function pointer and corresponding data structure to the soft
constraint part RNA.sc() of the RNA.fold_compound(). The function for evaluating the generic soft
constraint feature has to return a pseudo free energy �̂� as Boltzmann factor, i.e. 𝑒𝑥𝑝(−�̂�/𝑘𝑇). The
required unit for 𝐸 is 𝑐𝑎𝑙/𝑚𝑜𝑙.

SWIG Wrapper Notes
This function is attached as method sc_add_exp() to objects of type fold_compound

Parameters
exp (RNA.sc_exp) – A pointer to the function that evaluates the generic soft constraint
feature

Returns
Non-zero on successful binding the callback function, 0 otherwise

Return type
int

9.7. The RNA Python module 759

ViennaRNA, Release 2.6.4

See also:
RNA.fold_compound.sc_add_bt, RNA.fold_compound.sc_add, RNA.fold_compound.
sc_add_data

sc_add_f(fold_compound self, PyObject * callback)→ int
Bind a function pointer for generic soft constraint feature (MFE version)

This function allows one to easily bind a function pointer and corresponding data structure to the
soft constraint part RNA.sc() of the RNA.fold_compound(). The function for evaluating the generic
soft constraint feature has to return a pseudo free energy �̂� in 𝑑𝑎𝑐𝑎𝑙/𝑚𝑜𝑙, where 1𝑑𝑎𝑐𝑎𝑙/𝑚𝑜𝑙 =
10𝑐𝑎𝑙/𝑚𝑜𝑙.

SWIG Wrapper Notes
This function is attached as method sc_add() to objects of type fold_compound

Parameters
f (RNA.sc) – A pointer to the function that evaluates the generic soft constraint feature

Returns
Non-zero on successful binding the callback function, 0 otherwise

Return type
int

See also:
RNA.fold_compound.sc_add_data, RNA.fold_compound.sc_add_bt, RNA.fold_compound.
sc_add_exp

sc_add_hi_motif(fold_compound self, char const * seq, char const * structure, FLT_OR_DBL energy,
unsigned int options=)→ int

Add soft constraints for hairpin or interior loop binding motif.

Here is an example that adds a theophylline binding motif. Free energy contribution is derived from
𝑘𝑑 = 0.1𝜇𝑀 , taken from Jenison et al. 1994. At 1𝑀 concentration the corresponding binding free
energy amounts to −9.93 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙.

SWIG Wrapper Notes
This function is attached as method sc_add_hi_motif() to objects of type fold_compound

Parameters
• seq (string) – The sequence motif (may be interspaced by ‘&’ character

• structure (string) – The structure motif (may be interspaced by ‘&’ character

• energy (double) – The free energy of the motif (e.g. binding free energy)

• options (unsigned int) – Options

Returns
non-zero value if application of the motif using soft constraints was successful

Return type
int

sc_add_stack(fold_compound self, int i, double energy, unsigned int options=)→ int
sc_add_stack(fold_compound self, int i, DoubleVector energies, unsigned int options=)→ int

sc_add_up(*args)
Add soft constraints for unpaired nucleotides.

SWIG Wrapper Notes

760 Chapter 9. Python API

ViennaRNA, Release 2.6.4

This function is attached as an overloaded method sc_add_up() to objects of type
fold_compound. The method either takes arguments for a single nucleotide 𝑖 with the
corresponding energy value:

or an entire vector that stores free energy contributions for each nucleotide 𝑖 with

1 ≤ 𝑖 ≤ 𝑛: In both variants, the options argument is optional can may be omitted.

Parameters
• i (int) – The nucleotide position the soft constraint is added for

• energy (double) – The free energy (soft-constraint) in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

• options (unsigned int) – The options flag indicating how/where to store the soft
constraints

Returns
Non-zero on successful application of the constraint, 0 otherwise.

Return type
int

See also:
RNA.fold_compound.sc_set_up, RNA.fold_compound.sc_add_bp, RNA.fold_compound.
sc_set_bp

sc_init()

Initialize an empty soft constraints data structure within a RNA.fold_compound().

This function adds a proper soft constraints data structure to the RNA.fold_compound() data structure.
If soft constraints already exist within the fold compound, they are removed.

SWIG Wrapper Notes
This function is attached as method sc_init() to objects of type fold_compound

See also:
RNA.fold_compound.sc_set_bp, RNA.fold_compound.sc_set_up, RNA.fold_compound.
sc_add_SHAPE_deigan, RNA.fold_compound.sc_add_SHAPE_zarringhalam , RNA.
fold_compound.sc_remove, RNA.fold_compound.sc_add, RNA.fold_compound.sc_add_exp,
RNA.sc_add_pre, RNA.sc_add_post

Note: Accepts RNA.fold_compound() of type RNA.FC_TYPE_SINGLE and
RNA.FC_TYPE_COMPARATIVE

sc_mod(*args, **kwargs)
Prepare soft constraint callbacks for modified base as specified in JSON string.

This function takes a RNA.sc_mod_param() data structure as obtained from
RNA.sc_mod_read_from_json() or RNA.sc_mod_read_from_jsonfile() and prepares all require-
ments to acknowledge modified bases as specified in the provided params data structure. All
subsequent predictions will treat each modification site special and adjust energy contributions if
necessary.

SWIG Wrapper Notes
This function is attached as overloaded method sc_mod() to objects of type fold_compound with
default options = RNA.SC_MOD_DEFAULT

Parameters
• json – The JSON formatted string with the modified base parameters

9.7. The RNA Python module 761

ViennaRNA, Release 2.6.4

• modification_sites (const unsigned int *) – A list of modification site, i.e.
positions that contain the modified base (1-based, last element in the list indicated by
0)

• options (unsigned int) – A bitvector of options how to handle the input, e.g.
RNA.SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

Return type
int

See also:
RNA.sc_mod_read_from_json, RNA.sc_mod_read_from_jsonfile, RNA.fold_compound.
sc_mod_json, RNA.fold_compound.sc_mod_jsonfile, RNA.fold_compound.sc_mod_m6A ,
RNA.fold_compound.sc_mod_pseudouridine, RNA.fold_compound.sc_mod_inosine,
RNA.fold_compound.sc_mod_7DA , RNA.fold_compound.sc_mod_purine, RNA.
sc_mod_dihydrouridine, RNA.SC_MOD_CHECK_UNMOD, RNA.SC_MOD_SILENT, RNA.
SC_MOD_DEFAULT

sc_mod_7DA(*args, **kwargs)
Add soft constraint callbacks for 7-deaza-adenosine (7DA)

This is a convenience wrapper to add support for 7-deaza-adenosine using the soft constraint callback
mechanism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter
corrections are derived from [24].

SWIG Wrapper Notes
This function is attached as overloaded method sc_mod_7DA() to objects of type fold_compound
with default options = RNA.SC_MOD_DEFAULT

Parameters
• modification_sites (const unsigned int *) – A list of modification site, i.e.

positions that contain the modified base (1-based, last element in the list indicated by
0)

• options (unsigned int) – A bitvector of options how to handle the input, e.g.
RNA.SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

Return type
int

See also:
RNA.SC_MOD_CHECK_FALLBACK, RNA.SC_MOD_CHECK_UNMOD, RNA.SC_MOD_SILENT, RNA.
SC_MOD_DEFAULT

sc_mod_dihydrouridine(*args, **kwargs)
Add soft constraint callbacks for dihydrouridine.

This is a convenience wrapper to add support for dihydrouridine using the soft constraint callback
mechanism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter
corrections are derived from Rosetta/RECESS predictions.

SWIG Wrapper Notes
This function is attached as overloaded method sc_mod_dihydrouridine() to objects of type
fold_compound with default options = RNA.SC_MOD_DEFAULT

Parameters

762 Chapter 9. Python API

ViennaRNA, Release 2.6.4

• modification_sites (const unsigned int *) – A list of modification site, i.e.
positions that contain the modified base (1-based, last element in the list indicated by
0)

• options (unsigned int) – A bitvector of options how to handle the input, e.g.
RNA.SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

Return type
int

See also:
RNA.SC_MOD_CHECK_FALLBACK, RNA.SC_MOD_CHECK_UNMOD, RNA.SC_MOD_SILENT, RNA.
SC_MOD_DEFAULT

sc_mod_inosine(*args, **kwargs)
Add soft constraint callbacks for Inosine.

This is a convenience wrapper to add support for inosine using the soft constraint callback mechanism.
Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections
are derived from [30] and [31].

SWIG Wrapper Notes
This function is attached as overloaded method sc_mod_inosine() to objects of type
fold_compound with default options = RNA.SC_MOD_DEFAULT

Parameters
• modification_sites (const unsigned int *) – A list of modification site, i.e.

positions that contain the modified base (1-based, last element in the list indicated by
0)

• options (unsigned int) – A bitvector of options how to handle the input, e.g.
RNA.SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

Return type
int

See also:
RNA.SC_MOD_CHECK_FALLBACK, RNA.SC_MOD_CHECK_UNMOD, RNA.SC_MOD_SILENT, RNA.
SC_MOD_DEFAULT

sc_mod_json(*args, **kwargs)
Prepare soft constraint callbacks for modified base as specified in JSON string.

This function prepares all requirements to acknowledge modified bases as specified in the provided
json string. All subsequent predictions will treat each modification site special and adjust energy con-
tributions if necessary.

SWIG Wrapper Notes
This function is attached as overloaded method sc_mod_json() to objects of type fold_compound
with default options = RNA.SC_MOD_DEFAULT

Parameters
• json (string) – The JSON formatted string with the modified base parameters

9.7. The RNA Python module 763

ViennaRNA, Release 2.6.4

• modification_sites (const unsigned int *) – A list of modification site, i.e.
positions that contain the modified base (1-based, last element in the list indicated by
0)

• options (unsigned int) – A bitvector of options how to handle the input, e.g.
RNA.SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

Return type
int

See also:
RNA.fold_compound.sc_mod_jsonfile, RNA.fold_compound.sc_mod , RNA.fold_compound.
sc_mod_m6A , RNA.fold_compound.sc_mod_pseudouridine, RNA.fold_compound.
sc_mod_inosine, RNA.fold_compound.sc_mod_7DA , RNA.fold_compound.sc_mod_purine,
RNA.fold_compound.sc_mod_dihydrouridine, RNA.SC_MOD_CHECK_FALLBACK, RNA.
SC_MOD_CHECK_UNMOD, RNA.SC_MOD_SILENT, RNA.SC_MOD_DEFAULT, JSON, Parameter

sc_mod_jsonfile(*args, **kwargs)
Prepare soft constraint callbacks for modified base as specified in JSON string.

Similar to RNA.fold_compound.sc_mod_json(), this function prepares all requirements to acknowl-
edge modified bases as specified in the provided json file. All subsequent predictions will treat each
modification site special and adjust energy contributions if necessary.

SWIG Wrapper Notes
This function is attached as overloaded method sc_mod_jsonfile() to objects of type
fold_compound with default options = RNA.SC_MOD_DEFAULT

Parameters
• json – The JSON formatted string with the modified base parameters

• modification_sites (const unsigned int *) – A list of modification site, i.e.
positions that contain the modified base (1-based, last element in the list indicated by
0)

Returns
Number of sequence positions modified base parameters will be used for

Return type
int

See also:
RNA.fold_compound.sc_mod_json, RNA.fold_compound.sc_mod , RNA.fold_compound.
sc_mod_m6A , RNA.fold_compound.sc_mod_pseudouridine, RNA.fold_compound.
sc_mod_inosine, RNA.fold_compound.sc_mod_7DA , RNA.fold_compound.sc_mod_purine,
RNA.fold_compound.sc_mod_dihydrouridine, RNA.SC_MOD_CHECK_FALLBACK, RNA.
SC_MOD_CHECK_UNMOD, RNA.SC_MOD_SILENT, RNA.SC_MOD_DEFAULT, JSON, Parameter

sc_mod_m6A(*args, **kwargs)
Add soft constraint callbacks for N6-methyl-adenosine (m6A)

This is a convenience wrapper to add support for m6A using the soft constraint callback mechanism.
Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections
are derived from [17].

SWIG Wrapper Notes
This function is attached as overloaded method sc_mod_m6A() to objects of type fold_compound
with default options = RNA.SC_MOD_DEFAULT

764 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Parameters
• modification_sites (const unsigned int *) – A list of modification site, i.e.

positions that contain the modified base (1-based, last element in the list indicated by
0)

• options (unsigned int) – A bitvector of options how to handle the input, e.g.
RNA.SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

Return type
int

See also:
RNA.SC_MOD_CHECK_FALLBACK, RNA.SC_MOD_CHECK_UNMOD, RNA.SC_MOD_SILENT, RNA.
SC_MOD_DEFAULT

sc_mod_pseudouridine(*args, **kwargs)
Add soft constraint callbacks for Pseudouridine.

This is a convenience wrapper to add support for pseudouridine using the soft constraint callback mech-
anism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter
corrections are derived from [15].

SWIG Wrapper Notes
This function is attached as overloaded method sc_mod_pseudouridine() to objects of type
fold_compound with default options = RNA.SC_MOD_DEFAULT

Parameters
• modification_sites (const unsigned int *) – A list of modification site, i.e.

positions that contain the modified base (1-based, last element in the list indicated by
0)

• options (unsigned int) – A bitvector of options how to handle the input, e.g.
RNA.SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

Return type
int

See also:
RNA.SC_MOD_CHECK_FALLBACK, RNA.SC_MOD_CHECK_UNMOD, RNA.SC_MOD_SILENT, RNA.
SC_MOD_DEFAULT

sc_mod_purine(*args, **kwargs)
Add soft constraint callbacks for Purine (a.k.a. nebularine)

This is a convenience wrapper to add support for Purine using the soft constraint callback mechanism.
Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections
are derived from [16].

SWIG Wrapper Notes
This function is attached as overloaded method sc_mod_purine() to objects of type
fold_compound with default options = RNA.SC_MOD_DEFAULT

Parameters

9.7. The RNA Python module 765

ViennaRNA, Release 2.6.4

• modification_sites (const unsigned int *) – A list of modification site, i.e.
positions that contain the modified base (1-based, last element in the list indicated by
0)

• options (unsigned int) – A bitvector of options how to handle the input, e.g.
RNA.SC_MOD_DEFAULT

Returns
Number of sequence positions modified base parameters will be used for

Return type
int

See also:
RNA.SC_MOD_CHECK_FALLBACK, RNA.SC_MOD_CHECK_UNMOD, RNA.SC_MOD_SILENT, RNA.
SC_MOD_DEFAULT

sc_remove()

Remove soft constraints from RNA.fold_compound().

SWIG Wrapper Notes
This function is attached as method sc_remove() to objects of type fold_compound

Note: Accepts RNA.fold_compound() of type RNA.FC_TYPE_SINGLE and
RNA.FC_TYPE_COMPARATIVE

sc_set_bp(fold_compound self, DoubleDoubleVector constraints, unsigned int options=)→ int
Set soft constraints for paired nucleotides.

SWIG Wrapper Notes
This function is attached as method sc_set_bp() to objects of type fold_compound

Parameters
• constraints (const FLT_OR_DBL **) – A two-dimensional array of pseudo free

energies in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

• options (unsigned int) – The options flag indicating how/where to store the soft
constraints

Returns
Non-zero on successful application of the constraint, 0 otherwise.

Return type
int

See also:
RNA.fold_compound.sc_add_bp, RNA.fold_compound.sc_set_up, RNA.fold_compound.
sc_add_up

Note: This function replaces any pre-exisitng soft constraints with the ones supplied in constraints.

sc_set_stack(fold_compound self, DoubleVector constraints, unsigned int options=)→ int
sc_set_stack(fold_compound self, DoubleDoubleVector constraints, unsigned int options=)→ int

sc_set_up(fold_compound self, DoubleVector constraints, unsigned int options=)→ int
Set soft constraints for unpaired nucleotides.

SWIG Wrapper Notes
This function is attached as method sc_set_up() to objects of type fold_compound

766 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Parameters
• constraints (const FLT_OR_DBL *) – A vector of pseudo free energies in
𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

• options (unsigned int) – The options flag indicating how/where to store the soft
constraints

Returns
Non-zero on successful application of the constraint, 0 otherwise.

Return type
int

See also:
RNA.fold_compound.sc_add_up, RNA.fold_compound.sc_set_bp, RNA.fold_compound.
sc_add_bp

Note: This function replaces any pre-exisitng soft constraints with the ones supplied in constraints.

property sequence

sequence_add(*args, **kwargs)

property sequence_encoding

property sequence_encoding2

sequence_prepare()

sequence_remove(i)

sequence_remove_all()

property strand_end

property strand_number

property strand_order

property strand_start

property strands

subopt(fold_compound self, int delta, int sorted=1, FILE * nullfile=None)→ SuboptVector
Returns list of subopt structures or writes to fp.

This function produces all suboptimal secondary structures within ‘delta’ * 0.01 kcal/mol of the opti-
mum, see [32]. The results are either directly written to a ‘fp’ (if ‘fp’ is not NULL), or (fp==NULL)
returned in a RNA.subopt_solution() * list terminated by an entry were the ‘structure’ member is NULL.

SWIG Wrapper Notes
This function is attached as method subopt() to objects of type fold_compound

Parameters
• delta (int) –

• sorted (int) – Sort results by energy in ascending order

• fp (FILE *) –

Return type
RNA.subopt_solution() *

9.7. The RNA Python module 767

ViennaRNA, Release 2.6.4

See also:
RNA.fold_compound.subopt_cb, RNA.fold_compound.subopt_zuker

Note: This function requires all multibranch loop DP matrices for unique multibranch loop back-
tracing. Therefore, the supplied RNA.fold_compound()`fc` (argument 1) must be initialized with
RNA.md().uniq_ML = 1, for instance like this:

subopt_cb(fold_compound self, int delta, PyObject * PyFunc, PyObject * data=Py_None)→ PyObject *
Generate suboptimal structures within an energy band arround the MFE.

This is the most generic implementation of the suboptimal structure generator according to Wuchty et
al. 1999 [32]. Identical to RNA.fold_compound.subopt(), it computes all secondary structures within
an energy band delta arround the MFE. However, this function does not print the resulting structures
and their corresponding free energies to a file pointer, or returns them as a list. Instead, it calls a user-
provided callback function which it passes the structure in dot-bracket format, the corresponding free
energy in kcal/mol, and a user-provided data structure each time a structure was backtracked success-
fully. This function indicates the final output, i.e. the end of the backtracking procedure by passing
NULL instead of an actual dot-bracket string to the callback.

SWIG Wrapper Notes
This function is attached as method subopt_cb() to objects of type fold_compound

Parameters
• delta (int) – Energy band arround the MFE in 10cal/mol, i.e. deka-calories

• cb (RNA.subopt_result) – Pointer to a callback function that handles the back-
tracked structure and its free energy in kcal/mol

• data (void *) – Pointer to some data structure that is passed along to the callback

See also:
RNA.subopt_result, RNA.fold_compound.subopt, RNA.fold_compound.subopt_zuker

Note: This function requires all multibranch loop DP matrices for unique multibranch loop back-
tracing. Therefore, the supplied RNA.fold_compound()`fc` (argument 1) must be initialized with
RNA.md().uniq_ML = 1, for instance like this:

subopt_zuker()

Compute Zuker type suboptimal structures.

Compute Suboptimal structures according to M. Zuker [35] , i.e. for every possible base pair the
minimum energy structure containing the resp. base pair. Returns a list of these structures and their
energies.

SWIG Wrapper Notes
This function is attached as method subopt_zuker() to objects of type fold_compound

Returns
List of zuker suboptimal structures

Return type
RNA.subopt_solution() *

See also:
RNA.fold_compound.subopt, zukersubopt, zukersubopt_par

768 Chapter 9. Python API

ViennaRNA, Release 2.6.4

property thisown

The membership flag

property type

ud_add_motif(fold_compound self, std::string motif, double motif_en, std::string name="", unsigned int
options=)

Add an unstructured domain motif, e.g. for ligand binding.

This function adds a ligand binding motif and the associated binding free energy to the RNA.ud() at-
tribute of a RNA.fold_compound(). The motif data will then be used in subsequent secondary structure
predictions. Multiple calls to this function with different motifs append all additional data to a list of lig-
ands, which all will be evaluated. Ligand motif data can be removed from the RNA.fold_compound()
again using the RNA.fold_compound.ud_remove() function. The loop type parameter allows one to
limit the ligand binding to particular loop type, such as the exterior loop, hairpin loops, interior loops,
or multibranch loops.

Parameters
• motif (string) – The sequence motif the ligand binds to

• motif_en (double) – The binding free energy of the ligand in kcal/mol

• motif_name (string) – The name/id of the motif (may be NULL)

• loop_type (unsigned int) – The loop type the ligand binds to

See also:
RNA.UNSTRUCTURED_DOMAIN_EXT_LOOP, RNA.UNSTRUCTURED_DOMAIN_HP_LOOP, RNA.
UNSTRUCTURED_DOMAIN_INT_LOOP, RNA.UNSTRUCTURED_DOMAIN_MB_LOOP, RNA.
UNSTRUCTURED_DOMAIN_ALL_LOOPS, RNA.fold_compound.ud_remove

ud_remove()

Remove ligand binding to unpaired stretches.

This function removes all ligand motifs that were bound to a RNA.fold_compound() using the
RNA.fold_compound.ud_add_motif() function.

SWIG Wrapper Notes
This function is attached as method ud_remove() to objects of type fold_compound

ud_set_data(fold_compound self, PyObject * data, PyObject * free_cb=Py_None)→ PyObject *
Attach an auxiliary data structure.

This function binds an arbitrary, auxiliary data structure for user-implemented ligand binding. The
optional callback free_cb will be passed the bound data structure whenever the RNA.fold_compound()
is removed from memory to avoid memory leaks.

SWIG Wrapper Notes
This function is attached as method ud_set_data() to objects of type fold_compound

Parameters
• data (void *) – A pointer to the auxiliary data structure

• free_cb (RNA.auxdata_free) – A pointer to a callback function that free’s memory
occupied by data

See also:
RNA.fold_compound.ud_set_prod_rule_cb, RNA.fold_compound.
ud_set_exp_prod_rule_cb, RNA.fold_compound.ud_remove

9.7. The RNA Python module 769

ViennaRNA, Release 2.6.4

ud_set_exp_prod_rule_cb(fold_compound self, PyObject * prod_cb, PyObject * eval_cb)→
PyObject *

Attach production rule for partition function.

This function is the partition function companion of RNA.fold_compound.ud_set_prod_rule_cb().

Use it to bind callbacks to (i) fill the U production rule dynamic programming matrices and/or pre-
pare the RNA.unstructured_domain().data, and (ii) provide a callback to retrieve partition functions for
subsegments [𝑖, 𝑗].

SWIG Wrapper Notes
This function is attached as method ud_set_exp_prod_rule_cb() to objects of type
fold_compound

Parameters
• pre_cb (RNA.ud_exp_production) – A pointer to a callback function for the B pro-

duction rule

• exp_e_cb (RNA.ud_exp) – A pointer to a callback function that retrieves the partition
function for a segment [𝑖, 𝑗] that may be bound by one or more ligands.

See also:
RNA.fold_compound.ud_set_prod_rule_cb

ud_set_prob_cb(fold_compound self, PyObject * setter_cb, PyObject * getter_cb)→ PyObject *

SWIG Wrapper Notes
This function is attached as method ud_set_prob_cb() to objects of type fold_compound

ud_set_prod_rule_cb(fold_compound self, PyObject * prod_cb, PyObject * eval_cb)→ PyObject *
Attach production rule callbacks for free energies computations.

Use this function to bind a user-implemented grammar extension for unstructured domains.

The callback e_cb needs to evaluate the free energy contribution 𝑓(𝑖, 𝑗) of the unpaired segment
[𝑖, 𝑗]. It will be executed in each of the regular secondary structure production rules. Whenever the
callback is passed the RNA.UNSTRUCTURED_DOMAIN_MOTIF flag via its loop_type parameter
the contribution of any ligand that consecutively binds from position 𝑖 to 𝑗 (the white box) is
requested. Otherwise, the callback usually performs a lookup in the precomputed B matrices. Which B
matrix is addressed will be indicated by the flags RNA.UNSTRUCTURED_DOMAIN_EXT_LOOP,
RNA.UNSTRUCTURED_DOMAIN_HP_LOOPRNA.UNSTRUCTURED_DOMAIN_INT_LOOP,
and RNA.UNSTRUCTURED_DOMAIN_MB_LOOP. As their names already imply, they specify ex-
terior loops (F production rule), hairpin loops and interior loops (C production rule), and multibranch
loops (M and M1 production rule).

The pre_cb callback will be executed as a pre-processing step right before the regular secondary struc-
ture rules. Usually one would use this callback to fill the dynamic programming matrices U and prepa-
rations of the auxiliary data structure RNA.unstructured_domain().data

SWIG Wrapper Notes
This function is attached as method ud_set_prod_rule_cb() to objects of type fold_compound

Parameters
• pre_cb (RNA.ud_production) – A pointer to a callback function for the B production

rule

• e_cb (RNA.ud) – A pointer to a callback function for free energy evaluation

zsc_compute(i, j, e)

zsc_compute_raw(i, j, e)

770 Chapter 9. Python API

ViennaRNA, Release 2.6.4

zsc_filter_free()

zsc_filter_init(*args, **kwargs)

zsc_filter_on()

zsc_filter_threshold()

zsc_filter_update(*args, **kwargs)

RNA.free_alifold_arrays()

Free the memory occupied by MFE alifold functions.

Deprecated since version 2.6.3: Usage of this function is discouraged! It only affects memory being free’d
that was allocated by an old API function before. Release of memory occupied by the newly introduced
RNA.fold_compound() is handled by RNA.fold_compound_free()

See also:
RNA.fold_compound_free

RNA.free_arrays()

Free arrays for mfe folding.

Deprecated since version 2.6.3: See RNA.fold(), RNA.circfold(), or RNA.fold_compound.mfe() and
RNA.fold_compound() for the usage

of the
new API!

RNA.free_co_arrays()

Free memory occupied by cofold()

Deprecated since version 2.6.3: This function will only free memory allocated by a prior call of cofold() or
cofold_par(). See RNA.fold_compound.mfe_dimer() for how to use the new API

See also:
RNA.fc_destroy, RNA.fold_compound.mfe_dimer

Note: folding matrices now reside in the fold compound, and should be free’d there

RNA.free_co_pf_arrays()

Free the memory occupied by co_pf_fold()

Deprecated since version 2.6.3: This function will be removed for the new API soon! See
RNA.fold_compound.pf_dimer(),

RNA.fold_compound(),
and RNA.fold_compound_free() for an alternative

RNA.free_path(path)
Free memory allocated by get_path() function.

Deprecated since version 2.6.3: Use RNA.path_free() instead!

Parameters
path (RNA.path() *) – pointer to memory to be freed

RNA.free_pf_arrays()

Free arrays for the partition function recursions.

Call this function if you want to free all allocated memory associated with the partition function forward
recursion.

9.7. The RNA Python module 771

ViennaRNA, Release 2.6.4

Deprecated since version 2.6.3: See RNA.fold_compound() and its related functions for how to free memory
occupied by the dynamic programming matrices

Note: Successive calls of pf_fold(), pf_circ_fold() already check if they should free any memory from a
previous run. OpenMP notice:

This function should be called before leaving a thread in order to avoid leaking memory

Postcondition
All memory allocated by pf_fold_par(), pf_fold() or pf_circ_fold() will be free’d

See also:
pf_fold_par, pf_fold , pf_circ_fold

RNA.free_profile(T)
free space allocated in Make_bp_profile

Backward compatibility only. You can just use plain free()

RNA.free_tree(t)
Free the memory allocated for Tree t.

Parameters
t (Tree *) –

RNA.get_aligned_line(arg1)

RNA.get_centroid_struct_pl(length, dist, pl)
Get the centroid structure of the ensemble.

Deprecated since version 2.6.3: This function was renamed to RNA.centroid_from_plist()

RNA.get_centroid_struct_pr(length, dist, pr)
Get the centroid structure of the ensemble.

Deprecated since version 2.6.3: This function was renamed to RNA.centroid_from_probs()

RNA.get_concentrations(FcAB, FcAA, FcBB, FEA, FEB, A0, BO)

RNA.get_multi_input_line(string, options)

RNA.get_path(std::string seq, std::string s1, std::string s2, int maxkeep)→ PathVector

RNA.get_pr(i, j)

RNA.get_xy_coordinates(char const * structure)→ COORDINATE
Compute nucleotide coordinates for secondary structure plot.

This function takes a secondary structure and computes X-Y coordinates for each nucleotide that then can
be used to create a structure plot. The parameter plot_type is used to select the underlying layout algorithm.
Currently, the following selections are provided:

• RNA.PLOT_TYPE_SIMPLE

• RNA.PLOT_TYPE_NAVIEW

• RNA.PLOT_TYPE_CIRCULAR

• RNA.PLOT_TYPE_TURTLE

• RNA.PLOT_TYPE_PUZZLER

Passing an unsupported selection leads to the default algorithm RNA.PLOT_TYPE_NAVIEW

Here is a simple example how to use this function, assuming variable structure contains a valid dot-bracket
string:

772 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Parameters
• structure (string) – The secondary structure in dot-bracket notation

• x (float **) – The address of a pointer of X coordinates (pointer will point to memory,
or NULL on failure)

• y (float **) – The address of a pointer of Y coordinates (pointer will point to memory,
or NULL on failure)

• plot_type (int) – The layout algorithm to be used

Returns
The length of the structure on success, 0 otherwise

Return type
int

See also:
RNA.plot_coords_pt, RNA.plot_coords_simple, RNA.plot_coords_naview, RNA.
plot_coords_circular, RNA.plot_coords_turtle, RNA.plot_coords_puzzler

Note: On success, this function allocates memory for X and Y coordinates and assigns the pointers at
addressess x and y to the corresponding memory locations. It’s the users responsibility to cleanup this
memory after usage!

RNA.gettype(ident)

RNA.gmlRNA(string, structure, ssfile, option)
Produce a secondary structure graph in Graph Meta Language (gml) and write it to a file.

If ‘option’ is an uppercase letter the RNA sequence is used to label nodes, if ‘option’ equals ‘X’ or ‘x’ the
resulting file will coordinates for an initial layout of the graph.

Parameters
• string (string) – The RNA sequence

• structure (string) – The secondary structure in dot-bracket notation

• ssfile (string) – The filename of the gml output

• option (char) – The option flag

Returns
1 on success, 0 otherwise

Return type
int

RNA.hamming(s1, s2)
Calculate hamming distance between two sequences.

Parameters
• s1 (string) – The first sequence

• s2 (string) – The second sequence

Returns
The hamming distance between s1 and s2

Return type
int

9.7. The RNA Python module 773

ViennaRNA, Release 2.6.4

RNA.hamming_bound(s1, s2, n)
Calculate hamming distance between two sequences up to a specified length.

This function is similar to RNA.hamming_distance() but instead of comparing both sequences up to their
actual length only the first ‘n’ characters are taken into account

Parameters
• s1 (string) – The first sequence

• s2 (string) – The second sequence

• n (int) – The length of the subsequences to consider (starting from the 5’ end)

Returns
The hamming distance between s1 and s2

Return type
int

RNA.hamming_distance(s1, s2)

RNA.hamming_distance_bound(s1, s2, n)

class RNA.hc

Bases: object

The hard constraints data structure.

The content of this data structure determines the decomposition pattern used in the folding recursions. At-
tribute ‘matrix’ is used as source for the branching pattern of the decompositions during all folding recur-
sions. Any entry in matrix[i,j] consists of the 6 LSB that allows one to distinguish the following types of
base pairs:

• in the exterior loop (RNA.CONSTRAINT_CONTEXT_EXT_LOOP)

• enclosing a hairpin (RNA.CONSTRAINT_CONTEXT_HP_LOOP)

• enclosing an interior loop (RNA.CONSTRAINT_CONTEXT_INT_LOOP)

• enclosed by an exterior loop (RNA.CONSTRAINT_CONTEXT_INT_LOOP_ENC)

• enclosing a multi branch loop (RNA.CONSTRAINT_CONTEXT_MB_LOOP)

• enclosed by a multi branch loop (RNA.CONSTRAINT_CONTEXT_MB_LOOP_ENC)

The four linear arrays ‘up_xxx’ provide the number of available unpaired nucleotides (including position i)
3’ of each position in the sequence.

See also:
RNA.fold_compound.hc_init, RNA.hc_free, RNA.CONSTRAINT_CONTEXT_EXT_LOOP,
RNA.CONSTRAINT_CONTEXT_HP_LOOP, RNA.CONSTRAINT_CONTEXT_INT_LOOP, RNA.
CONSTRAINT_CONTEXT_MB_LOOP, RNA.CONSTRAINT_CONTEXT_MB_LOOP_ENC

type

Type
vrna_hc_type_e

n

Type
unsigned int

state

Type
unsigned char

774 Chapter 9. Python API

ViennaRNA, Release 2.6.4

mx

Type
unsigned char *

matrix_local

Type
unsigned char **

@23

Type
union vrna_hc_s::@22

up_ext

A linear array that holds the number of allowed unpaired nucleotides in an exterior loop.

Type
int *

up_hp

A linear array that holds the number of allowed unpaired nucleotides in a hairpin loop.

Type
int *

up_int

A linear array that holds the number of allowed unpaired nucleotides in an interior loop.

Type
int *

up_ml

A linear array that holds the number of allowed unpaired nucleotides in a multi branched loop.

Type
int *

f

A function pointer that returns whether or not a certain decomposition may be evaluated.

Type
vrna_hc_eval_f

data

A pointer to some structure where the user may store necessary data to evaluate its generic hard con-
straint function.

Type
void *

free_data

A pointer to a function to free memory occupied by auxiliary data.

The function this pointer is pointing to will be called upon destruction of the RNA.hc(), and provided
with the RNA.hc().data pointer that may hold auxiliary data. Hence, to avoid leaking memory, the user
may use this pointer to free memory occupied by auxiliary data.

Type
vrna_auxdata_free_f

depot

Type
vrna_hc_depot_t *

9.7. The RNA Python module 775

ViennaRNA, Release 2.6.4

C++ includes

Type
ViennaRNA/constraints/hard.h

property mx

property n

property thisown

The membership flag

property type

property up_ext

property up_hp

property up_int

property up_ml

RNA.heat_capacity(sequence, T_min=0.0, T_max=100.0, T_increment=1.0, mpoints=2)
Compute the specific heat for an RNA (simplified variant)

Similar to RNA.fold_compound.heat_capacity(), this function computes an RNAs specific heat in a given
temperature range from the partition function by numeric differentiation. This simplified version, however,
only requires the RNA sequence as input instead of a RNA.fold_compound() data structure. The result is
returned as a list of pairs of temperature in C and specific heat in Kcal/(Mol*K).

Users can specify the temperature range for the computation from T_min to T_max, as well as the increment
step size T_increment. The latter also determines how many times the partition function is computed. Finally,
the parameter mpoints determines how smooth the curve should be. The algorithm itself fits a parabola to
2 · 𝑚𝑝𝑜𝑖𝑛𝑡𝑠 + 1 data points to calculate 2nd derivatives. Increasing this parameter produces a smoother
curve.

SWIG Wrapper Notes
This function is available as overloaded function heat_capacity(). If the optional function arguments
T_min, T_max, T_increment, and mpoints are omitted, they default to 0.0, 100.0, 1.0 and 2, respectively.

Parameters
• sequence (string) – The RNA sequence input (must be uppercase)

• T_min (float) – Lowest temperature in C

• T_max (float) – Highest temperature in C

• T_increment (float) – Stepsize for temperature incrementation in C (a reasonable
choice might be 1C)

• mpoints (unsigned int) – The number of interpolation points to calculate 2nd deriva-
tive (a reasonable choice might be 2, min: 1, max: 100)

Returns
A list of pairs of temperatures and corresponding heat capacity or NULL upon any failure.
The last entry of the list is indicated by a temperature field set to a value smaller than T_min

Return type
RNA.heat_capacity() *

See also:
RNA.fold_compound.heat_capacity, RNA.fold_compound.heat_capacity_cb, RNA.
heat_capacity, RNA.heat_capacity

776 Chapter 9. Python API

ViennaRNA, Release 2.6.4

class RNA.heat_capacity_result

Bases: object

property heat_capacity

property temperature

property thisown

The membership flag

class RNA.hx(start, end, length, up5=0, up3=0)
Bases: object

property end

property length

property start

property thisown

The membership flag

property up3

property up5

RNA.hx_from_ptable(IntVector pt)→ HelixVector
RNA.hx_from_ptable(varArrayShort pt)→ HelixVector

Convert a pair table representation of a secondary structure into a helix list.

Parameters
pt (list-like(int)) – The secondary structure in pair table representation

Returns
The secondary structure represented as a helix list

Return type
RNA.hx() *

RNA.init_pf_fold(length)
Allocate space for pf_fold()

Deprecated since version 2.6.3: This function is obsolete and will be removed soon!

RNA.init_rand(*args)
Initialize the random number generator with a pre-defined seed.

SWIG Wrapper Notes
This function is available as an overloaded function init_rand() where the argument seed is optional.

Parameters
seed (unsigned int) – The seed for the random number generator

See also:
RNA.init_rand , RNA.urn

RNA.initialize_cofold(length)
allocate arrays for folding

Deprecated since version 2.6.3: {This function is obsolete and will be removed soon!}

class RNA.intArray(nelements)
Bases: object

9.7. The RNA Python module 777

ViennaRNA, Release 2.6.4

cast()

static frompointer(t)

property thisown

The membership flag

RNA.intArray_frompointer(t)

RNA.intP_getitem(ary, index)

RNA.intP_setitem(ary, index, value)

RNA.int_urn(_from, to)
Generates a pseudo random integer in a specified range.

Parameters
• from (int) – The first number in range

• to (int) – The last number in range

Returns
A pseudo random number in range [from, to]

Return type
int

See also:
RNA.urn, RNA.init_rand

RNA.inverse_fold(char * start, char const * target)→ char *
Find sequences with predefined structure.

This function searches for a sequence with minimum free energy structure provided in the parameter ‘target’,
starting with sequence ‘start’. It returns 0 if the search was successful, otherwise a structure distance in
terms of the energy difference between the search result and the actual target ‘target’ is returned. The found
sequence is returned in ‘start’. If give_up is set to 1, the function will return as soon as it is clear that the
search will be unsuccessful, this speeds up the algorithm if you are only interested in exact solutions.

Parameters
• start (string) – The start sequence

• target (string) – The target secondary structure in dot-bracket notation

Returns
The distance to the target in case a search was unsuccessful, 0 otherwise

Return type
float

RNA.inverse_pf_fold(char * start, char const * target)→ char *
Find sequence that maximizes probability of a predefined structure.

This function searches for a sequence with maximum probability to fold into the provided structure ‘target’
using the partition function algorithm. It returns −𝑘𝑇 · log(𝑝) where 𝑝 is the frequency of ‘target’ in the
ensemble of possible structures. This is usually much slower than inverse_fold().

Parameters
• start (string) – The start sequence

• target (string) – The target secondary structure in dot-bracket notation

Returns
The distance to the target in case a search was unsuccessful, 0 otherwise

778 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
float

RNA.last_parameter_file()

Get the file name of the parameter file that was most recently loaded.

Returns
The file name of the last parameter file, or NULL if parameters are still at defaults

Return type
string

RNA.loop_energy(ptable, s, s1, i)
Calculate energy of a loop.

Deprecated since version 2.6.3: Use RNA.fold_compound.eval_loop_pt() instead!

Parameters
• ptable (list-like(int)) – the pair table of the secondary structure

• s (list-like(int)) – encoded RNA sequence

• s1 (list-like(int)) – encoded RNA sequence

• i (int) – position of covering base pair

Returns
free energy of the loop in 10cal/mol

Return type
int

See also:
RNA.fold_compound.eval_loop_pt

RNA.loopidx_from_ptable(IntVector pt)→ IntVector
RNA.loopidx_from_ptable(varArrayShort pt)→ varArrayInt

Get a loop index representation of a structure.

RNA.make_loop_index(structure)

RNA.make_tree(struc)
Constructs a Tree (essentially the postorder list) of the structure ‘struc’, for use in tree_edit_distance().

Parameters
struc (string) – may be any rooted structure representation.

Return type
Tree *

RNA.maximum_matching(sequence)

SWIG Wrapper Notes
This function is available as global function maximum_matching().

class RNA.md(*args, **kwargs)
Bases: object

The data structure that contains the complete model details used throughout the calculations.

For convenience reasons, we provide the type name RNA.md() to address this data structure without the use
of the struct keyword

See also:
RNA.md.reset(), set_model_details(), RNA.md_update(), RNA.md()

9.7. The RNA Python module 779

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes
This data structure is wrapped as an object md with multiple related functions attached as methods.

A new set of default parameters can be obtained by calling the constructure of md:
• md()– Initialize with default settings

The resulting object has a list of attached methods which directly correspond to functions that mainly
operate on the corresponding C data structure:

• reset()–RNA.md_set_default()

• set_from_globals()–set_model_details()

• option_string()–RNA.md_option_string()

Note, that default parameters can be modified by directly setting any of the following global variables.
Internally, getting/setting default parameters using their global variable representative translates into
calls of the following functions, therefore these wrappers for these functions do not exist in the scripting
language interface(s):

global variable

C getter

C setter

temperature

RNA.md_defaults_temperature_get()

RNA.md_defaults_temperature()

dangles

RNA.md_defaults_dangles_get()

RNA.md_defaults_dangles()

betaScale

RNA.md_defaults_betaScale_get()

RNA.md_defaults_betaScale()

tetra_loop

this is an alias of special_hp

special_hp

RNA.md_defaults_special_hp_get()

RNA.md_defaults_special_hp()

noLonelyPairs

this is an alias of noLP

noLP

RNA.md_defaults_noLP_get()

RNA.md_defaults_noLP()

noGU

RNA.md_defaults_noGU_get()

RNA.md_defaults_noGU()

no_closingGU

this is an alias of noGUclosure

noGUclosure

780 Chapter 9. Python API

ViennaRNA, Release 2.6.4

RNA.md_defaults_noGUclosure_get()

RNA.md_defaults_noGUclosure()

logML

RNA.md_defaults_logML_get()

RNA.md_defaults_logML()

circ

RNA.md_defaults_circ_get()

RNA.md_defaults_circ()

gquad

RNA.md_defaults_gquad_get()

RNA.md_defaults_gquad()

uniq_ML

RNA.md_defaults_uniq_ML_get()

RNA.md_defaults_uniq_ML()

energy_set

RNA.md_defaults_energy_set_get()

RNA.md_defaults_energy_set()

backtrack

RNA.md_defaults_backtrack_get()

RNA.md_defaults_backtrack()

backtrack_type

RNA.md_defaults_backtrack_type_get()

RNA.md_defaults_backtrack_type()

do_backtrack

this is an alias of compute_bpp

compute_bpp

RNA.md_defaults_compute_bpp_get()

RNA.md_defaults_compute_bpp()

max_bp_span

RNA.md_defaults_max_bp_span_get()

RNA.md_defaults_max_bp_span()

min_loop_size

RNA.md_defaults_min_loop_size_get()

RNA.md_defaults_min_loop_size()

window_size

RNA.md_defaults_window_size_get()

RNA.md_defaults_window_size()

oldAliEn

RNA.md_defaults_oldAliEn_get()

9.7. The RNA Python module 781

ViennaRNA, Release 2.6.4

RNA.md_defaults_oldAliEn()

ribo

RNA.md_defaults_ribo_get()

RNA.md_defaults_ribo()

cv_fact

RNA.md_defaults_cv_fact_get()

RNA.md_defaults_cv_fact()

nc_fact

RNA.md_defaults_nc_fact_get()

RNA.md_defaults_nc_fact()

sfact

RNA.md_defaults_sfact_get()

RNA.md_defaults_sfact()

temperature

The temperature used to scale the thermodynamic parameters.

Type
double

betaScale

A scaling factor for the thermodynamic temperature of the Boltzmann factors.

Type
double

pf_smooth

A flat specifying whether energies in Boltzmann factors need to be smoothed.

Type
int

dangles

Specifies the dangle model used in any energy evaluation (0,1,2 or 3)

If set to 0 no stabilizing energies are assigned to bases adjacent to helices in free ends and multiloops
(so called dangling ends). Normally (dangles = 1) dangling end energies are assigned only to unpaired
bases and a base cannot participate simultaneously in two dangling ends. In the partition function
algorithm RNA.fold_compound.pf() these checks are neglected. To provide comparability between
free energy minimization and partition function algorithms, the default setting is 2. This treatment of
dangling ends gives more favorable energies to helices directly adjacent to one another, which can be
beneficial since such helices often do engage in stabilizing interactions through co-axial stacking. If
set to 3 co-axial stacking is explicitly included for adjacent helices in multiloops. The option affects
only mfe folding and energy evaluation (RNA.mfe() and RNA.eval_structure()), as well as suboptimal
folding (RNA.subopt()) via re-evaluation of energies. Co-axial stacking with one intervening mismatch
is not considered so far. Note, that some function do not implement all dangle model but only a subset of
(0,1,2,3). In particular, partition function algorithms can only handle 0 and 2. Read the documentation
of the particular recurrences or energy evaluation function for information about the provided dangle
model.

Type
int

special_hp

Include special hairpin contributions for tri, tetra and hexaloops.

782 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Type
int

noLP

Only consider canonical structures, i.e. no ‘lonely’ base pairs.

Type
int

noGU

Do not allow GU pairs.

Type
int

noGUclosure

Do not allow loops to be closed by GU pair.

Type
int

logML

Use logarithmic scaling for multiloops.

Type
int

circ

Assume RNA to be circular instead of linear.

Type
int

gquad

Include G-quadruplexes in structure prediction.

Type
int

uniq_ML

Flag to ensure unique multi-branch loop decomposition during folding.

Type
int

energy_set

Specifies the energy set that defines set of compatible base pairs.

Type
int

backtrack

Specifies whether or not secondary structures should be backtraced.

Type
int

backtrack_type

Specifies in which matrix to backtrack.

Type
char

compute_bpp

Specifies whether or not backward recursions for base pair probability (bpp) computation will be per-
formed.

9.7. The RNA Python module 783

ViennaRNA, Release 2.6.4

Type
int

nonstandards

contains allowed non standard bases

Type
char

max_bp_span

maximum allowed base pair span

Type
int

min_loop_size

Minimum size of hairpin loops.

The default value for this field is TURN, however, it may be 0 in cofolding context.

Type
int

window_size

Size of the sliding window for locally optimal structure prediction.

Type
int

oldAliEn

Use old alifold energy model.

Type
int

ribo

Use ribosum scoring table in alifold energy model.

Type
int

cv_fact

Co-variance scaling factor for consensus structure prediction.

Type
double

nc_fact

Scaling factor to weight co-variance contributions of non-canonical pairs.

Type
double

sfact

Scaling factor for partition function scaling.

Type
double

rtype

Reverse base pair type array.

Type
int

784 Chapter 9. Python API

ViennaRNA, Release 2.6.4

alias

alias of an integer nucleotide representation

Type
short

pair

Integer representation of a base pair.

Type
int

pair_dist

Base pair dissimilarity, a.k.a. distance matrix.

Type
float

salt

Salt (monovalent) concentration (M) in buffer.

Type
double

saltMLLower

Lower bound of multiloop size to use in loop salt correction linear fitting.

Type
int

saltMLUpper

Upper bound of multiloop size to use in loop salt correction linear fitting.

Type
int

saltDPXInit

User-provided salt correction for duplex initialization (in dcal/mol). If set to 99999 the default salt
correction is used. If set to 0 there is no salt correction for duplex initialization.

Type
int

saltDPXInitFact

Type
float

helical_rise : float

backbone_length : float

C++ includes: ViennaRNA/model.h

property alias

property backbone_length

property backtrack

property backtrack_type

property betaScale

property circ

9.7. The RNA Python module 785

ViennaRNA, Release 2.6.4

property compute_bpp

property cv_fact

property dangles

property energy_set

property gquad

property helical_rise

property logML

property max_bp_span

property min_loop_size

property nc_fact

property noGU

property noGUclosure

property noLP

property nonstandards

property oldAliEn

option_string()

Get a corresponding commandline parameter string of the options in a RNA.md().

Note: This function is not threadsafe!

property pair

property pf_smooth

reset()

Apply default model details to a provided RNA.md() data structure.

Use this function to initialize a RNA.md() data structure with its default values

property ribo

property rtype

property salt

property saltDPXInit

property saltDPXInitFact

property saltMLLower

property saltMLUpper

set_from_globals()

property sfact

property special_hp

786 Chapter 9. Python API

ViennaRNA, Release 2.6.4

property temperature

property thisown

The membership flag

property uniq_ML

property window_size

RNA.mean_bp_distance(length)
Get the mean base pair distance of the last partition function computation.

Deprecated since version 2.6.3: Use RNA.fold_compound.mean_bp_distance() or
RNA.mean_bp_distance_pr() instead!

Parameters
length (int) –

Returns
mean base pair distance in thermodynamic ensemble

Return type
double

See also:
RNA.fold_compound.mean_bp_distance, RNA.mean_bp_distance_pr

RNA.memmove(data, indata)

class RNA.move(pos_5=0, pos_3=0)
Bases: object

An atomic representation of the transition / move from one structure to its neighbor.

An atomic transition / move may be one of the following:

• a base pair insertion,

• a base pair removal, or

• a base pair shift where an existing base pair changes one of its pairing partner.

These moves are encoded by two integer values that represent the affected 5’ and 3’ nucleotide positions.
Furthermore, we use the following convention on the signedness of these encodings:

• both values are positive for insertion moves

• both values are negative for base pair removals

• both values have different signedness for shift moves, where the positive value indicates the nucleotide
that stays constant, and the others absolute value is the new pairing partner

Note: A value of 0 in either field is used as list-end indicator and doesn’t represent any valid move.

pos_5

The (absolute value of the) 5’ position of a base pair, or any position of a shifted pair.

Type
int

pos_3

The (absolute value of the) 3’ position of a base pair, or any position of a shifted pair.

Type
int

9.7. The RNA Python module 787

ViennaRNA, Release 2.6.4

next

The next base pair (if an elementary move changes more than one base pair), or NULL Has to be
terminated with move 0,0.

Type
vrna_move_t *

C++ includes

Type
ViennaRNA/landscape/move.h

compare(*args, **kwargs)
Compare two moves.

The function compares two moves m and b and returns whether move m is lexicographically smaller
(-1), larger (1) or equal to move b.

If any of the moves m or b is a shift move, this comparison only makes sense in a structure context.
Thus, the third argument with the current structure must be provided.

Parameters
• b (const RNA.move() *) – The second move of the comparison

• pt (const short *) – The pair table of the current structure that is compatible with
both moves (maybe NULL if moves are guaranteed to be no shifts)

Returns
-1 if m < b, 1 if m > b, 0 otherwise

Return type
int

Warning: Currently, shift moves are not supported!

Note: This function returns 0 (equality) upon any error, e.g. missing input

is_insertion()

Test whether a move is a base pair insertion.

Returns
Non-zero if the move is a base pair insertion, 0 otherwise

Return type
int

is_removal()

Test whether a move is a base pair removal.

Returns
Non-zero if the move is a base pair removal, 0 otherwise

Return type
int

is_shift()

Test whether a move is a base pair shift.

Returns
Non-zero if the move is a base pair shift, 0 otherwise

788 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
int

property pos_3

property pos_5

property thisown

The membership flag

RNA.move_standard(char * seq, char * struc, enum MOVE_TYPE type, int verbosity_level, int shifts, int
noLP)→ char *

class RNA.mx_mfe

Bases: object

property Fc

property FcH

property FcI

property FcM

property c

property f3

property f5

property fM1

property fM2

property fML

property ggg

property length

property strands

property thisown

The membership flag

property type

class RNA.mx_pf

Bases: object

property G

property expMLbase

property length

property probs

property q

property q1k

property qb

property qho

9.7. The RNA Python module 789

ViennaRNA, Release 2.6.4

property qio

property qln

property qm

property qm1

property qm2

property qmo

property qo

property scale

property thisown

The membership flag

property type

RNA.my_PS_rna_plot_snoop_a(std::string sequence, std::string structure, std::string filename, IntVector
relative_access, StringVector seqs)→ int

RNA.my_aln_consensus_sequence2(alignment, md_p=None)

RNA.naview_xy_coordinates(std::string arg1)→ CoordinateVector

RNA.new_doubleP(nelements)

RNA.new_floatP(nelements)

RNA.new_intP(nelements)

RNA.new_shortP(nelements)

RNA.new_ushortP(nelements)

RNA.pack_structure(char const * s)→ char *

class RNA.param(model_details=None)
Bases: object

The datastructure that contains temperature scaled energy parameters.

id

Type
int

stack

Type
int

hairpin

Type
int

bulge

Type
int

790 Chapter 9. Python API

ViennaRNA, Release 2.6.4

internal_loop

Type
int

mismatchExt

Type
int

mismatchI

Type
int

mismatch1nI

Type
int

mismatch23I

Type
int

mismatchH

Type
int

mismatchM

Type
int

dangle5

Type
int

dangle3

Type
int

int11

Type
int

int21

Type
int

int22

Type
int

ninio

Type
int

9.7. The RNA Python module 791

ViennaRNA, Release 2.6.4

lxc

Type
double

MLbase

Type
int

MLintern

Type
int

MLclosing

Type
int

TerminalAU

Type
int

DuplexInit

Type
int

Tetraloop_E

Type
int

Tetraloops

Type
char

Triloop_E

Type
int

Triloops

Type
char

Hexaloop_E

Type
int

Hexaloops

Type
char

TripleC

Type
int

792 Chapter 9. Python API

ViennaRNA, Release 2.6.4

MultipleCA

Type
int

MultipleCB

Type
int

gquad

Type
int

gquadLayerMismatch

Type
int

gquadLayerMismatchMax

Type
int

temperature

Temperature used for loop contribution scaling.

Type
double

model_details

Model details to be used in the recursions.

Type
vrna_md_t

param_file

The filename the parameters were derived from, or empty string if they represent the default.

Type
char

SaltStack

Type
int

SaltLoop

Type
int

SaltLoopDbl

Type
double

SaltMLbase

Type
int

SaltMLintern

Type
int

9.7. The RNA Python module 793

ViennaRNA, Release 2.6.4

SaltMLclosing

Type
int

SaltDPXInit

Type
int

C++ includes

Type
ViennaRNA/params/basic.h

property DuplexInit

property Hexaloop_E

property Hexaloops

property MLbase

property MLclosing

property MLintern

property MultipleCA

property MultipleCB

property SaltDPXInit

property SaltLoop

property SaltLoopDbl

property SaltMLbase

property SaltMLclosing

property SaltMLintern

property SaltStack

property TerminalAU

property Tetraloop_E

property Tetraloops

property Triloop_E

property Triloops

property TripleC

property bulge

property dangle3

property dangle5

property gquad

property gquadLayerMismatch

794 Chapter 9. Python API

ViennaRNA, Release 2.6.4

property gquadLayerMismatchMax

property hairpin

property id

property int11

property int21

property int22

property internal_loop

property lxc

property mismatch1nI

property mismatch23I

property mismatchExt

property mismatchH

property mismatchI

property mismatchM

property model_details

property ninio

property param_file

property stack

property temperature

property thisown

The membership flag

RNA.params_load(std::string filename="", unsigned int options=)→ int
Load energy parameters from a file.

SWIG Wrapper Notes
This function is available as overloaded function **params_load**(fname=””, op-
tions=RNA.PARAMETER_FORMAT_DEFAULT). Here, the empty filename string indicates to
load default RNA parameters, i.e. this is equivalent to calling RNA.params_load_defaults().

Parameters
• fname (const char) – The path to the file containing the energy parameters

• options (unsigned int) – File format bit-mask (usually
RNA.PARAMETER_FORMAT_DEFAULT)

Returns
Non-zero on success, 0 on failure

Return type
int

9.7. The RNA Python module 795

ViennaRNA, Release 2.6.4

See also:
RNA.params_load_from_string, RNA.params_save, RNA.params_load_defaults,
RNA.params_load_RNA_Turner2004, RNA.params_load_RNA_Turner1999, RNA.
params_load_RNA_Andronescu2007, RNA.params_load_RNA_Langdon2018, RNA.
params_load_RNA_misc_special_hairpins, RNA.params_load_DNA_Mathews2004, RNA.
params_load_DNA_Mathews1999

RNA.params_load_DNA_Mathews1999()

Load Mathews 1999 DNA energy parameter set.

SWIG Wrapper Notes
This function is available as function params_load_DNA_Mathews1999().

Returns
Non-zero on success, 0 on failure

Return type
int

Warning: This function also resets the default geometric parameters as stored in RNA.md() to those of
DNA. Only subsequently initialized RNA.md() structures will be affected by this change.

See also:
RNA.params_load , RNA.params_load_from_string, RNA.params_save, RNA.
params_load_RNA_Turner2004, RNA.params_load_RNA_Turner1999, RNA.
params_load_RNA_Andronescu2007, RNA.params_load_RNA_Langdon2018, RNA.
params_load_RNA_misc_special_hairpins, RNA.params_load_DNA_Mathews2004, RNA.
params_load_defaults

RNA.params_load_DNA_Mathews2004()

Load Mathews 2004 DNA energy parameter set.

SWIG Wrapper Notes
This function is available as function params_load_DNA_Mathews2004().

Returns
Non-zero on success, 0 on failure

Return type
int

Warning: This function also resets the default geometric parameters as stored in RNA.md() to those of
DNA. Only subsequently initialized RNA.md() structures will be affected by this change.

See also:
RNA.params_load , RNA.params_load_from_string, RNA.params_save, RNA.
params_load_RNA_Turner2004, RNA.params_load_RNA_Turner1999, RNA.
params_load_RNA_Andronescu2007, RNA.params_load_RNA_Langdon2018, RNA.
params_load_RNA_misc_special_hairpins, RNA.params_load_defaults, RNA.
params_load_DNA_Mathews1999

RNA.params_load_RNA_Andronescu2007()

Load Andronsecu 2007 RNA energy parameter set.

SWIG Wrapper Notes
This function is available as function params_load_RNA_Andronescu2007().

796 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Returns
Non-zero on success, 0 on failure

Return type
int

Warning: This function also resets the default geometric parameters as stored in RNA.md() to those of
RNA. Only subsequently initialized RNA.md() structures will be affected by this change.

See also:
RNA.params_load , RNA.params_load_from_string, RNA.params_save,
RNA.params_load_RNA_Turner2004, RNA.params_load_RNA_Turner1999,
RNA.params_load_defaults, RNA.params_load_RNA_Langdon2018, RNA.
params_load_RNA_misc_special_hairpins, RNA.params_load_DNA_Mathews2004, RNA.
params_load_DNA_Mathews1999

RNA.params_load_RNA_Langdon2018()

Load Langdon 2018 RNA energy parameter set.

SWIG Wrapper Notes
This function is available as function params_load_RNA_Langdon2018().

Returns
Non-zero on success, 0 on failure

Return type
int

Warning: This function also resets the default geometric parameters as stored in RNA.md() to those of
RNA. Only subsequently initialized RNA.md() structures will be affected by this change.

See also:
RNA.params_load , RNA.params_load_from_string, RNA.params_save, RNA.
params_load_RNA_Turner2004, RNA.params_load_RNA_Turner1999, RNA.
params_load_RNA_Andronescu2007, RNA.params_load_defaults, RNA.
params_load_RNA_misc_special_hairpins, RNA.params_load_DNA_Mathews2004, RNA.
params_load_DNA_Mathews1999

RNA.params_load_RNA_Turner1999()

Load Turner 1999 RNA energy parameter set.

SWIG Wrapper Notes
This function is available as function params_load_RNA_Turner1999().

Returns
Non-zero on success, 0 on failure

Return type
int

Warning: This function also resets the default geometric parameters as stored in RNA.md() to those of
RNA. Only subsequently initialized RNA.md() structures will be affected by this change.

9.7. The RNA Python module 797

ViennaRNA, Release 2.6.4

See also:
RNA.params_load , RNA.params_load_from_string, RNA.params_save,
RNA.params_load_RNA_Turner2004, RNA.params_load_defaults, RNA.
params_load_RNA_Andronescu2007, RNA.params_load_RNA_Langdon2018, RNA.
params_load_RNA_misc_special_hairpins, RNA.params_load_DNA_Mathews2004, RNA.
params_load_DNA_Mathews1999

RNA.params_load_RNA_Turner2004()

Load Turner 2004 RNA energy parameter set.

SWIG Wrapper Notes
This function is available as function params_load_RNA_Turner2004().

Returns
Non-zero on success, 0 on failure

Return type
int

Warning: This function also resets the default geometric parameters as stored in RNA.md() to those of
RNA. Only subsequently initialized RNA.md() structures will be affected by this change.

See also:
RNA.params_load , RNA.params_load_from_string, RNA.params_save,
RNA.params_load_defaults, RNA.params_load_RNA_Turner1999, RNA.
params_load_RNA_Andronescu2007, RNA.params_load_RNA_Langdon2018, RNA.
params_load_RNA_misc_special_hairpins, RNA.params_load_DNA_Mathews2004, RNA.
params_load_DNA_Mathews1999

RNA.params_load_RNA_misc_special_hairpins()

Load Misc Special Hairpin RNA energy parameter set.

SWIG Wrapper Notes
This function is available as function params_load_RNA_misc_special_hairpins().

Returns
Non-zero on success, 0 on failure

Return type
int

Warning: This function also resets the default geometric parameters as stored in RNA.md() to those of
RNA. Only subsequently initialized RNA.md() structures will be affected by this change.

See also:
RNA.params_load , RNA.params_load_from_string, RNA.params_save, RNA.
params_load_RNA_Turner2004, RNA.params_load_RNA_Turner1999, RNA.
params_load_RNA_Andronescu2007, RNA.params_load_RNA_Langdon2018,
RNA.params_load_defaults, RNA.params_load_DNA_Mathews2004, RNA.
params_load_DNA_Mathews1999

RNA.params_load_from_string(std::string parameters, std::string name="", unsigned int options=)→ int
Load energy paramters from string.

The string must follow the default energy parameter file convention! The optional name argument allows
one to specify a name for the parameter set which is stored internally.

798 Chapter 9. Python API

ViennaRNA, Release 2.6.4

SWIG Wrapper Notes
This function is available as overloaded function **params_load_from_string**(string, name=””, op-
tions=RNA.PARAMETER_FORMAT_DEFAULT).

Parameters
• string (string) – A 0-terminated string containing energy parameters

• name (string) – A name for the parameter set in string (Maybe NULL)

• options (unsigned int) – File format bit-mask (usually
RNA.PARAMETER_FORMAT_DEFAULT)

Returns
Non-zero on success, 0 on failure

Return type
int

See also:
RNA.params_load , RNA.params_save, RNA.params_load_defaults, RNA.
params_load_RNA_Turner2004, RNA.params_load_RNA_Turner1999, RNA.
params_load_RNA_Andronescu2007, RNA.params_load_RNA_Langdon2018, RNA.
params_load_RNA_misc_special_hairpins, RNA.params_load_DNA_Mathews2004, RNA.
params_load_DNA_Mathews1999

RNA.params_save(std::string filename, unsigned int options=)→ int
Save energy parameters to a file.

SWIG Wrapper Notes
This function is available as overloaded function **params_save**(fname, op-
tions=RNA.PARAMETER_FORMAT_DEFAULT).

Parameters
• fname (const char) – A filename (path) for the file where the current energy parame-

ters will be written to

• options (unsigned int) – File format bit-mask (usually
RNA.PARAMETER_FORMAT_DEFAULT)

Returns
Non-zero on success, 0 on failure

Return type
int

See also:
RNA.params_load

RNA.parse_structure(structure)
Collects a statistic of structure elements of the full structure in bracket notation.

The function writes to the following global variables: loop_size, loop_degree, helix_size, loops, pairs, un-
paired

Parameters
structure (string) –

class RNA.path(*args, **kwargs)
Bases: object

property en

9.7. The RNA Python module 799

ViennaRNA, Release 2.6.4

property move

property s

property thisown

The membership flag

property type

class RNA.path_options

Bases: object

property thisown

The membership flag

RNA.path_options_findpath(*args, **kwargs)
Create options data structure for findpath direct (re-)folding path heuristic.

This function returns an options data structure that switches the RNA.path_direct() and
RNA.fold_compound.path_direct() API functions to use the *findpath*[8] heuristic. The parameter
width specifies the width of the breadth-first search while the second parameter type allows one to set the
type of the returned (re-)folding path.

Currently, the following return types are available:

• A list of dot-bracket structures and corresponding free energy (flag:
RNA.PATH_TYPE_DOT_BRACKET)

• A list of transition moves and corresponding free energy changes (flag: RNA.PATH_TYPE_MOVES)

SWIG Wrapper Notes
This function is available as overloaded function path_options_findpath(). The optional pa-
rameter width defaults to 10 if omitted, while the optional parameter type defaults to
RNA.PATH_TYPE_DOT_BRACKET.

Parameters
• width (int) – Width of the breath-first search strategy

• type (unsigned int) – Setting that specifies how the return (re-)folding path should
be encoded

Returns
An options data structure with settings for the findpath direct path heuristic

Return type
RNA.path_options()

See also:
RNA.PATH_TYPE_DOT_BRACKET, RNA.PATH_TYPE_MOVES, RNA.path_options_free, RNA.
path_direct, RNA.fold_compound.path_direct

RNA.pbacktrack(sequence)
Sample a secondary structure from the Boltzmann ensemble according its probability.

Precondition
st_back has to be set to 1 before calling pf_fold() or pf_fold_par() pf_fold_par() or pf_fold() have to be
called first to fill the partition function matrices

Parameters
sequence (string) – The RNA sequence

Returns
A sampled secondary structure in dot-bracket notation

800 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Return type
string

RNA.pbacktrack5(sequence, length)
Sample a sub-structure from the Boltzmann ensemble according its probability.

RNA.pbacktrack_circ(sequence)
Sample a secondary structure of a circular RNA from the Boltzmann ensemble according its probability.

This function does the same as pbacktrack() but assumes the RNA molecule to be circular

Precondition
st_back has to be set to 1 before calling pf_fold() or pf_fold_par() pf_fold_par() or pf_circ_fold() have
to be called first to fill the partition function matrices

Deprecated since version 2.6.3: Use RNA.fold_compound.pbacktrack() instead.

Parameters
sequence (string) – The RNA sequence

Returns
A sampled secondary structure in dot-bracket notation

Return type
string

class RNA.pbacktrack_mem

Bases: object

property thisown

The membership flag

RNA.pf_add(dG1, dG2, kT=0)

RNA.pf_circ_fold(*args)

RNA.pf_float_precision()

Find out whether partition function computations are using single precision floating points.

Returns
1 if single precision is used, 0 otherwise

Return type
int

See also:
double

RNA.pf_fold(*args)

RNA.pfl_fold(std::string sequence, int w, int L, double cutoff)→ ElemProbVector
Compute base pair probabilities using a sliding-window approach.

This is a simplified wrapper to RNA.fold_compound.probs_window() that given a nucleid acid sequence, a
window size, a maximum base pair span, and a cutoff value computes the pair probabilities for any base pair
in any window. The pair probabilities are returned as a list and the user has to take care to free() the memory
occupied by the list.

Parameters
• sequence (string) – The nucleic acid input sequence

• window_size (int) – The size of the sliding window

• max_bp_span (int) – The maximum distance along the backbone between two nu-
cleotides that form a base pairs

9.7. The RNA Python module 801

ViennaRNA, Release 2.6.4

• cutoff (float) – A cutoff value that omits all pairs with lower probability

Returns
A list of base pair probabilities, terminated by an entry with RNA.ep().i and RNA.ep().j set
to 0

Return type
RNA.ep() *

See also:
RNA.fold_compound.probs_window, RNA.pfl_fold_cb, RNA.pfl_fold_up

Note: This function uses default model settings! For custom model settings, we refer to the function
RNA.fold_compound.probs_window().

In case of any computation errors, this function returns NULL

RNA.pfl_fold_cb(std::string sequence, int window_size, int max_bp_span, PyObject * PyFunc, PyObject *
data=Py_None)→ int

RNA.pfl_fold_up(std::string sequence, int ulength, int window_size, int max_bp_span)→
DoubleDoubleVector

Compute probability of contiguous unpaired segments.

This is a simplified wrapper to RNA.fold_compound.probs_window() that given a nucleic acid sequence, a
maximum length of unpaired segments (ulength), a window size, and a maximum base pair span computes
the equilibrium probability of any segment not exceeding ulength. The probabilities to be unpaired are
returned as a 1-based, 2-dimensional matrix with dimensions 𝑁×𝑀 , where 𝑁 is the length of the sequence
and 𝑀 is the maximum segment length. As an example, the probability of a segment of size 5 starting at
position 100 is stored in the matrix entry 𝑋[100][5].

It is the users responsibility to free the memory occupied by this matrix.

Parameters
• sequence (string) – The nucleic acid input sequence

• ulength (int) – The maximal length of an unpaired segment

• window_size (int) – The size of the sliding window

• max_bp_span (int) – The maximum distance along the backbone between two nu-
cleotides that form a base pairs

Returns
The probabilities to be unpaired for any segment not exceeding ulength

Return type
list-like(list-like(double))

Note: This function uses default model settings! For custom model settings, we refer to the function
RNA.fold_compound.probs_window().

RNA.pfl_fold_up_cb(std::string sequence, int ulength, int window_size, int max_bp_span, PyObject *
PyFunc, PyObject * data=Py_None)→ int

RNA.plist(std::string structure, float pr)→ ElemProbVector
Create a RNA.ep() from a dot-bracket string.

The dot-bracket string is parsed and for each base pair an entry in the plist is created. The probability of each
pair in the list is set by a function parameter.

802 Chapter 9. Python API

ViennaRNA, Release 2.6.4

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be used
to stop looping over its entries

Parameters
• struc (string) – The secondary structure in dot-bracket notation

• pr (float) – The probability for each base pair used in the plist

Returns
The plist array

Return type
RNA.ep() *

RNA.plot_dp_EPS(*args, **kwargs)
Produce an encapsulate PostScript (EPS) dot-plot from one or two lists of base pair probabilities.

This function reads two RNA.ep() lists upper and lower (e.g. base pair probabilities and a secondary struc-
ture) and produces an EPS “dot plot” with filename ‘filename’ where data from upper is placed in the upper-
triangular and data from lower is placed in the lower triangular part of the matrix.

For default output, provide the flag RNA.PLOT_PROBABILITIES_DEFAULT as options param-
eter.

SWIG Wrapper Notes
This function is available as overloaded function plot_dp_EPS() where the last three parameters may
be omitted. The default values for these parameters are lower = NULL, auxdata = NULL, options =
RNA.PLOT_PROBABILITIES_DEFAULT

Parameters
• filename (string) – A filename for the EPS output

• sequence (string) – The RNA sequence

• upper (RNA.ep() *) – The base pair probabilities for the upper triangular part

• lower (RNA.ep() *) – The base pair probabilities for the lower triangular part

• options (unsigned int) – Options indicating which of the input data should be in-
cluded in the dot-plot

Returns
1 if EPS file was successfully written, 0 otherwise

Return type
int

See also:
RNA.plist, RNA.fold_compound.plist_from_probs, RNA.PLOT_PROBABILITIES_DEFAULT

RNA.print_bppm(T)
print string representation of probability profile

RNA.print_tree(t)
Print a tree (mainly for debugging)

RNA.profile_edit_distance(T1, T2)
Align the 2 probability profiles T1, T2 .

This is like a Needleman-Wunsch alignment, we should really use affine gap-costs ala Gotoh

RNA.pt_pk_remove(IntVector pt, unsigned int options=0)→ IntVector

9.7. The RNA Python module 803

ViennaRNA, Release 2.6.4

RNA.pt_pk_remove(varArrayShort pt, unsigned int options=0)→ varArrayShort
Remove pseudo-knots from a pair table.

This function removes pseudo-knots from an input structure by determining the minimum number of base
pairs that need to be removed to make the structure pseudo-knot free.

To accomplish that, we use a dynamic programming algorithm similar to the Nussinov maxmimum matching
approach.

Parameters
• ptable (const short *) – Input structure that may include pseudo-knots

• options (unsigned int) –

Returns
The input structure devoid of pseudo-knots

Return type
list-like(int)

See also:
RNA.db_pk_remove

RNA.ptable(std::string str, unsigned int options=)→ varArrayShort
Create a pair table for a secondary structure string.

This function takes an input string of a secondary structure annotation in Dot-Bracket Notation (a.k.a. Dot-
Parenthesis Notation) or dot-bracket-ext-notation, and converts it into a pair table representation.

SWIG Wrapper Notes
This functions is wrapped as overloaded function ptable() that takes an optional argument options to
specify which type of matching brackets should be considered during conversion. The default set is
round brackets, i.e. RNA.BRACKETS_RND.

Parameters
• structure (string) – Secondary structure in dot-bracket-ext-notation

• options (unsigned int) – A bitmask to specify which brackets are recognized during
conversion to pair table

Returns
A pointer to a new pair table of the provided secondary structure

Return type
list-like(int)

See also:
RNA.ptable, RNA.db_from_ptable, RNA.db_flatten_to, RNA.pt_pk_remove, RNA.BRACKETS_ANG,
RNA.BRACKETS_CLY, RNA.BRACKETS_SQR, RNA.BRACKETS_ALPHA, RNA.BRACKETS_DEFAULT, RNA.
BRACKETS_ANY

Note: This function also extracts crossing base pairs, i.e. pseudo-knots if more than a single matching
bracket type is allowed through the bitmask options.

RNA.ptable_pk(std::string str)→ IntVector
Create a pair table of a secondary structure (pseudo-knot version)

Returns a newly allocated table, such that table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains the
length of the structure.

In contrast to RNA.ptable() this function also recognizes the base pairs denoted by ‘[’ and ‘]’ brackets. Thus,
this function behaves like

804 Chapter 9. Python API

ViennaRNA, Release 2.6.4

Parameters
structure (string) – The secondary structure in (extended) dot-bracket notation

Returns
A pointer to the created pair_table

Return type
list-like(int)

See also:
RNA.ptable_from_string

RNA.random_string(l, symbols)
Create a random string using characters from a specified symbol set.

Parameters
• l (int) – The length of the sequence

• symbols (const char) – The symbol set

Returns
A random string of length ‘l’ containing characters from the symbolset

Return type
string

RNA.read_parameter_file(fname)
Read energy parameters from a file.

Deprecated since version 2.6.3: Use RNA.params_load() instead!

Parameters
fname (const char) – The path to the file containing the energy parameters

RNA.read_record(header, sequence, rest, options)
Get a data record from stdin.

Deprecated since version 2.6.3: This function is deprecated! Use RNA.file_fasta_read_record() as a replac-
ment.

RNA.rotational_symmetry(*args)
Determine the order of rotational symmetry for a NULL-terminated string of ASCII characters.

The algorithm applies a fast search of the provided string within itself, assuming the end of the string wraps
around to connect with it’s start. For example, a string of the form AABAAB has rotational symmetry of order
2

If the argument positions is not NULL, the function stores an array of string start positions for rotational shifts
that map the string back onto itself. This array has length of order of rotational symmetry, i.e. the number
returned by this function. The first element positions`[0] always contains a shift value of `0 representing the
trivial rotation.

SWIG Wrapper Notes
This function is available as overloaded global function rotational_symmetry(). It
merges the functionalities of RNA.rotational_symmetry(), RNA.rotational_symmetry_pos(),
RNA.rotational_symmetry_num(), and RNA.rotational_symmetry_pos_num(). In contrast to our
C-implementation, this function doesn’t return the order of rotational symmetry as a single value, but
returns a list of cyclic permutation shifts that result in a rotationally symmetric string. The length of
the list then determines the order of rotational symmetry.

Parameters
• string (string) – A NULL-terminated string of characters

• positions (list-like(list-like(unsigned int))) – A pointer to an (undefined)
list of alternative string start positions that lead to an identity mapping (may be NULL)

9.7. The RNA Python module 805

ViennaRNA, Release 2.6.4

Returns
The order of rotational symmetry

Return type
unsigned int

See also:
RNA.rotational_symmetry, RNA.rotational_symmetry_num, RNA.
rotational_symmetry_num_pos

Note: Do not forget to release the memory occupied by positions after a successful execution of this function.

RNA.salt_duplex_init(md)
Get salt correction for duplex initialization at a given salt concentration.

Parameters
md (RNA.md() *) – Model details data structure that specfifies salt concentration in buffer
(M)

Returns
Rounded correction for duplex initialization in dcal/mol

Return type
int

RNA.salt_loop(L, salt, T, backbonelen)
Get salt correction for a loop at a given salt concentration and temperature.

Parameters
• L (int) – backbone number in loop

• salt (double) – salt concentration (M)

• T (double) – absolute temperature (K)

• backbonelen (double) – Backbone Length, phosphate-to-phosphate distance (typi-
cally 6 for RNA, 6.76 for DNA)

Returns
Salt correction for loop in dcal/mol

Return type
double

RNA.salt_loop_int(L, salt, T, backbonelen)
Get salt correction for a loop at a given salt concentration and temperature.

This functions is same as RNA.salt_loop but returns rounded salt correction in integer

Parameters
• L (int) – backbone number in loop

• salt (double) – salt concentration (M)

• T (double) – absolute temperature (K)

• backbonelen (double) – Backbone Length, phosphate-to-phosphate distance (typi-
cally 6 for RNA, 6.76 for DNA)

Returns
Rounded salt correction for loop in dcal/mol

Return type
int

806 Chapter 9. Python API

ViennaRNA, Release 2.6.4

See also:
RNA.salt_loop

RNA.salt_ml(saltLoop, lower, upper, m, b)
Fit linear function to loop salt correction.

For a given range of loop size (backbone number), we perform a linear fitting on loop salt correction

Loop correction ≈ 𝑚 · 𝐿 + 𝑏.

Parameters
• saltLoop (double) – List of loop salt correction of size from 1

• lower (int) – Define the size lower bound for fitting

• upper (int) – Define the size upper bound for fitting

• m (int *) – pointer to store the parameter m in fitting result

• b (int *) – pointer to store the parameter b in fitting result

See also:
RNA.salt_loop

RNA.salt_stack(salt, T, hrise)
Get salt correction for a stack at a given salt concentration and temperature.

Parameters
• salt (double) – salt concentration (M)

• T (double) – absolute temperature (K)

• hrise (double) – Helical Rise (typically 2.8 for RNA, 3.4 for DNA)

Returns
Rounded salt correction for stack in dcal/mol

Return type
int

RNA.sc_add_bt_pycallback(vc, PyFunc)

RNA.sc_add_exp_f_pycallback(vc, PyFunc)

RNA.sc_add_f_pycallback(vc, callback)

RNA.sc_add_pydata(vc, data, callback)

class RNA.sc_mod_param(json, md=None)
Bases: object

available

Type
unsigned int

name

Type
string

one_letter_code

Type
char

9.7. The RNA Python module 807

ViennaRNA, Release 2.6.4

unmodified

Type
char

fallback

Type
char

pairing_partners

Type
char

pairing_partners_encoding

Type
unsigned int

unmodified_encoding

Type
unsigned int

fallback_encoding

Type
unsigned int

num_ptypes

Type
size_t

ptypes

Type
size_t

stack_dG

Type
int

stack_dH

Type
int

dangle5_dG

Type
int

dangle5_dH

Type
int

dangle3_dG

Type
int

808 Chapter 9. Python API

ViennaRNA, Release 2.6.4

dangle3_dH

Type
int

mismatch_dG

Type
int

mismatch_dH

Type
int

terminal_dG

Type
int

terminal_dH

Type
int

property thisown

The membership flag

RNA.sc_mod_parameters_free(params)
Release memory occupied by a modified base parameter data structure.

Properly free a RNA.sc_mod_param() data structure

SWIG Wrapper Notes
This function is available as function sc_mod_parameters_free()

Parameters
params (RNA.sc_mod_param()) – The data structure to free

RNA.sc_mod_read_from_json(json, md=None)
Parse and extract energy parameters for a modified base from a JSON string.

SWIG Wrapper Notes
This function is available as an overloaded function sc_mod_read_from_json() where the md param-
eter may be omitted

Parameters
• filename – The JSON file containing the specifications of the modified base

• md (RNA.md() *) – A model-details data structure (for look-up of canonical base pairs)

Returns
Parameters of the modified base

Return type
RNA.sc_mod_param()

See also:
RNA.sc_mod_read_from_jsonfile, RNA.sc_mod_parameters_free, RNA.fold_compound.sc_mod ,
JSON, Parameter, for

9.7. The RNA Python module 809

ViennaRNA, Release 2.6.4

RNA.sc_mod_read_from_jsonfile(filename, md=None)
Parse and extract energy parameters for a modified base from a JSON file.

SWIG Wrapper Notes
This function is available as an overloaded function sc_mod_read_from_jsonfile() where the md pa-
rameter may be omitted

Parameters
• filename (string) – The JSON file containing the specifications of the modified base

• md (RNA.md() *) – A model-details data structure (for look-up of canonical base pairs)

Returns
Parameters of the modified base

Return type
RNA.sc_mod_param()

See also:
RNA.sc_mod_read_from_json, RNA.sc_mod_parameters_free, RNA.fold_compound.sc_mod ,
JSON, Parameter, Modified

RNA.seq_encode(std::string sequence, md md_p=None)→ IntVector
Get a numerical representation of the nucleotide sequence.

SWIG Wrapper Notes
In the target scripting language, this function is wrapped as overloaded function seq_encode() where the
last parameter, the model_details data structure, is optional. If it is omitted, default model settings are
applied, i.e. default nucleotide letter conversion. The wrapped function returns a list/tuple of integer
representations of the input sequence.

Parameters
• sequence (string) – The input sequence in upper-case letters

• md (RNA.md() *) – A pointer to a RNA.md() data structure that specifies the conversion
type

Returns
A list of integer encodings for each sequence letter (1-based). Position 0 denotes the length
of the list

Return type
list-like(int)

RNA.settype(s)

RNA.shortP_getitem(ary, index)

RNA.shortP_setitem(ary, index, value)

RNA.simple_circplot_coordinates(std::string arg1)→ CoordinateVector

RNA.simple_xy_coordinates(*args)
Calculate nucleotide coordinates for secondary structure plot the Simple way

Deprecated since version 2.6.3: Consider switching to RNA.plot_coords_simple_pt() instead!

See also:
make_pair_table, rna_plot_type, simple_circplot_coordinates, naview_xy_coordinates,
RNA.file_PS_rnaplot_a, RNA.file_PS_rnaplot, svg_rna_plot

Parameters

810 Chapter 9. Python API

ViennaRNA, Release 2.6.4

• pair_table (list-like(int)) – The pair table of the secondary structure

• X (list-like(double)) – a pointer to an array with enough allocated space to hold
the x coordinates

• Y (list-like(double)) – a pointer to an array with enough allocated space to hold
the y coordinates

Returns
length of sequence on success, 0 otherwise

Return type
int

RNA.ssv_rna_plot(string, structure, ssfile)
Produce a secondary structure graph in SStructView format.

Write coord file for SStructView

Parameters
• string (string) – The RNA sequence

• structure (string) – The secondary structure in dot-bracket notation

• ssfile (string) – The filename of the ssv output

Returns
1 on success, 0 otherwise

Return type
int

RNA.string_edit_distance(T1, T2)
Calculate the string edit distance of T1 and T2.

Parameters
• T1 (swString *) –

• T2 (swString *) –

Return type
float

RNA.strtrim(char * seq_mutable, char const * delimiters=None, unsigned int keep=0, unsigned int options=)
→ unsigned int

Trim a string by removing (multiple) occurences of a particular character.

This function removes (multiple) consecutive occurences of a set of characters (delimiters) within an input
string. It may be used to remove leading and/or trailing whitespaces or to restrict the maximum number
of consecutive occurences of the delimiting characters delimiters. Setting keep=0 removes all occurences,
while other values reduce multiple consecutive occurences to at most keep delimiters. This might be useful
if one would like to reduce multiple whitespaces to a single one, or to remove empty fields within a comma-
separated value string.

The parameter delimiters may be a pointer to a 0-terminated char string containing a set of any ASCII
character. If NULL is passed as delimiter set or an empty char string, all whitespace characters are trimmed.
The options parameter is a bit vector that specifies which part of the string should undergo trimming. The
implementation distinguishes the leading (RNA.TRIM_LEADING), trailing (RNA.TRIM_TRAILING), and
in-between (RNA.TRIM_IN_BETWEEN) part with respect to the delimiter set. Combinations of these parts
can be specified by using logical-or operator.

The following example code removes all leading and trailing whitespace characters from the input string:

SWIG Wrapper Notes
Since many scripting languages treat strings as immutable objects, this function does not modify the

9.7. The RNA Python module 811

ViennaRNA, Release 2.6.4

input string directly. Instead, it returns the modified string as second return value, together with the
number of removed delimiters.

The scripting language interface provides an overloaded version of this function, with default parame-
ters delimiters=NULL, keep=0, and options=RNA.TRIM_DEFAULT.

Parameters
• string (string) – The ‘0’-terminated input string to trim

• delimiters (string) – The delimiter characters as 0-terminated char array (or NULL)

• keep (unsigned int) – The maximum number of consecutive occurences of the de-
limiter in the output string

• options (unsigned int) – The option bit vector specifying the mode of operation

Returns
The number of delimiters removed from the string

Return type
unsigned int

See also:
RNA.TRIM_LEADING, RNA.TRIM_TRAILING, RNA.TRIM_IN_BETWEEN, RNA.TRIM_SUBST_BY_FIRST,
RNA.TRIM_DEFAULT, RNA.TRIM_ALL

Note: The delimiter always consists of a single character from the set of characters provided. In case of
alternative delimiters and non-null keep parameter, the first keep delimiters are preserved within the string.
Use RNA.TRIM_SUBST_BY_FIRST to substitute all remaining delimiting characters with the first from
the delimiters list.

class RNA.struct_en

Bases: object

Data structure for energy_of_move()

energy

Type
int

structure

Type
list-like(int)

C++ includes

Type
ViennaRNA/move_set.h

property energy

property structure

property thisown

The membership flag

RNA.subopt(*args)

class RNA.subopt_solution

Bases: object

812 Chapter 9. Python API

ViennaRNA, Release 2.6.4

property energy

property structure

property thisown

The membership flag

RNA.svg_rna_plot(string, structure, ssfile)
Produce a secondary structure plot in SVG format and write it to a file.

Parameters
• string (string) – The RNA sequence

• structure (string) – The secondary structure in dot-bracket notation

• ssfile (string) – The filename of the svg output

Returns
1 on success, 0 otherwise

Return type
int

RNA.tree_edit_distance(T1, T2)
Calculates the edit distance of the two trees.

Parameters
• T1 (Tree *) –

• T2 (Tree *) –

Return type
float

RNA.tree_string_to_db(structure)
Convert a linear tree string representation of a secondary structure back to Dot-Bracket notation.

Parameters
tree (string) – A linear tree string representation of a secondary structure

Returns
A dot-bracket notation of the secondary structure provided in tree

Return type
string

Warning: This function only accepts Expanded and HIT tree representations!

See also:
RNA.db_to_tree_string, RNA.STRUCTURE_TREE_EXPANDED, RNA.STRUCTURE_TREE_HIT, Tree,
Representations

RNA.tree_string_unweight(structure)
Remove weights from a linear string tree representation of a secondary structure.

This function strips the weights of a linear string tree representation such as HIT, or Coarse Grained Tree
sensu Shapiro [27]

Parameters
structure (string) – A linear string tree representation of a secondary structure with
weights

Returns
A linear string tree representation of a secondary structure without weights

9.7. The RNA Python module 813

ViennaRNA, Release 2.6.4

Return type
string

See also:
RNA.db_to_tree_string

RNA.ubf_eval_ext_int_loop(i, j, p, q, i1, j1, p1, q1, si, sj, sp, sq, type, type_2, length, P, sc)

RNA.ubf_eval_int_loop(i, j, p, q, i1, j1, p1, q1, si, sj, sp, sq, type, type_2, rtype, ij, cp, P, sc)

RNA.ubf_eval_int_loop2(i, j, p, q, i1, j1, p1, q1, si, sj, sp, sq, type, type_2, rtype, ij, sn, ss, P, sc)

RNA.ud_set_exp_prod_cb(vc, prod_cb, eval_cb)

RNA.ud_set_prob_cb(vc, setter, getter)

RNA.ud_set_prod_cb(vc, prod_cb, eval_cb)

RNA.ud_set_pydata(vc, data, PyFuncOrNone)

RNA.unexpand_Full(ffull)
Restores the bracket notation from an expanded full or HIT tree, that is any tree using only identifiers ‘U’
‘P’ and ‘R’.

Parameters
ffull (string) –

Return type
string

RNA.unexpand_aligned_F(align)
Converts two aligned structures in expanded notation.

Takes two aligned structures as produced by tree_edit_distance() function back to bracket notation with ‘_’
as the gap character. The result overwrites the input.

Parameters
align (string) –

RNA.unpack_structure(char const * packed)→ char *

RNA.unweight(wcoarse)
Strip weights from any weighted tree.

Parameters
wcoarse (string) –

Return type
string

RNA.update_co_pf_params(length)
Recalculate energy parameters.

This function recalculates all energy parameters given the current model settings.

Deprecated since version 2.6.3: Use RNA.fold_compound.exp_params_subst() instead!

Parameters
length (int) – Length of the current RNA sequence

RNA.update_cofold_params()

Recalculate parameters.

Deprecated since version 2.6.3: See RNA.fold_compound.params_subst() for an alternative using the new
API

814 Chapter 9. Python API

ViennaRNA, Release 2.6.4

RNA.update_fold_params()

Recalculate energy parameters.

Deprecated since version 2.6.3: For non-default model settings use the new API with
RNA.fold_compound.params_subst() and

RNA.fold_compound.mfe() instead!

RNA.update_pf_params(length)
Recalculate energy parameters.

Call this function to recalculate the pair matrix and energy parameters after a change in folding parameters
like temperature

Deprecated since version 2.6.3: Use RNA.fold_compound.exp_params_subst() instead

RNA.urn()

get a random number from [0..1]

Returns
A random number in range [0..1]

Return type
double

See also:
RNA.int_urn, RNA.init_rand , RNA.init_rand_seed

Note: Usually implemented by calling erand48().

RNA.ushortP_getitem(ary, index)

RNA.ushortP_setitem(ary, index, value)

class RNA.varArrayChar(d, type)
Bases: object

get(i)

size()

property thisown

The membership flag

type()

class RNA.varArrayFLTorDBL(d, type)
Bases: object

get(i)

size()

property thisown

The membership flag

type()

class RNA.varArrayInt(d, type)
Bases: object

get(i)

9.7. The RNA Python module 815

ViennaRNA, Release 2.6.4

size()

property thisown

The membership flag

type()

class RNA.varArrayMove(d, type)
Bases: object

get(i)

size()

property thisown

The membership flag

type()

class RNA.varArrayShort(*args)
Bases: object

get(i)

size()

property thisown

The membership flag

type()

class RNA.varArrayUChar(d, type)
Bases: object

get(i)

size()

property thisown

The membership flag

type()

class RNA.varArrayUInt(d, type)
Bases: object

get(i)

size()

property thisown

The membership flag

type()

class RNA.var_array_Iterator(var_arr)
Bases: object

next()

816 Chapter 9. Python API

ViennaRNA, Release 2.6.4

RNA.write_parameter_file(fname)
Write energy parameters to a file.

Deprecated since version 2.6.3: Use RNA.params_save() instead!

Parameters
fname (const char) – A filename (path) for the file where the current energy parameters
will be written to

RNA.xrna_plot(string, structure, ssfile)
Produce a secondary structure plot for further editing in XRNA.

Parameters
• string (string) – The RNA sequence

• structure (string) – The secondary structure in dot-bracket notation

• ssfile (string) – The filename of the xrna output

Returns
1 on success, 0 otherwise

Return type
int

RNA.zukersubopt(string)
Compute Zuker type suboptimal structures.

Compute Suboptimal structures according to M. Zuker, i.e. for every possible base pair the minimum energy
structure containing the resp. base pair. Returns a list of these structures and their energies.

Deprecated since version 2.6.3: use RNA.zukersubopt() instead

Parameters
string (string) – RNA sequence

Returns
List of zuker suboptimal structures

Return type
SOLUTION *

9.7. The RNA Python module 817

ViennaRNA, Release 2.6.4

818 Chapter 9. Python API

CHAPTER

TEN

NEWS

10.1 Version 2.6.0

This version introduces modified nucleotides support and a physics-based model to correct for predictions at non-
standard (monovalent) salt concentrations. At this time we include publically available energy parameters for
inosine, pseudouridine, m6A, 7DA, and purine (a.k.a. nebularine). In addition, we add stacking parameters for
dihydrouridine as predicted by Rosetta/RECESS.

See the Changelog for version 2.6.0 for a complete list of new features and bugfixes.

10.2 Version 2.5.0

The all new release of version 2.5 brings multi-strand interaction prediction! The new executable tool RNA-
multifold is the successor of the RNA-RNA dimer interaction prediction tool RNAcofold and effectively lifts the
restriction to just two interacting strands. It follows the same principle of concatenating the RNA strands that shall
form a complex and then predicts MFE and partition function. Along with that, it can also compute equilibrium
concentrations of the complexes formed.

See the Changelog for version 2.5.0 for a complete list of additions, novel features and fixed bugs.

10.3 Version 2.4.0

With version 2.4 sliding-window structure prediction receives the constraint framework! Starting with this version,
the sliding-window secondary structure prediction implementations as available through RNALfold, RNAplfold,
and RNALalifold are constraints-aware. Thus, they can readily incorporate RNA structure probing data, such as
from SHAPE experiments, etc.

See the Changelog for version 2.4.0 for a complete list of new features and bugfixes.

10.4 Version 2.3.0

This version introduces the unstructured domain extension of the RNA folding grammar! This extension adds
RNA-ligand interactions, e.g. RNA-protein, for unpaired stretches in RNA secondary structures. The feature is
easy to use through the command file interface in RNAfold.

See the Changelog for version 2.3.0 for a complete list of new features and bugfixes.

819

ViennaRNA, Release 2.6.4

10.5 Version 2.2.0

After almost a year without a new release, we are happy to announce many new features. This version officially
introduces (generic) hard- and soft-constraints for many of the folding algorithms. Thus, chemical probing con-
straints, such as derived from SHAPE experiments, can be easily incorporated into RNAfold, RNAalifold, and
RNAsubopt. Furthermore, RNAfold and the RNAlib interface allow for a simple way to incorporate ligand bind-
ing to specific hairpin- or interior-loop motifs. This version also introduces the new v3.0 API of the RNAlib
C-library, that will eventually replace the current interface in the future.

See the Changelog for version 2.2.0 for a complete list of new features and bugfixes.

10.6 Version 2.1.9

This is a major bugfix release that changes the way how the ViennaRNA Package handles dangling end and terminal
mismatch contributions for exterior-, and multibranch loops. We strongly recommend upgrading your installation
to this or a newer version to obtain predictions that are better comparable to RNAstructure or UNAFold.

Please see the Changelog for version 2.1.9 for further details on the actual changes to the underlying energy pa-
rameters.

10.7 Version 2.1.7

For a long time, Mac OS X users were not able to correctly build the Perl/Python interface of the ViennaRNA
Package. Starting with v2.1.7, this limitation has been removed, and the interface should compile and work as
expected.

Please see the Install Notes for Mac OS X users for further details.

10.8 Version 2.1.0

Since ViennaRNA Package Version 2.1.0 we have enabled G-Quadruplex prediction support into RNAfold, RNA-
cofold, RNALfold, RNAalifold, RNAeval and RNAplot.

See the changelog for details.

10.9 Older news

10.10 Version 2.0

• Meanwhile, a lot of changes in the RNAlib have accumulated. See the Reference Manual and the Changelog
for further details

• All algorithms use the Turner’04 nearest neighbor model

• The RNAlib provides (OpenMP) threadsafe folding routines per default. This is enables concurrent calls to
the folding routines in parallel. The feature can be disabled by passing ‘–disable-openmp’ to the configure
script

• serious changes in command line parameters. Everything complies with GNU standard from now on (short
options with preceding ‘-’, long options with preceding ‘–‘.

• FASTA file support for RNAfold. RNA sequences do not need to be passed on a single line anymore when
a FASTA header is provided.

820 Chapter 10. News

ViennaRNA, Release 2.6.4

• The new program RNA2Dfold computes MFE, partition function and stochastically sampled secondary
structures in a partitioning of the secondary structure space according to the base pair distance to two refer-
ence structures

• The new program PKplex computes. . .

• The new program RNALfoldz computes locally stable secondary structures together with a z-score

• The new program RNALalifold computes locally stable consensus structures for alignments

• The new program RNAparconv enables the conversion of ‘old’ energy parameter files (v1.4-v1.8) to the new
format used in version 2.x

10.11 Version 1.8

• new RNAalifold has better treatment of gaps and ribosum based covariance scores. Use the -old switch for
compatibility with older RNAalifold versions.

• RNAplfold -u now computes all accessibilities up to a maximum length (much faster than computing each
individually)

• ATTENTION: output formats of RNAplfold -u and or RNAup have been changed
Programs parsing RNAplfold and RNAup output will have to be modified.

• RNAfold and RNAalifold compute centroid structures when run with -p use the -MEA option to compute
Maximum Expected Accuracy structures.

10.12 Version 1.7

• RNAplfold can now be used to compute accessibilities, i.e. the probability that a stretch of the RNA remains
unpaired (and thus available for intermolecular interactions).

• A new version of RNAup predicts RNA-RNA interactions takeing into account the competition between
inter- and intramolecular structure in both molcules

• Circular RNAs can be treated by RNAfold, RNAalifold, RNAsubopt, and RNAcofold

• RNAaliduplex predicts RNA-RNA interactions between two sets of aligned sequences (inter-molecular struc-
ture only)

10.13 Version 1.6

• The RNAforester program for tree-alignments of RNA structures is now distributed with the Vienna RNA
package, see the RNAforester subdirectory for more information. RNAforester was written by Matthias
Hoechsmann mhoechsm@techfak.uni-bielefeld.de

• The Kinfold program for stochastic simulation of folding trajectories is now included in the package, see the
Kinfold subdirectory.

• cofolding of two structures now supports suboptimal folding and partition function folding. ATTENTION:
Energies of hybrid structures now include the Duplex-initiation energy, which was neglected in previous
version.

• RNAplfold is a partition function variant of RNALfold. It computes the mean probability of a (local) base
pair averaged over all sequence windows that contain the pair.

• new utilities to color alignments and consensus structures

• RNAfold -p now computes the centroid structure

• ATTENTION: ensemble diversities in version <1.6.5 are off by a factor 2

10.11. Version 1.8 821

mailto:mhoechsm@techfak.uni-bielefeld.de

ViennaRNA, Release 2.6.4

10.14 Version 1.5pre

• ViennaRNA now uses autoconfig generated configure scripts for even better portability (should compile on
any UNIX, Linux, MacOS X, Windows with Cygwin).

• The new RNAalifold program predicts consensus structures for a set of aligned sequences.

• Complete suboptimal folding is now integrated in the library.

• Beginning support for co-folding of two strands: energy_of_struct() and RNAeval can now compute energies
of duplex structures.

• RNAcofold predicts hybrid structures of two RNA strands

• RNAduplex predicts hybrid structures, while allowing only inter-molecular base pairs (useful for finding
potential binding sites)

• RNALfold predicts locally stable structures in long sequences.

• Major changes to Perl module. See the pod documentation (perldoc RNA).

• RNAsubopt can do stochastic backtracking to produce samples of suboptimal structures with Boltzmann
statistics.

• New utilities to rotate secondary structure plots and annotate them with reliability data.

• Various small bug fixes

10.15 Version 1.4

• New Turner parameters as described in Mathews et.al. JMB v288, 1999. Small changes to format of param-
eter files (old param files won’t work!)

• mfe and suboptimal folding will produce only structures without isolated pairs if noLonelyPairs=1 (-noLP
option), for partition function folding pairs that can only occur as isolated pairs are not formed.

• setting dangles=3 (-d3 option) will allow co-axial stacking of adjacent helices in mfe folding and en-
ergy_of_struct().

10.16 Version 1.3.1

• RNAheat would produce spikes in the specific heat because dangling end energies did not go smoothly to 0.

• PS dot plots now have an option to use a log scale (edit _dp.ps file and set logscale to true).

10.17 Version 1.3

• Secondary structure plots now use E. Bruccoleri’s naview routines for layout by default. New utility RNAplot
produces secondary structure plots from structures in bracket notation with several options.

• New -d2 option in RNAfold and RNAeval sets dangles=2, which makes energy_of_struct() and fold() treat
dangling ends as in pf_fold(). -noLP option in RNAfold etc sets noLonelyPairs=1, which avoids most struc-
tures containing lonely base pairs (helices of length 1).

• new utility functions pack_structure() unpack_structure() make_pair_table() and bp_distance(). RNAdis-
tance adds bp_distance() via -DP switch.

• First release of RNAsubopt for complete suboptimal folding.

• fixed bug in asymmetry penalty for interior loops.

822 Chapter 10. News

ViennaRNA, Release 2.6.4

• Default compilation now uses doubles for partition function folding.

10.18 Version 1.2.1

• Fixed bug in version 1.2 of the RNAheat program causing overflow errors for most input sequences.

• The PS_dot_plot() and PS_rna_plot() routines now return an int. The return value is 0 if the file could not
be written, 1 otherwise.

• This version contains the alpha version of a perl5 module, which let’s you access all the capabilities of the
Vienna RNA library from perl scripts.

10.19 Version 1.2

• New energy parameters from (Walter et.al 1994).

• Energy parameters can be read from file.

• RNAeval and energy_of_struct() support logarithmic energy function for multi-loops.

• gmlRNA() produces secondary structure drawing in gml (Graph Meta Language).

• Many bug fixes.

10.18. Version 1.2.1 823

ViennaRNA, Release 2.6.4

824 Chapter 10. News

CHAPTER

ELEVEN

CHANGELOG

Below, you’ll find a list of notable changes for each version of the ViennaRNA Package.

11.1 Version 2.6.x

11.1.1 Unreleased

11.1.2 Version 2.6.4

Programs

• Fix C++17 compilation issue with kinwalker

• Fix potential compilation issues with C++20 in RNAforester frontend

• Refactor and correct spelling issues in man pages for several executable programs

Library

• API: Add shift move support to vrna_move_neighbor_diff*() functions

• API: Fix char array initialization in snoop.c

• API: Fix potentially leaking file pointer in vrna_file_msa_read()

• API: Fix potentially leaking memory in rnaplot_EPS()

• API: Fix potential use of uninitialized variable in vrna_rotational_symmetry_db_pos()

• API: Fix soft constraints issue in external loop of vrna_subopt*()

• SWIG: Add swig class output parameter typemap for Python

• SWIG: Add __hash__() and __eq__() methods for wrapped _vrna_move_t in Python

• SWIG: Return var_array<vrna_move_t> objects in Python wrapped vrna_neighbors() and
vrna_move_neighbor_diff()

• SWIG: Refactor file handle wrapping between Python 3 and C

• SWIG: Fix var_array Python slices and associated memory leak

• SWIG: Fix bogus delete/free() calls in swig interface

• Add requirements to build RNAlib with MSVC for Windows

• Remove unused code in RNApuzzler

825

ViennaRNA, Release 2.6.4

Package

• DOC: Transition reference manual from doxygen to sphinx via breathe bridge

• DOC: Merge documentation of C-API and Python API

• DOC: Merge parts of tutorial into reference manual

• AUTOCONF: Refactor autoconf checks for capability to build reference manual

• AUTOCONF: Deactivate build of RNAxplorer if lapack requirements are not met

11.1.3 Version 2.6.3

Library

• Make JSON parser integral part of ViennaRNA library

• API: Move modified energy parameters into ‘modified_base’ object in JSON file(s)

• SWIG: Enable stand-alone build of Python interface (for PyPI)

Package

• Add enthalpy and terminal end values for predicted stacks with dihydrouridine

• TESTS: Allow for using pytest to test the Python 3 interface

11.1.4 Version 2.6.2 (Release date: 2023-06-21)

Programs

• Fix preparation of input sequences for modified base support in RNAcofold

Library

• Fix energy corrections for modified base support when unmodified base is not the same as fallback base, e.g.
in the case of inosine

• Add soft constraints to multifold external loop decomposition

• Add soft constraints preparation stage callback

• SWIG: Fix fc.sc_add_bp() propagation of constraint values

• SWIG: Wrap energy parameter file strings

Package

• TESTS: Add modified base tests on duplex data with I-C and A-Psi pairs from publications

826 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.1.5 Version 2.6.1 (Release date: 2023-06-12)

Programs

• Fix double free corruption in RNAdos

• Fix compilation issues due to use of uint instead of unsigned int for RNAxplorer

• Fix compilation issues for RNAxplorer when OpenMP is unavailable

Package

• AUTOCONF: Update autoconf macros

• Update Debian-based packaging rules

11.1.6 Version 2.6.0 (Release date: 2023-06-09)

Programs

• Add modified base input support to RNAfold

• Add modified base input support to RNAplfold

• Add modified base input support to RNALfold

• Add modified base input support to RNAcofold

• Add modified base input support to RNAsubopt

• Fix missing strand separators in RNAsubopt when applied to multiple interacting sequences

• Fix sorted output in RNAsubopt with --gquad option

• Allow for only -Fp in RNAinverse instead of always activating -Fm

• Fix default value of RNAinverse -R option in manpage

• Restructure --*help output and man pages for most executable programs

• Allow for cation concentration (Na+) changes in most executable programs (default 1.021M)

• Allow for at least as many threads as CPUs are configured if maximum thread number detection fails

• Fix alignment input parsing in refold.pl

• Add RNAxplorer program to the distribution

Library

• API: Extend model_details to allow for salt concentration changes

• API: Add functions for salt concentration change derived energy corrections in ViennaRNA/params/salt.
h

• API: Add arbitrary modified base support (vrna_sc_mod()) via soft constraints mechanism and JSON input
data

• API: Add Pseuoduridine-A parameters via soft constraints callback

• API: Add Dihydrouridine parameters via soft constraints callback

• API: Add inosine-U and inosine-C parameters via soft constraints callback

• API: Add m6A parameters via soft constraints callback mechanism

• API: Add 7DA modification support via soft constraints

11.1. Version 2.6.x 827

ViennaRNA, Release 2.6.4

• API: Add Purine (nebularine) modification support

• API: Add new soft constraints multi-callback dispatcher

• API: Add dynamic array data structure utilities

• API: Add string data structure utilities

• API: Add vrna_strchr() function

• API: Fix potential problems in free_dp_matrices() of LPfold.c

• API: Fix z-score initialization in vrna_Lfoldz() amd vrna_mfe_window_zscore_cb()

• API: Fix file close issue in vrna_file_commands_read()

• API: Fix backtracking issue in Zuker subopt

• API: Fix missing soft constraints callback execution in Zuker subopt

• API: Fix enumeration of G-quadruplexes in vrna_subopt() and vrna_subopt_cb()

• API: Fix constraints bug for exterior loop in boltzmann sampling

• API: Allow for enforcing ‘must pair’ constraint (|) in dot-bracket constraints strings

• API: Fix discrepancy between global and local folding in how hard constraints for unpaired bases and non-
specific pairing are applied

• API: Refactor function typdefs to make them actual function pointer typedefs

• SWIG: Fix Python 3 wrapper suffix issue

• SWIG: Fix Perl 5 wrapper for vrna_ud_prob_get()

• SWIG: Only accept upper triangular part of matrix input in fc.sc_bp_add()

• SWIG: Use var_array instead of tuples for Python RNA.ptable()

• SWIG: Add Python wrapper for vrna_move_neighbor_diff()

• SWIG: Add Python docstrings generated from doxygen documentation of C-library

Package

• Update libsvm to version 3.31

• Update dlib to version 19.24

• Adapt Debian dependencies

• Fix compilation issues with RNAforester

• AUTOCONF: Fix requirement checks when SVM support is deactivated and swig is missing

• AUTOMAKE: Add auto parameters for -flto compile/link flags

• AUTOCONF: Require C++17 due to dependencies to compile DLIB

• AUTOCONF: Deactivate Python 2 bindings by default

828 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.2 Version 2.5.x

11.2.1 Version 2.5.1 (Release date: 2022-06-02)

Programs

• Refactor ct2db program to allow for pseudoknots in output structure

Library

• API: Fix MEA computation for G-quadruplex predictions

• API: Fix memory leak in hard constraints container

• API: Fix RNApuzzler edge-case that resulted in segmentation faults

• API: Fix invalid memory access in vrna_strjoin()

• API: Revisit generic soft constraints for sliding-window base pair probability computations

• API: Enable to overwrite automatic unpaired probability determination in MEA computation

• API: Add #VRNA_PLIST_TYPE_UNPAIRED and #VRNA_PLIST_TYPE_TRIPLE identifiers for vrna_ep_t

• API: Add vrna_init_rand_seed() to initialize RNG with seed

• API: Add vrna_zsc_compute_raw() to obtain mean and sd for Z-score computation

• API: Add vrna_file_connect_read_record() function to parse connectivity table (*.ct) files

• API: Add vrna_strtrim() function

• API: Update sanity checks for input in vrna_pbacktrack_sub*()

• API: Allow for pseudo-knots in vrna_db_from_ptable()

• API: Do not use min_loop_size = 0 for multi strand interaction prediction

• API: Remove unnecessary uses of min_loop_size at multiple locations

• API: Deprecate cutpoint member of vrna_fold_compound_t and prepare for 5’/3’ encoding

• API: Refactor sequence addition/preparation for vrna_fold_compound_t

• DOC: Update documentation

• SWIG: Add simple dot-plot file wrapper plot_dp_EPS()

• SWIG: Add sequence, sequence_encoding and sequence_encoding2 attributes to fold_compound
objects

• SWIG: Fix RNG wrapping and initialize RNG upon module load and update associated functions

• SWIG: Add more access to member variable arrays for various objects used throughout the library

• SWIG: Add memory efficient wrapper for dynamically allocated arrays and matrices

• SWIG: Shadow pair table data structure for efficient interactions between C and target languages

• SWIG: Expose hard constraints members in fold_compound objects

• SWIG: Add exp_E_ext_stem() method (vrna_exp_E_ext_stem()) to fold_compound objects

• SWIG: Expose DP matrices within fold_compound objects

• SWIG: Fix memory leak in wrapper for vrna_db_from_ptable()

11.2. Version 2.5.x 829

ViennaRNA, Release 2.6.4

Package

• Update dlib to version 19.23

• DOC: Update doxygen.conf for version 1.9.2

• AUTOCONF: Factor-out Naview layout algorithm to allow for deactivating the Naview layout algorithm at
configure-time

• AUTOCONF: Make LaTeX checks more portable and update LaTeX package checks

• AUTOCONF: Check whether we can build the swig interface when SVM support is deactivated

• AUTOCONF: Fix condition check for CLA build

11.2.2 Version 2.5.0 (Release date: 2021-11-08)

Programs

• Add RNAmultifold program to compute secondary structures for multiple interacting RNAs

• Add multistrand capabilities to RNAeval

• Add multistrand capabilities to RNAsubopt

• Replace RNAcofold with a wrapper to RNAmultifold

• Fix computation of BB homodimer base pair probabilities in RNAcofold

Library

• API: Fix use of undefined values in deprecated function PS_dot_plot()

• API: Fix probability computations for unstructured domains within multibranch loops

• API: Fix index error in ensemble defect computations

• API: Fix hard constraints behavior on non-specific base pairing

• API: Fix segmentation fault for short input sequences in vrna_hx_from_ptable()

• API: Fix memory leak in static rna_layout() function

• API: Fix corner-case in covariance score computation on sequence alignments that determines which align-
ment columns may pair and which don’t

• API: Add MFE computations for multiple interacting strands

• API: Add partition function computations for multiple interacting strands

• API: Add base pair probability computations for multiple interacting strands

• API: Add suboptimal structure prediction for multiple interacting strands

• API: Add multistrand capabilities to vrna_eval*() functions

• API: Add new function vrna_equilibrium_conc() fir concentration dependency computations of multi-
ple interacting strands with dlib backend

• API: Add vrna_equilibrium_constants() function to obtain equilibrium constants for different com-
plexes of multiple interacting strands

• API: Add function vrna_pf_add() to add ensemble free energies of two ensembles

• API: Add function vrna_pf_substrands() to get ensemble free energies for complexes up to a specific
number of interacting strands

• API: Add function vrna_n_multichoose_k() to obtain a list of k-combinations with repetition

830 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

• API: Add vrna_cstr_discard() function to allow for discarding char streams prior to flushing

• API: Add vrna_bp_distance_pt() function to allow for base pair distance computation with pseudo-knots

• API: Add functions vrna_pbacktrack_sub*() to allow for stochastic backtracing within arbitrary se-
quence intervals

• API: Add functions vrna_boustrophedon() and vrna_boustrophedon_pos() to generate lists of or
obtain values from sequences of Boustrophedon distributed integer numbers

• API: Add vrna_pscore() and vrna_pscore_freq() functions to obtain covariance score for particular
alignment columns

• API: Rewrite Zuker suboptimals implementation

• API: Remove old cofold implementations

• API: Make type attribute of vrna_mx_mfe_t and vrna_mx_pf_t a constant

• API: Guard more functions in utils/structure_utils.c against NULL input

• API: Rename vrna_E_ext_loop() to vrna_eval_ext_stem()

• API: Use v3 typedefs in dot-plot function declarations

• SWIG: Fix Python 3 file handle as optional argument in eval* functions and methods

• SWIG: Add wrapper for vrna_pf_add()

• SWIG: Add wrapper for vrna_hx_from_ptable()

• SWIG: Add wrapper for vrna_db_from_probs()

Package

• Update libsvm to version 3.25

• Make Python 3.x the default Python for the scripting languange interfaces

• Add Python3 capability for Mac OS X installer builds

• TESTS: Create TAP driver output for all unit tests (library, executables, SWIG interfaces)

• Remove compile-time switch to deactivate Boustrophedon backtracing scheme (this is the status-quo now)

• Add Contributors License Agreement (CLA) to the Package in doc/CLA/

11.3 Version 2.4.x

11.3.1 Version 2.4.18 (Release date: 2021-04-22)

Programs

• Fix and refactor RNApkplex program

• Fix occasional backtracing errors in RNALalifold

• Restrict available dangling end models in RNALalifold to 0 and 2

• Prevent segmentation faults upon bogus input data in RNAfold, RNAalifold, RNAcofold, RNAheat, and
RNAeval

• Free MFE DP matrices in RNAsubopt Boltzmann sampling when not required anymore

11.3. Version 2.4.x 831

ViennaRNA, Release 2.6.4

Library

• API: Add vrna_abstract_shapes() and vrna_abstract_shapes_pt() functions to convert secondary
structures into their respective abstract shape notation ala Giegerich et al. 2004

• API: Add functions vrna_seq_reverse() and vrna_DNA_complement() to create reverse complements
of a sequence

• API: Add more soft constraint handling to comparative structure prediction

• API: Add generic soft constraints for sliding window comparative MFE backtracing

• API: Add vrna_ensemble_defect_pt() that accepts pair table input instead of dot-bracket string to allow
for non-nested reference structures

• API: Add failure/success return values to generic soft constraints application functions

• API: Refactor RNAPKplex implementation by better using constraints framework and moving out many parts
from RNAPKplex.c into RNAlib as separate re-usable functions

• API: Fix energy contributions used in RNAPKplex implementations

• API: Fix energy evaluation for cofolding with dangle model 1

• API: Fix wrong arithmetic usage for PF variant of combined generic and simple soft constraints applied to
external loops

• API: Fix memory size in #vrna_fold_compound_t initialization

• API: Fix bogus memory access for comparative prediction when preparing hard constraints

• API: Fix wrong index usage in hard constraints for comparative base pair probability computations of internal
loops

• API: Fix G-Quadruplex contributions as part of multibranch loops in single sequence base pair probability
computations

• API: Fix multibranch loop MFE decomposition step for multiple strand cases

• API: Fix external loop generic hard constraint index updating for partition function computations

• API: Fix memory allocation for auxiliary grammar data structure

• API: Fix incorporation of auxiliary grammar contrib for closing pairs in sliding-window MFE computation

• API: Fix DP matrix intitialization in sliding window MFE computations (fixes occasional backtracing issues
in comparative sliding-window MFE computations)

• API: Make vrna_sc_t.type attribute a constant

• API: Remove upper-triangular hard constraint matrix in favor of full matrix

• API: Always ensure sane base pair span settings after vrna_fold_compound_prepare()

• API: Return INF on predictions of vrna_mfe_dimer() that fail due to unsatisfiable constraints

• API: Rename internally used hard and soft constraints API symbols

• API: Fix header file inclusions to prevent #include cycles

• SWIG: Add wrapper for vrna_file_fasta_read_record()

• SWIG: Fix memory leak in wrapper for vrna_probs_window()

• SWIG: Refactor and therefore fix soft constraint binding functions for use in comparative structure predic-
tions

• SWIG: Fix typo that prevented properly wrapping vrna_params_load_RNA_Andronescu2007()

• SWIG: Unify wrappers for vrna_ptable() and vrna_ptable_from_string()

832 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

Package

• REFMAN: Refactored structure annotation documentation

• REFMAN: Update Mac OS X install section

• Replace DEF placeholders in energy parameter files with their value of -50

• Update RNAlocmin subpackage to properly compile with more stringent C++ compilers

• Update RNAforester subpackage to properly compile with more stringent C++ compilers

• Update autotools framework, e.g. checks for pthreads

• Update universal binary build instructions for Mac OS X builds to enable ARM compilation for M1 CPUs

11.3.2 Version 2.4.17 (Release date: 2020-11-25)

Programs

• Fix RNAup -b mode with shorter sequence first

• Add --backtrack-global option to RNALfold (currently only available for dangles == 2 | 0)

• Add --zscore-pre-filter and --zscore-report-subsumed options to RNALfold

Library

• API: Fix multiloop backtracing with soft constraints for unpaired positions in vrna_subopt() and
vrna_subopt_cb()

• API: Fix parameter parse in vrna_params_load_from_string()

• API: Add vrna_heat_capacity() and vrna_head_capacity_cb() functions to RNAlib

• API: Add backtracing function vrna_backtrack_window() for global MFE structure to sliding-window
predictions

• API: Add SVG support for RNApuzzler structure layouts

• API: Make vrna_md_t argument to vrna_fold_compound() a constant pointer

• API: Remove missing symbols from header file ViennaRNA/params/default.h

• API: Refactor z-score threshold filter handling for sliding-window MFE prediction

• SWIG: Fix typo in interface functions to load DNA parameters

• SWIG: Add python-3.9 autoconf checks

• SWIG: Add vrna_head_capacity*() wrappers

• SWIG: Add access to raw energy parameters

• SWIG: Add alias and pair attribute to objects of type md

• SWIG: Add out/varout typemaps for 2-dimensional int-like arrays

• SWIG: Add all data fields to objects of type ‘param’ and ‘exp_param’

11.3. Version 2.4.x 833

ViennaRNA, Release 2.6.4

Package

• Fix Debian and Windows installer files

11.3.3 Version 2.4.16 (Release date: 2020-10-09)

Programs

• Fix backtracing errors in RNALalifold for alignments with more than 32768 columns

• Fix backtracing errors in RNAalifold and RNALalifold for rare cases when two alignment columns may
pair due to covariance score threshold but still yield infinite energies due to energy model

• Refactored manpages/help options for RNAplfold, RNAplot, RNApvmin, RNAsubopt, and RNAup

Library

• API: Fix undefined behavior due to short int overflows when accessing alignment lengths with align-
ments larger than 32768 columns. This fixes occasional backtracing errors in RNALalifold and
vrna_mfe_window()

• API: Fix adding pscore to base pairs that yield INF energy in comparative global and local MFE prediction

• API: Add vrna_convert_kcal_to_dcal() and vice-versa function for safely converting integer to float
representations of energy values

• SWIG: Add a reasonable Python interface for objects of type vrna_path_t

• SWIG: Add a wrapper for vrna_seq_encode()

Package

• Move units.h include file to ViennaRNA/utils/units.h

11.3.4 Version 2.4.15 (Release date: 2020-08-18)

Programs

• Fix compilation of Kinfold with GCC 10

• Add --en-only flag to RNAsubopt to allow for sorting by energy only

• Prevent RNAcofold to process input with more than two strands

• Add cutpoint marker to dot-plots created with RNAcofold -a

• Update Kinfold to version 1.4

Library

• API: Fix removal of strand delimiter in vrna_plot_dp_PS_list()

• API: Fix vrna_enumerate_necklaces()

• API: Fix bogus backtracing for co-folded structures in vrna_subopt() and vrna_subopt_cb()

• API: Fix storing co-folded structures for sorted output in vrna_subopt()

• API: Fix multibranch loop component hard constraints for multi-strand cases

• API: Prevent adding internal loop energy contributions to enclosed parts with energy=INF

834 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

• API: Adapt vrna_db_pack()/vrna_db_unpack() functions to produce comparable strings

• API: Add sorting modes VRNA_UNSORTED, VRNA_SORT_BY_ENERGY_LEXICOGRAPHIC_ASC, and
VRNA_SORT_BY_ENERGY_ASC to vrna_subopt()

• API: Add vrna_strjoin() function

• API: Add missing case to external loop hard constraints

• API: Make hard constrains strand-aware

• SWIG: Fix invalid memory access when using MEA_from_plist() in Perl 5 or Python

• SWIG: Enable keyword argument features in Python interface of constructors for fold_compound, md,
move, param, and exp_param objects

• SWIG: Enable autodoc feature for Python interface of constructors for fold_compound, md, and move
objects

• SWIG: Enable toString conversion for Python interface for objects of type fold_compound, md, move,
params, exp_params, and subopt_solution

• SWIG: Add (read-only) attributes type, length, strands, params, and exp_params to objects of type
fold_compound

• SWIG: Make attributes of objects of type param and exp_param read-only

• Add array of strand nicks to EPS dot plot files instead of single cutpoint

• Draw separator line for each strand nick in EPS dot-plots

• Update libsvm to version 3.24

Package

• Disable Link-Time-Optimization (LTO) for third-party programs linking against RNAlib using pkg-config

• TESTS: Fix results dir path for out-of-tree builds

• TESTS: Set default timeout for library tests to 20s

11.3.5 Version 2.4.14 (Release date: 2019-08-13)

Programs

• Fix RNApvmin pertubation vector computation

• Add non-redundant sampling option to RNApvmin

• Add RNAdos program to compute density of states

• Add -P DNA convenience command line parameter to most programs to quickly load DNA parameters with-
out any input file

• MAN: Add example section to man-page of RNAalifold

11.3. Version 2.4.x 835

ViennaRNA, Release 2.6.4

Library

• API: Fix memory leak in vrna_path_gradient()

• API: Fix release of memory fir vrna_sequence_remove_all()

• API: Fix soft-constraints application in vrna_sc_minimize_pertubation() that prevented proper com-
putation of the pertubation vector

• API: Add 5’ and 3’ neighbor nucleotide encoding arrays and name string to vrna_seq_t

• API: Add new data structure for multiple sequence alignments

• API: Add vrna_sequence_order_update() function

• API: Add non-redundant sampling mode to vrna_sc_minimize_pertubation() through passing negative
sample-sizes

• API: Add v3.0 API functions for maximum expected accuracy (MEA) computation

• API: Include energy parameter sets into RNAlib and provide functions to load them at runtime

• API: Prepare sequence data in vrna_fold_compound_t with vrna_sequence_add()

• API: Use vrna_pbacktrack_num() instead of vrna_pbacktrack() in
vrna_sc_minimize_pertubation() to speed-up sample generation

• Reduce use of global variable cut_point in RNAlib

• SWIG: Use importlib in favor of imp to determine Python 3 tag extension

• SWIG: Update various wrapper functions

• SWIG: Add wrappers for MEA computation with vrna_MEA() and vrna_MEA_from_plist

• SWIG: Add wrappers for vrna_pr_structure() and vrna_pr_energy()

Package

• REFMAN: Fix LaTeX code in units.h that prevented proper compilation with pdflatex

• Add an R script to create 2D landscape plots from RNA2Dfold output

• Add gengetopt to configure-time requirements to build man-pages

• Add new energy parameter file rna_misc_special_hairpins.par with additional UV-melting derived
parameters for Tri- and Tetra-loops

• Update RNA Tutorial

• Colorize final configure script message

• REFMAN: Always use pdflatex to compile reference manual and tutorial

• EXAMPLES: Add Python script that performs computations equivalent to RNAfold -p --MEA

11.3.6 Version 2.4.13 (Release date: 2019-05-30)

Programs

• Fix centroid structure prediction for RNAcofold

• Fix --noLP option for RNALalifold

836 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

Library

• API: Refactor and fix collision handling in vrna_hash_table_t

• API: Fix one access using wrong index for odd dangles in loops/external.c

• API: Add two missing MLbase contributions for MFE prediction in loops/multibranch.c

• API: Refactor multiloop MFE backtracking for odd dangles

• API: Add function vrna_backtrack5() to allow for MFE backtracking of sub-sequences starting at the
5’-end

• API: Reduce usage of global macro TURN by replacing it with min_loop_size field of vrna_md_t

• API: Add functions vrna_path_direct() and vrna_path_direct_ub() that may also return move lists
instead of dot-bracket lists

• API: Add functions vrna_pt_pk_remove() and vrna_db_pk_remove() that remove pseudoknots from
an input structure

• API: Fix invalid memory access for lonely pair mode (--noLP) in comparative sliding-window MFE pre-
diction

• SWIG: Fix access to global variable pf_smooth and pf_smooth attribute in model_details object

• SWIG: Fix Python reference counting for Py_None in interfaces/findpath.i wrapper

• SWIG: Refactor reference counting for all Python2 and Python3 wrappers

• REFMAN: Larger updates and restructuring of reference manual

Package

• Install example scripts and source code files, e.g. to $prefix/share/ViennaRNA/examples

• Properly pass GSL, PTHREADS, and MPFR flags to sub-projects

• Fix RNApuzzler header file installation

• SWIG: Include Python 3.7 and 3.8 in list of autoconf-probed python interpreters

• SWIG: Fix wrapper building for swig >= 4.0.0

11.3.7 Version 2.4.12 (Release date: 2019-04-16)

Programs

• Add non-redundant stochastic backtracing option for RNAalifold

• Add --noDP option to suppress dot-plot output in RNAfold and RNAalifold

• Add RNApuzzler (4) and RNAturtle (3) secondary structure layout algorithm options to RNAfold and
RNAplot

• Update help/man page of RNALfold

• Allow for multiple input files and parallel input processing in RNAheat

11.3. Version 2.4.x 837

ViennaRNA, Release 2.6.4

Library

• API: Fix declaration of vrna_move_apply_db()

• API: Fix vrna_path() lexicographical ordering in gradient walks

• API: Enable non-redundant stochastic backtracing for comparative structure prediction

• API: Enable stochastic backtracing for circular comparative structure prediction

• API: Enable stochastic backtracing of subsequences (5’ prefixes) for comparative structure prediction

• API: Add pf_smooth attribute to vrna_md_t data stucture to allow for disabling Boltzmann factor energy
smoothing

• API: Add functions to allow for resuming non-redundant stochastic backtracing

• API: Add functions to retrieve multiple stochastically backtraced structures (list and callback variants)

• API: Add vrna_positional_entropy to compute vector of positional entropies

• API: Add RNApuzzler and RNAturtle secondary structure layout algorithm (Wiegreffe et al. 2018)

• API: Add v3.0 API for secondary structure layout/coordinate algorithms

• API: Add more helper/utility functions for vrna_move_t data structures

• API: Add callback-based neighborhood update function for (subsequent) vrna_move_t application

• API: Add abstract heap data structure available as <ViennaRNA/datastructures/heap.h>

• API: Refactor and speed-up gradient walk implementation available as vrna_path_gradient()

• API: Substitute vrna_file_PS_aln_sub() alignment plot function by vrna_file_PS_aln_slice() that
actually slices out a sub-alignment

• API: Rename vrna_annotate_covar_struct() to vrna_annotate_covar_db() and add new function
vrna_annotate_covar_db_extended() to support more bracket types

• API: Calling vrna_params_reset() now implies a call to vrna_exp_params_reset() as well

• API: Move landscape implementations into separate directory, thus headers should be included as
<ViennaRNA/landscape/move.h>, <ViennaRNA/landscape/neighbor.h>, etc.

• Ensure proper rescaling of energy parameters upon temperature changes

• Refactor soft constraints implementation in stochastic backtracing

• SWIG: Wrap all non-redundant stochastic backtracing functions to scripting language interface(s)

• SWIG: Refactor stochastic backtracing interface(s)

• SWIG: Add proper constructor for objects of type vrna_ep_t

• SWIG: Sanitize alignment plot function interface(s)

Package

• Update Ubuntu/Debian and OpenSUSE build instructions

• Reduce intra-package dependency on non-v3.0 API

838 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.3.8 Version 2.4.11 (Release date: 2018-12-17)

Programs

• Add --commands option to RNAsubopt

• Add non-redundant Boltzmann sampling mode for RNAsubopt

Library

• API: Fix wrong access to base pair soft constraints in equilibrium probability computations

• API: Fix behavior of vrna_nucleotide_encode() with lowercase characters in sequence

• API: Fix behavior of encode_char() with lowercase characters in sequence

• API: Fix forbidden GU pairs behavior in pscore computation for comparative folding

• API: Fix potential errors due to uninitialized next pointers in vrna_move_t of
vrna_eval_move_shift_pt

• API: Add AVX 512 optimized version of MFE multibranch loop decomposition

• API: Add functions for CPU SIMD feature detection

• API: Add dispatcher to automatically delegate exterior-/multibranch loop MFE decomposition to supported
SIMD optimized implementation

• API: Add function vrna_dist_mountain() to compute mountain distance between two structures

• API: Add function vrna_ensemble_defect() to compute ensemble defect given a target structure

• API: Add non-redundant Boltzmann sampling

• API: Change behavior of vrna_cstr_free() and vrna_cstr_close() to always flush output before un-
registering the stream

• SWIG: Add interface for vrna_loopidx_from_ptable()

Package

• Activate compilation for compile-time supported SIMD optimized implementations by default

• Replace --enable-sse configure script option with --disable-simd

11.3.9 Version 2.4.10 (Release date: 2018-09-26)

Programs

• Fix wrong output filename for binary opening energies in RNAplfold

• Enable G-Quadruplex support for partition function computation in RNAalifold

11.3. Version 2.4.x 839

ViennaRNA, Release 2.6.4

Library

• Fix broken SSE4.1 support for multibranch loop MFE computation that resulted in increased run times

• Fix redundant output issue in subopt backtracking with unusually high delta energies (>=INF)

• Restore default behavior of ‘|’ symbol in dot-bracket hard constraint strings that got lost with version 2.2.0

• Add faster (cache-optimized) version of Nussinov Maximum Matching algorithm

• Change default linker- and loop length computations for G-Quadruplex predictions in comparative prediction
modes

• Add hard constraints warning for base pairs that violate the min_loop_size of the model

• Update libsvm to version 3.23

• API: Add functions to set auxiliary grammar extension rules

• API: Replace upper-triangular hard constraints matrix with full matrix for cache-optimized access

• API: Add G-Quadruplex prediction support for comparative partition function

• API: Remove VRNA_GQUAD_MISMATCH_PENALTY and VRNA_GQUAD_MISMATCH_NUM_ALI macros

• SWIG: Fix invalid memory access in subopt() method of fold_compound object when writing to file

• SWIG: Add wrapper for Nussinov Maximum Matching algorithm

Package

• Add -ftree-vectorize compile flag by default if supported

11.3.10 Version 2.4.9 (Release date: 2018-07-11)

Programs

• Fix interactive mode behavior for multiple sequence alignment input in RNAalifold, RNALalifold

• Allow for Stockholm formatted multiple sequence alignment input in RNAeval and RNAplot

• Allow for multiple input files in RNAeval and RNAplot

• Allow for parallel processing of input batch jobs in RNAeval and RNAplot

• Add -g option to activate G-Quadruplex support in RNAheat

• Warn on unsatisfiable hard constraints from dot-bracket string input in RNAfold, RNAcofold, and
RNAalifold

Library

• Fix parameter order bug in vrna_path_findpath* functions that resulted in too large search widths

• Fix wrong application of base pair soft constraints in partition function computations

• Fix position ruler string in EPS alignment output files

• Fix MFE backtracking errors that might appear under specific hard constrained base pair patterns

• Refrain from reading anything other than #=GC SS_cons to retrieve structures when parsing Stockholm 1.0
format

• Complete soft constraints additions to Boltzmann sampling implementation for single sequences

• Allow for disabling alignment wrapping in vrna_file_PS_aln* functions

840 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

• Do not remove G-Quadruplex annotation from WUSS formatted structure strings upon calls to
vrna_db_from_WUSS

• Enable G-Quadruplex related average loop energy correction terms in verbose output of vrna_eval_* func-
tions

• Speed-up backward compatibility layer for energy evaluation functions that unnecessarily slowed down third-
party tools using the old API

• Allow for passing dot-bracket strings with '&' strand-end identifier to simple vrna_eval_* functions

• Remove implicit exit() calls from global MFE backtracking implementation.

11.3.11 Version 2.4.8 (Release date: 2018-06-23)

Programs

• Fix compilation of RNAforester with C++17 standard

• Fix tty input detection in RNAcofold

• Fix bad memory access with RNAcofold -p

Library

• API: Fix incorrect unpaired probability computations in vrna_probs_window()

• API: Fix potential out-of-bounds access situations (for circular RNA folding) in eval.c

• API: Fix comparative exterior internal loop partition function computation for circfold

• SWIG: Fix false-positive use of uninitialized value in Python3/file_py3.i

Package

• TESTS: Add tests for special features in RNAalifold

• TESTS: Add test case for RNAcofold -p

11.3.12 Version 2.4.7 (Release date: 2018-06-13)

• Allow for parallel processing across multiple input files in RNAfold

• Allow for arbitrary number of input files in RNAalifold

• Allow for parallel processing of input data in RNAalifold

• Allow for arbitrary number of input files in RNAcofold

• Allow for parallel processing of input data in RNAcofold

• Enable parallel processing in RNAfold, RNAcofold, RNAalifold for MS Windows build

• Add centroid and MEA structure computation to RNAcofold

• Add configure time check for LTO capabilities of the linker

• Include ligand binding energies in centroid and MEA structure output of RNAfold

• Refactor ct2db program to process multiple structures from single .ct file

• API: Enable processing of comparative fold_compound with vrna_pr_*() functions

• API: Refactor vrna_ostream_t to enable NULL input in vrna_ostream_provide()

• API: Major refactoring in loop energy evaluations (MFE and PF)

11.3. Version 2.4.x 841

ViennaRNA, Release 2.6.4

• API: Make vrna_mx_pf_aux_el_t and vrna_mx_pf_aux_ml_s opaque pointers

• API: Make fold_compound field type a const attribute

• API: Refactor MFE post-processing for circular RNAs

• API: Add motif name/id support for unstructured domains

• API: Remove major part of implicit exit() calls in RNAlib

• API: Add implementations of Boyer-Moore-Horspool search algorithm

• API: Add implementations to determine number of rotational symmetry for strings (of objects)

• API: Make vrna_cmd_t an opaque pointer

• API: Move headers for constraints, datastructures, io, loop energy evaluation, energy parameters, plotting,
search, and utilities into separate subdirectories (backward compatibility is maintained)

• API: Add hash table data structure

• API: Fix discrepancy between comparative and single sequence –noLP predictions

• API: Add functions to replace ‘old API’ interface of RNAstruct.h

• API: Add functions to replace ‘old API’ interface of aln_util.h

• API: Add generic soft constraints support to suboptimal structure prediction sensu Wuchty et al.

• SWIG: Refactor callback execution for Python 2 / 3 interface to reduce overhead

• SWIG: Fix configure-time check for Python 3 interface build

• SWIG: Fix Python 3 IO file stream to C FILE * conversion

• Cosmetic changes in final configure notice

• Major changes in source tree structure of the library

• Add autoconf checks for maintainer tools

• Generate C strings from static PostScript files at configure time (for structure- and dot plots)

• REFMAN: Large updates in API documentation and structure of reference manual

11.3.13 Version 2.4.6 (Release date: 2018-04-19)

• Stabilize rounding of free energy output in RNAalifold

• API: Fix potential rounding errors for comparative free energies in eval.c and mfe.c

• API: Fix regression in exterior loop dangling end contributions for comparative base pair probabilities and
Boltzmann sampling (introduced with v2.4.4)

• API: Fix regression with hard constrained base pairs for comparative structure prediction (introduced with
v2.4.4)

• TESTS: Add basic tests for RNAalifold executable

• TESTS: Ignore ‘frequency of MFE structure’ in RNAcofold partition function checks

842 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.3.14 Version 2.4.5 (Release date: 2018-04-17)

• Allow for arbitrary number of input files in RNAfold

• Allow for parallel processing of input data in RNAfold (UNIX only, no Windows support yet)

• Add SHAPE reactivity support through commandline options for RNAplfold

• Fix unstructured domain motif detection in MFE, centroid, and MEA structures computed by RNAfold

• Limit allowed set of commands in command file for RNAcofold to hard and soft constraints

• API: Add functions to compute equilibrium probability of particular secondary structures

• API: Add dynamic string stream data type and associated functions

• API: Add priority-queue like data structure with unordered fill capability and ordered output callback exe-
cution

• API: Add functions to detect unstructured domain motifs in MFE, centroid, and MEA structures

• API: Fix bug in sliding-window partition function computation with SHAPE reactivity and Deigan et al.
conversion method

• API: Fix application of ‘<’ and ‘>’ constraint symbols in dot-bracket provided constraints (was broken since
v2.4.2)

• API: Fix MEA structure computation in the presence of unstructured domains

• API: Stabilize order of probability entries in EPS dot-plot files

• Fix compiler warnings on wrong type of printf() in naview.c

• Define VRNA_VERSION macro as string literal and add macros for major, minor, and patch numbers

• Stabilize parallel make of Mac OS X installer

• Add energy parameter set from Langdon et al. 2018

• Add autoconf checks for POSIX threads compiler/linker support

• SWIG: Fix ‘next’ is a perl keyword warnings for Perl5 wrapper

• SWIG: Catch errors and throw execptions whenever scripting language provided callback functions are not
applicable or fail

• SWIG: Add keyword arguments and autodoc feature for Python/Python3 wrappers

11.3.15 Version 2.4.4 (Release date: 2018-03-06)

• Change verbose output for soft-constraints derived ligand binding motifs in RNAfold

• Allow for lowercase letters in ct2db input

• Fix bug in interior-like G-Quadruplex MFE computation for single sequences

• Fix autoconf switch to enable deprecation warnings

• Fix bug in eval_int_loop() that prevented propagation of energy evaluation for loops with nick in strands

• Fix several bugs for SHAPE reactivity related comparative partition function computations

• Fix annotation of PostScript output for soft-constraint derived ligand binding motifs in RNAfold

• Fix constraint indices for multibranch loops in unpaired probability computations of LPfold.c

• Fix dangling end contributions in comparative partition function for exterior loops

• API: Add simplified interface for vrna_pf_dimer()

• API: Move concentraton dependent implementation for co-folding to separate compile unit

• API: Add new API functions for exterior loop evaluations

11.3. Version 2.4.x 843

ViennaRNA, Release 2.6.4

• API: Add simplified interfaces for energy evaluation with G-Quadruplexes and circular RNAs

• API: Add findpath functions that allow for specification of an upper bound for the saddle point

• Add configure-time linker check for Python3 interface

• Add automatic CPP suggestions for deprecated function substitutes

• Major restucturing and constraints feature additions in loop type dependent energy evaluation functions

• Major restructuring in MFE implementations

• Major restructuring in PF implementations

• Minor fixes in Boltzmann sampling implementation

• SWIG: Fix wrappers for findpath() implementation

• SWIG: Add tons of energy evaluation wrappers

• SWIG: Fix configure-time check of Perl5 interface build capabilities

• SWIG: Wrap functions from walk.c and neighbor.c

• DOC: Add some missing references to manpages of executable programs

• REFMAN: Heavy re-ordering of the RNAlib reference manual

11.3.16 Version 2.4.3 (Release date: 2017-11-14)

• Fix handling of dangling end contribution at sequence boundaries for sliding window base pair probability
computations

• Fix handling of base pair hard constraints in sliding-window implementations

• Fix sliding-window pair probability computations with multibranch-loop unpaired constraints

• Fix sliding-window non-specific base pair hard constraint implementation

• Fix probability computation for stochastic backtracking in RNAsubopt –stochBT_en output

• Fix regression in comparative structure prediction for circular RNAs

• Fix LDFLAGS for scripting language interfaces in corresponding Makefiles

• Stabilize partition function scaling by always using sfact scaling factor from model details

• Add –pf_scale commandling parameter to RNAplfold

• Add constraint framework for single sequence circular RNA structure prediction

• Add RNAfold test suite to check for working implementation of constraints for circular RNAs

• Add a brief contribution guideline CONTRIBUTING.md

• Prevent RNAplfold from creating inf/-inf output when solution set is empty with particular hard constraints

• Include RNAforester v2.0.1

844 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.3.17 Version 2.4.2 (Release date: 2017-10-13)

• Fix G-Quadruplex energy corrections in comparative structure energy evaluations

• Fix discrepancy in comparative exterior loop dangling end contribution of eval vs. MFE predictions

• Fix regression in RNAup unstructuredness and interaction energy computations

• Fix sequence length confusions when FASTA input contains carriage returns

• Fix build problems of RNAlocmin with older compilers

• Fix sliding-window hard constraints where single nucleotides are prohibited from pairing

• Fix dot-bracket output string length in sliding-window MFE with G-Quadruplexes

• Fix unpaired probability computations for separate individual loop types in LPfold.c

• Fix bad memory access in RNAsubopt with dot-bracket constraint

• Add full WUSS support for –SS_cons constraint option in RNAalifold

• Add commandline option to RNALalifold that enables splitting of energy contributions into separate parts

• Add missing hard constraint cases to sliding-window partition function implementation

• Add CSV output option to RNAcofold

• Use the same model details for SCI computations in RNAalifold

• Abort computations in vrna_eval_structure_v() if structure has unexpected length

• Use original MSA in all output generated by RNAalifold and RNALalifold

• API: Add new functions to convert dot-bracket like structure annotations

• API: Add various new utility functions for alignment handling and comparative structure predictions

• API: Add function vrna_strsplit() to split string into tokens

• API: Do not convert sequences of input MSA to uppercase letters in vrna_file_msa_read_record()

• API: Rename vrna_annotate_bp_covar() and vrna_annotate_pr_covar()

• API: Add new noLP neighbor generation

• SWIG: Add wrapper for functions in file_utils_msa.h

• SWIG: Add wrappers for vrna_pbacktrack() and vrna_pbacktrack5()

• SWIG: Add vrna_db_to_element_string() to scripting language interface

• REFMAN: Fix formula to image conversion in HTML output

11.3.18 Version 2.4.1 (Release date: 2017-08-23)

• Fix memory leak in fold_compound methods of SWIG interface

• Fix memory leaks in double ** returning functions of SWIG Perl5 interface

• Fix memory leak in vrna_ep_t to-string() function of SWIG interface

• Regression: Fix reverting pf_scale to defaults after vrna_exp_params_rescale()

• Regression: Fix homo-dimer partition function computation in RNAcofold

• Add unit tests for RNAcofold executable

• Add SHAPE reactivity support to RNAcofold

• Add SHAPE reactivity support to RNALalifold

11.3. Version 2.4.x 845

ViennaRNA, Release 2.6.4

11.3.19 Version 2.4.0 (Release date: 2017-08-01)

• Bump libsvm to version 3.22

• Print G-Quadruplex corrections in verbose mode of RNAeval

• Change behavior of RNAfold –outfile option to something more predictable

• Unify max_bp_span usage among sliding window prediction algorithms: RNAplfold, RNALfold, and
RNALalifold now consider any base pair (i,j) with (j - i + 1) <= max_bp_span

• Add SHAPE reactivity data support to RNALfold

• Add commands-file support for RNALfold, RNAplfold (hard/soft constraints)

• Add RNAlocmin - Calculate local minima from structures via gradient walks

• Add RNA Bioinformatics tutorial (PDF version)

• Add hard constraints to sliding-window MFE implementations (RNALfold, RNALalifold)

• Add hard constraints to sliding-window PF implementations (RNAplfold)

• Add soft constraints to sliding-window MFE implementation for single sequences (RNALfold)

• Add soft constraints to sliding-window PF implementations (RNAplfold)

• Add SWIG interfaces for sliding-window MFE/PF implementations

• Add proper SWIG interface for alignment and structure plotting functions

• Add proper SWIG interface for duplexfold, duplex_subopt, and its comparative variants

• Add SWIG wrapper for vrna_exp_params_rescale()

• Add explicit destructor for SWIG generated vrna_md_t objects

• Add SWIG perl5 typemap for simple nested STL vectors

• Add dummy field in vrna_structured_domains_s

• Add note about SSE optimized code in reference manual

• Add SWIG interface for findpath implementation

• Add prepare() functions for ptypes-arrays and vrna_(exp_)param_t

• Add warnings for ignored commands in function vrna_commands_apply()

• Add callback featured functions for sliding window MFE and PF implementations

• Change default behavior of adding soft constraints to a vrna_fold_compound_t (store only)

• Several fixes with respect to G-Quadruplex prediction in sliding-window MFE recursions (single sequence
and comparative implementation)

• Replace comparative sliding-window MFE recursions (All hits are reported to callback and can be filtered
in a post-processing step)

• API: Remove E_mb_loop_stack() and introduce new function vrna_E_mb_loop_stack() as a replacement

• API: change data type of all constraint bit-flags from char to unsigned char

• API: change data type of a2s array in comparative structure prediction from unsigned short to unsigned
int

• API: Change function parameter order in vrna_probs_window() to follow the style of other callback-aware
functions in RNAlib

• Move sliding-window MFE implementations to new file mfe_window.c

• Fix building PDF Reference manual with non-standard executable paths

• Fix redefinition of macro ON_SAME_STRAND() in subopt.c

846 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

• Fix dangling end issues in sliding-window MFE implementations

• Fix regression for –canonicalBPonly switch in RNAfold/RNAcofold/RNAsubopt

• Fix building sliding-window MFE implementation without SVM support

• Fix parsing of STOCKHOLM 1.0 MSA files that contain MSA spanning multiple blocks

• Fix Alidot link in RNAalifold manpage

• Fix wrong pre-processor flags when enabling single-precision PF computations

• Fix unit testing perl5 interface by including builddir/tests in PERL5LIB path

• Fix buffer overflow in hairpin loop sequence motif extraction for circular RNAs

• Fix out-of-bounds memory access in neighbor.c

• Restore capability to compile stand-alone findpath utility

• Restore capability to use non-standard alphabets for structure prediction

• Restore old-API random number functions in SWIG interface

• Allow additional control characters in MAF MSA input that do not end a block

• Improve reference manual

• Make functions in pair_mat.h static inline

• Prevent users from adding out-of-range base pair soft constraints

• Inline print functions in color_output.inc

• Start documenting callback features in reference manual

• Re-write large portions of sliding-window PF implementation

• Introduce soft-constraint state flag

• Clean-up SWIG unit test framework

• Remove obsolete scripts ct2b.pl and colorrna.pl from src/Utils directory

• Remove old RNAfold tutorial

11.4 Version 2.3.x

11.4.1 Version 2.3.5 (Release date: 2017-04-14)

• Fix duplication of output filename prefix in RNAfold

• Add V3.0 API for sliding window partition function (a.k.a. RNAPLfold)

• Add G-Quadruplex prediction to RNALalifold

• Add SWIG wrappers for callback-based sliding window comparative MFE prediction

• Add SSE4.1 multiloop decomposition for single sequence MFE prediction

• Enable RNAfold unit tests to run in paralllel

• Enable users to turn-off base pair probability computations in RNAcofold with -a option

• Split move set in neighbor.c

11.4. Version 2.3.x 847

ViennaRNA, Release 2.6.4

11.4.2 Version 2.3.4 (Release date: 2017-03-10)

• Fix G-Quadruplex probability computation for single sequences

• Fix double-free when using SHAPE reactivity data in RNAalifold

• Fix out-of-bounds access in strand_number array

• Fix weighting of SHAPE reactivity data in consensus structure prediction when fewer data than sequences
are present

• Fix z-score output in RNALfold

• Substitute field name ‘A0’/’B0’ in data structure vrna_dimer_conc_s by ‘Ac_start’/’Bc_start’ to avoid clashes
with termios.h (Mac OSX Python wrapper bug)

• Minimize usage of ‘unsafe’ sprintf() calls

• Enhance auto-id feature in executable programs

• Always sanitize output file names to avoid problems due to strange FASTA headers

• Lift restrictions of FASTA header length in RNAfold, RNAcofold, and RNAeval

• Add ViennaRNA/config.h with pre-processor definitions of configure time choices

• Add test-suite for RNAfold

• Add functions to procude colored EPS structure alignments

• Add function to write Stockholm 1.0 formatted alignments

• Add function to sanitize file names

• Add callback based implementation for sliding-window MFE prediction (single sequences, comparative
structure prediction)

• Add fast API 3.0 implementations to generate structural neighbors and perform steepest descent / random
walks (Thanks to Gregor!)

• Add parameter option to RNALalifold for colored EPS structure alignment and structure plot output

• Add parameter option to RNALalifold to write hits into Stockholm file

• Add parameter option to RNAalifold to write Stockholm 1.0 formatted output

• Add parameter option to RNAalifold to suppress stderr spam

• Add auto-id feature to RNAplot, RNALfold, RNAsubopt, RNAplfold, RNAheat

• Add SHAPE reactivity derived pseudo-energies as separate output in RNAalifold

• Add colored output to RNA2Dfold, RNALalifold, RNALfold, RNAduplex, RNAheat, RNAinverse,
RNAplfold, and RNAsubopt

• Add command line parameters to RNAsubopt to allow for specification of input/output files

11.4.3 Version 2.3.3 (Release date: 2017-01-24)

• Fix multiloop contributions for comparative partition function

• Fix building python2 extension module for OSX

848 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.4.4 Version 2.3.2 (Release date: 2017-01-18)

• Fix pair probability plist creation with G-Quadruplexes

• Allow for specification of python2/3-config at configure time

• Fix init of vrna_md_t data structure after call to set_model_details()

• Fix bug in consensus partition function with hard constraints that force nucleotides to be paired

• Fix compilation of functions that use ellipsis/va_list

• Enable generic hard constraints by default

• Fix init of partition function DP matrices for unusually short RNAs

• Fix behavior of RNAplfold for unusually short RNAs

• Report SCI of 0 in RNAalifold when sum of single sequence MFEs is 0

• Avoid multiple includes of pair_mat.h

• Add configure flag to build entirely static executables

11.4.5 Version 2.3.1 (Release date: 2016-11-15)

• Add description for how to use unstructured domains through command files to reference manual and
RNAfold manpage

• Fix compilation issue for Windows platforms with MingW

• Add missing newline in non-TTY-color output of vrna_message_info()

• Fix regression in vrna_md_update() that resulted in incomplete init of reverse-basepair type array

• Extend coverage of generic hard constraints for partition function computations

• Fix scaling of secondary structure in EPS plot such that it always fits into bounding box

• Several fixes and improvements for SWIG generated scripting language interface(s)

11.4.6 Version 2.3.0 (Release date: 2016-11-01)

• Add grammar extension with structured and unstructured domains

• Add default implementation for unstructured domains to allow for ligand/protein binding to unpaired struc-
ture segments (MFE and PF for single sequences)

• Introduced command files that subsume constraint definition files (currently used in RNAfold and RNAco-
fold)

• Replace explicit calls to asprintf() with portable equivalent functions in the library

• Fix configure script to deal with situations where Perl module can’t be build

• Fix bug in doc/Makefile.am that prevented HTML installation due to long argument list

• Added utility functions that deal with conversion between different units

• Bugfix in SWIG wrapped generic soft constraint feature

• Add subopt() and subopt_zuker() methods to SWIG wrapped fold_compound objects

• Bugfix multiloop decomposition in MFE for circular RNAs

• Add separate function to compute pscore for alignments

• Renamed VRNA_VC_TYPE_* macros to VRNA_FC_TYPE_*

• Bugfix regression that prevented programs to fail on too long input sequences

11.4. Version 2.3.x 849

ViennaRNA, Release 2.6.4

• Extend EPS dot-plot in RNAfold to include motif/binding probabilities from unstructured domains

• Add variadic functions for error/warning/info message

• Add ID manipulation feature to RNAeval

• Extend API for soft constraint feature for more fine-grained control

• Add section on SWIG wrapped functions in reference manual

• Fix bug in interior loop computations when hard constraints result in non-canonical base pairs

11.5 Version 2.2.x

11.5.1 Version 2.2.10 (Release date: 2016-09-06)

• Do not ‘forget’ subopt results when output is not written to file handle and sorting is switched off

• Fix bad memory access in vrna_subopt() with sorted output

• Add SWIG wrappers for vrna_subopt_cb()

• Correctly show if C11 features are activated in configure status

• Fix autoconf checks to allow for cross compilation again

11.5.2 Version 2.2.9 (Release date: 2016-09-01)

• Fix bug in partition function scaling for backward compatibility of ali_pf_fold()

• Stabilize v3.0 API when building RNAlib and third party program linking against it with compilers that use
different C/C++ standards

• Add details on how to link against RNAlib to the reference manual

• Fix RNAlib2.pc

• Fix bug for temperature setting in RNAplfold

• Use -fflat-lto-objects for static RNAlib library to allow linking without LTO

• Fix interpretation of ‘P’ hard constraint for single nucleotides in constraint definition files

• Add ‘A’ command for hard constraints

• Fix several hard constraint corner-cases in MFE and partition function computation when nucleotides must
not be unpaired

• Fix order of hard constraints when read from input file

• Allow for non-canonical base pairs in MFE and partition function computations if hard constraints demand
it

• Fix behavior of –without-swig configure script option

• Fix bug in hard constraints usage of exterior loop MFE prediction with odd dangles

• Add parsers for Clustal, Stockholm, FASTA, and MAF formatted alignment files

• Enable RNAalifold to use Clustal, Stockholm, FASTA, or MAF alignments as input

• Lift restriction of sequence number in alignments for RNAalifold

• Enable ANSI colors for TTY output in RNAfold, RNAcofold, RNAalifold, RNAsubopt, and warnings/errors
issued by RNAlib

• Add various new commandline options to manipulate sequence/alignment IDs in RNAfold, RNAcofold and
RNAalifold

850 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.5.3 Version 2.2.8 (Release date: 2016-08-01)

• Fix bad memory access in RNAalifold

• Fix regression in RNAalifold to restore covariance contribution ratio determination for circular RNA align-
ments

• Changed output of RNAsubopt in energy-band enumeration mode to print MFE and energy range in kcal/mol
instead of 10cal/mol

• Include latest Kinfold sources that make use of v3.0 API, therefore speeding up runtime substantially

• Re-activate warnings in RNAeval when non-canonical base pairs are encountered

• Fix syntactic incompatibilities that potentially prevented compilation with compilers other than gcc

• dd function to compare nucleotides encoded in IUPAC format

• Fix regression in energy evaluation for circular RNA sequences

• Fix regression in suboptimal structure enumeration for circular RNAs

• Allow for P i-j k-l commands in constraint definition files

• Make free energy evaluation functions polymorphic

• Add free energy evaluation functions that allow for specifying verbosity level

• Secure functions in alphabet.c against NULL pointer arguments

• Fix incompatibility with swig >= 3.0.9

• Fix memory leak in swig-generated scripting language interface(s) for user-provided target language soft-
constraint callbacks

• Expose additional functions to swig-generated scripting language interface(s)

• Build Python3 interface by default

• Start of more comprehensive scripting language interface documentation

• Fix linking of python2/python3 interfaces when libpython is in non-standard directory

• Restructured viennarna.spec for RPM based distributions

• Several syntactic changes in the implementation to minimize compiler warnings

• Fix –with-/–without- and –enable-/–disable- configure script behavior

11.5.4 Version 2.2.7 (Release date: 2016-06-30)

• Fix partition function scaling for long sequences in RNAfold, RNAalifold, and RNAup

• Fix backtracking issue in RNAcofold when –noLP option is activated

• Fix hard constraints issue for circular RNAs in generating suboptimal structures

• Rebuild reference manual only when actually required

11.5. Version 2.2.x 851

ViennaRNA, Release 2.6.4

11.5.5 Version 2.2.6 (Release date: 2016-06-19)

• Plugged memory leak in RNAcofold

• Fixed partition function rescaling bug in RNAup

• Fixed bug in RNALfold with window sizes larger than sequence length

• Re-added SCI parameter for RNAalifold

• Fixed backtracking issue for large G-quadruplexes in RNAalifold

• Fixed missing FASTA id in RNAeval output

• Added option to RNAalifold that allows to specify prefix for output files

• Several fixes and additional functions/methods in scripting language interface(s)

• Added version information for scripting language interface(s)

• Some changes to allow for compilation with newer compilers, such as gcc 6.1

11.5.6 Version 2.2.5 (Release date: 2016-04-09)

• Fixed regression in RNAcofold that prohibited output of concentration computations

• Fixed behavior of RNAfold and RNAcofold when hard constraints create empty solution set (programs now
abort with error message)

• Added optional Python 3 interface

• Added RNA::Params Perl 5 sub-package

• Update RNA::Design Perl 5 sub-package

• Simplified usage of v3.0 API with default options

• Wrap more functions of v3.0 API in SWIG generated scripting language interfaces

• Plugged some memory leaks in SWIG generated scripting language interfaces

• Changed parameters of recursion status callback in vrna_fold_compound_t

• Enable definition and binding of callback functions from within SWIG target language

• Added optional subpackage Kinwalker

• Added several configure options to ease building and packaging under MacOS X

• Added new utility script RNAdesign.pl

11.5.7 Version 2.2.4 (Release date: 2016-02-19)

• Fixed bug in RNAsubopt that occasionally produced cofolded structures twice

• Removed debugging output in preparations of consensus structure prediction datastructures

852 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.5.8 Version 2.2.3 (Release date: 2016-02-13)

• Added postscipt annotations for found ligand motifs in RNAfold

• Added more documentation for the constraints features in RNAfold and RNAalifold

• Restore backward compatibility of get_alipf_arrays()

11.5.9 Version 2.2.2 (Release date: 2016-02-08)

• Fix regression bug that occasionally prevented backtracking with RNAcofold –noLP

11.5.10 Version 2.2.1 (Release date: 2016-02-06)

• Fix regression bug that made RNAcofold -a unusable

• Fix regression bug that prohibited RNAfold to compute the MEA structure when G-Quadruplex support was
switched on

• Fix bug in Kinfold to enable loading energy parameters from file

• Fix potential use of uninitialized value in RNApdist

• Add manpage for ct2db

• Fix MEA computation when G-Quadruplex support is activated

• Allow for vendor installation of the perl interface using INSTALLDIRS=vendor at configure time

• Install architecture dependent and independent files of the perl and python interface to their correct file system
locations

11.5.11 Version 2.2.0 (Release date: 2016-01-25)

• RNAforester is now of version 2.0

• New program RNApvmin to compute pseudo-energy pertubation vector that minimizes discrepancy between
observed and predicted pairing probabilities

• SHAPE reactivity support for RNAfold, RNAsubopt, and RNAalifold

• Ligand binding to hairpin- and interior-loop motif support in RNAfold

• New commandline option to limit maximum base pair span for RNAfold, RNAsubopt, RNAcofold, and
RNAalifold

• Bugfix in RNAheat to remove numerical instabilities

• Bugfix in RNAplex to allow for computation of interactions without length limitation

• Bugfix in RNAplot for simple layouts and hairpins of size 0

• (generic) hard- and soft-constraints for MFE, partition function, base pair probabilities, stochastic backtrack-
ing, and suboptimal secondary structures of single sequences, sequence alignments, and sequence dimers

• libsvm version as required for z-scoring in RNALfold is now 3.20

• Stochastic backtracking for single sequences is faster due to usage of Boustrophedon scheme

• First polymorphic functions vrna_mfe(), vrna_pf(), and vrna_pbacktrack().

• The FLT_OR_DBL macro is now a typedef

• New functions to convert between different secondary structure representations, such as helix lists, and
RNAshapes abstractions

• First object-oriented interface for new API functions in the scripting language interfaces

11.5. Version 2.2.x 853

ViennaRNA, Release 2.6.4

• new ViennaRNA-perl submodule that augments the Perl interface to RNAlib

• Ligand binding to hairpin- and interior-loop motif support in C-library and scripting language interfaces.

• Libraries are generated using libtool

• Linking of libraries and executables defaults to use Link Time Optimization (LTO)

• Large changes in directory structure of the source code files

11.6 Version 2.1.x

11.6.1 Version 2.1.9

• Fixed integer underflow bug in RNALfold

• Added Sequence Conservation index (SCI) option to RNAalifold

• Fixed bug in energy evaluation of dangling ends / terminal mismatches of exterior loops and multibranch
loops

• Fixed bug in alifold partition function for circular RNAs

• Fixed bug in alifold that scrambled backtracing with activated G-Quadruplex support

• Fixed bug in alifold backtracking for larger G-Quadruplexes

11.6.2 Version 2.1.8

• Repaired incorporation of RNAinverse user provided alphabet

• Fix missing FASTA ID in RNAeval output

• prevent race condition in parallel calls of Lfold()

• Fixed memory bug in Lfold() that occured using long sequences and activated G-Quad support

• Added latest version of switch.pl

11.6.3 Version 2.1.7

• Fixed bug in RNALfold -z

• Python and Perl interface are compiling again under MacOSX

• Fixed handling of C arrays in Python interface

• Added latest version of switch.pl

• Make relplot.pl work with RNAcofold output

11.6.4 Version 2.1.6

• New commandline switches allow for elimination of non-canonical base pairs from constraint structures in
RNAfold, RNAalifold and RNAsubopt

• updated moveset functions

• final fix for discrepancy of tri-loop evaluation between partition function and mfe

• pkg-config file now includes the OpenMP linker flag if necessary

• New program ct2db allows for conversion of .ct files into dot-bracket notation (incl. pseudo-knot removal)

854 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.6.5 Version 2.1.5

• Fix for discrepancy between special hairpin loop evaluation in partition functions and MFE

11.6.6 Version 2.1.4

• Fix of G-quadruplex support in subopt()

• Fix for discrepancy between special hairpin loop evaluation in partition functions and MFE

11.6.7 Version 2.1.3

• RNAfold: Bugfix for ignoring user specified energy parameter files

• RNAcofold: Bugfix for crashing upon constrained folding without specifying a constraint structure

• RNAsubopt: Added G-quadruplex support

• RNAalifold: Added parameter option to specify base pair probability threshold in dotplot

• Fix of several G-quadruplex related bugs

• Added G-quadruplex support in subopt()

11.6.8 Version 2.1.2

• RNAfold: Bugfix for randomly missing probabilities in dot-plot during batch job execution

• RNAeval: Bugfix for misinterpreted G-quadruplex containing sequences where the quadruplex starts at nu-
cleotide 1

• RNAsubopt: Slight changes to the output of stochastic backtracking and zuker subopt

• Fix of some memory leaks

• Bugfixes in zukersubopt(), assign_plist_from_pr()

• New threadsafe variants of putoutpU_prob*() for LPfold()

• Provision of python2 interface support.

11.6.9 Version 2.1.1

• Bugfix to restore backward compatibility with ViennaRNA Package 1.8.x API (this bug also affected proper
usage of the the perl interface)

11.6.10 Version 2.1.0

• G-Quadruplex support in RNAfold, RNAcofold, RNALfold, RNAalifold, RNAeval and RNAplot

• LPfold got a new option to output its computations in split-mode

• several G-Quadruplex related functions were introduced with this release

• several functions for moves in an RNA landscape were introduced

• new function in alipfold.c now enables access to the partition function matrices of alipf_fold()

• different numeric approach was implement for concentration dependend co-folding to avoid instabilities
which occured under certain circumstances

11.6. Version 2.1.x 855

ViennaRNA, Release 2.6.4

11.7 Version 2.0.x

11.7.1 Version 2.0.7

• Bugfix for RNAplfold where segfault happened upon usage of -O option

• Corrected misbehavior of RNAeval and RNAplot in tty mode

11.7.2 Version 2.0.6

• Bugfix for bad type casting with gcc under MacOSX (resulted in accidental “sequence too long” errors)

• Bugfix for disappearing tri-/hexaloop contributions when read in from certain parameter files

• Bugfix for RNALfold that segfaulted on short strange sequences like AT+ repeats

• Change of RNA2Dfold output format for stochastic backtracking

11.7.3 Version 2.0.5

• Restored z-score computation capabilities in RNALfold

11.7.4 Version 2.0.4

• Bugfix for RNAcofold partition function

• Perl wrapper compatibility to changed RNAlib has been restored

• Backward compatibility for partition function calls has been restored

11.7.5 Version 2.0.3

• Bugfix for RNAalifold partition function and base pair probabilities in v2.0.3b

• Added Boltzmann factor scaling in RNAsubopt, RNAalifold, RNAplfold and RNAcofold

• Bugfix for alipfold() in v2.0.3b

• Restored threadsafety of folding matrix access in LPfold.c, alipfold.c, part_func.c, part_func_co.c and
part_func_up.c

• Added several new functions regarding threadsafe function calls in terms of concurrently changing the model
details

• Added pkg-config file in the distribution to allow easy checks for certain RNAlib2 versions, compiler flags
and linker flags.

11.7.6 Version 2.0.2

• added support for Boltzmann factor scaling in RNAfold

• fixed fastaheader to filename bug

• plugged some memory leaks

856 Chapter 11. Changelog

ViennaRNA, Release 2.6.4

11.7.7 Version 2.0.1

• First official release of version 2.0

• included latest bugfixes

11.8 History

2011-03-10 Ronny Lorenz ronny@tbi.univie.ac.at

• new naming scheme for all shipped energy parameter files

• fixed bugs that appear while compiling with gcc under MacOS X

• fixed bug in RNAup –interaction-first where the longer of the first two sequences was taken as target

• added full FASTA input support to RNAfold, RNAcofold, RNAheat, RNAplfold RNALfoldz, RNAsubopt
and RNALfold

2010-11-24 Ronny Lorenz ronny@tbi.univie.ac.at

• first full pre-release of version 2.0

2009-11-03 Ivo Hofacker ivo@tbi.univie.ac.at

• Fix memory corruption in PS_color_aln()

2009-09-09 Ivo Hofacker ivo@tbi.univie.ac.at

• Fix bug in RNAplfold when -u and -L parameters are equal

• Fix double call to free_arrays() in RNAfold.c

• Improve drawing of cofolded structures

2009-05-14 Ivo Hofacker ivo@tbi.univie.ac.at

• Fix occasional segfault in RNAalifold’s print_aliout()

2009-02-24 Ivo Hofacker ivo@tbi.univie.ac.at

• Add -MEA options to RNAfold and RNAalifold

• change energy_of_alistruct to return float not void

2009-02-24 Ivo Hofacker ivo@tbi.univie.ac.at

• RNAfold will draw structures unless -noPS is used (no more “structure too long” messages)

• Restore the “alifold.out” output from RNAalifold -p

• RNAalifold -circ did not work due to wrong return type

• Accessibility calculation with RNAplfold would give wrong results for u<=30

2008-12-03 Ivo Hofacker ivo@tbi.univie.ac.at

• Add zuker style suboptimals to RNAsubopt (-z)

• get_line() should be much faster when reading huge sequences (e.g. whole chromosomes for RNALfold)

2008-08-12 Ivo Hofacker ivo@tbi.univie.ac.at

• Add Ribosum matrices for covariance scoring in RNAalifold

2008-06-27 Ivo Hofacker ivo@tbi.univie.ac.at

• Change RNAalifold to used berni’s new energy evaluation w/o gaps

• Add stochastic backtracking in RNAalifold

2008-07-04 Ivo Hofacker ivo@tbi.univie.ac.at

11.8. History 857

mailto:ronny@tbi.univie.ac.at
mailto:ronny@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

• modify output of RNAup (again). Program reading RNAup output will have to updated!

2008-07-02 Ivo Hofacker ivo@tbi.univie.ac.at

• RNAplfold now computes accessibilities for all regions up to a max length simultaneously. Slightly slower
when only 1 value is needed, but much faster if all of them are wanted. This entails a new output format.
Programs reading accessibility output from RNAplfold need to be updated!

2008-03-31 Stephan Bernhart berni@tbi.univie.ac.at

• add cofolding to RNAsubopt

2008-01-08 Ivo Hofacker ivo@tbi.univie.ac.at

• ensure circfold works even for open chain

2007-12-13 Ulli Mueckstein ulli@tbi.univie.ac.at

• upate RNAup related files RNAup can now include the intramolecular structure of both molecules and han-
dles constraints.

2007-12-05 Ronny Lorenz ronny@tbi.univie.ac.at

• add circfold variants in part_func.c alipfold.c subopt.c

2007-09-19 Ivo Hofacker ivo@tbi.univie.ac.at

• compute the controid structure of the ensemble in RNAfold -p

• fix a missing factor 2 in mean_bp_dist(). CAUTION ensemble diversities returned by RNAfold -p are now
twice as large as in earlier versions.

2007-09-04 Ivo Hofacker ivo@blini.tbi.univie.ac.at

• fix a bug in Lfold() where base number n-max-4 would never pair

2007-08-26 Ivo Hofacker ivo@tbi.univie.ac.at

• add RNAaliduplex the alignment version of RNAduplex

• introduce a minimal distance between hits produced by duplex_subopt()

2007-07-03 Ivo Hofacker ivo@tbi.univie.ac.at

• add a loop_energy() function to compute energy of a single loop

2007-06-23 Ivo Hofacker ivo@tbi.univie.ac.at

• add aliLfold() and RNALalifold, alignment variant of Lfold()

2007-04-30 Ivo Hofacker ivo@tbi.univie.ac.at

• add RNAup to distribution

2007-04-15 Ivo Hofacker ivo@tbi.univie.ac.at

• fix segfault in colorps output (thanks to Andres Varon)

2007-03-03 Ivo Hofacker ivo@tbi.univie.ac.at

• avoid unnormalized doubles in scale[], big speedup for pf_fold() on very long sequences

2007-02-03 Ivo Hofacker ivo@tbi.univie.ac.at

• RNAalifold can now produce colored structure plots and alignment plots

2007-02-01 Ivo Hofacker ivo@tbi.univie.ac.at

• Fix segfault in RNAplfold because of missing prototype

2006-12-01 Ivo Hofacker ivo@tbi.univie.ac.at

• RNAduplex would segfault when no structure base pairs are possible

2006-08-22 Ivo Hofacker ivo@tbi.univie.ac.at

858 Chapter 11. Changelog

mailto:ivo@tbi.univie.ac.at
mailto:berni@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ulli@tbi.univie.ac.at
mailto:ronny@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@blini.tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

• add computation stacking probabilities using RNAfold -p2

• add -noPS option for NRAfold to supress drawing structures

2006-08-09 Stephan Bernhart berni@tbi.univie.ac.at

• RNAplfold can now compute probabilites of unpaired regions (scanning version of RNAup)

2006-06-14 Ivo Hofacker ivo@tbi.univie.ac.at

• compile library with -fpic (if available) for use as shared library in the Perl module.

• fix another bug when calling Lfold() repeatedly

• fix switch cmdline parsing in RNAalifold (-mis implied -4)

• fix bug in cofold() with dangles=0

2006-05-08 Ivo Hofacker ivo@tbi.univie.ac.at

• fix segfault in Lfold() when calling repeatedly

• fix structure parsing in RNAstruct.c (thanks to Michael Pheasant for reporting both bugs)

• add duplexfold() and alifold() to Perl module

• distinguish window size and max pair span in LPfold

2006-04-05 Ivo Hofacker ivo@tbi.univie.ac.at

• fix performance bug in co_pf_fold()

• use relative error for termination of Newton iteration

2006-03-02 Ivo Hofacker ivo@tbi.univie.ac.at

• add circular folding in alifold()

2006-01-18 Ivo Hofacker ivo@tbi.univie.ac.at

• cleanup berni partition cofold code, including several bug fixes

2006-01-16 Ivo Hofacker ivo@tbi.univie.ac.at

• update RNAplfold to working version

• add PS_dot_plot_turn() in PS_dot.c

2005-11-07 Ivo Hofacker ivo@tbi.univie.ac.at

• add new utilities colorna and coloraln

2005-10-11 Christoph Flamm xtof@tbi.univie.ac.at

• adapt PS_rna_plot() for drawing co-folded structures

2005-07-24 Ivo Hofacker ivo@tbi.univie.ac.at

• fix a few memory problems in structure comparison routines

2005-04-30 Ivo Hofacker ivo@blini.tbi.univie.ac.at

• add folding of circular RNAs

2005-03-11 Ivo Hofacker ivo@blini.tbi.univie.ac.at

• add -mis option to RNAalifold to give “most informative sequence” as consensus

2005-02-10 Ivo Hofacker ivo@tbi.univie.ac.at

• move alifold() into the library

2004-12-22 Stephan Bernhart berni@tbi.univie.ac.at

• add partition function version of RNAcofold

2004-12-23 Ivo Hofacker ivo@tbi.univie.ac.at

11.8. History 859

mailto:berni@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:xtof@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@blini.tbi.univie.ac.at
mailto:ivo@blini.tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:berni@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

• add RNApaln for fast structural alignments (RNApdist improvement)

2004-08-12 Ivo Hofacker ivo@tbi.univie.ac.at

• fix constrained folding in stochastic backtracking

2004-07-21 Ivo Hofacker ivo@tbi.univie.ac.at

• add RNAduplex, to compute hybrid structures without intra-molecular pairs

2004-02-09 Ivo Hofacker ivo@tbi.univie.ac.at

• fix bug in fold that caused segfaults when using Intel compiler

• add computation of ensemble diversity to RNAfold

2003-09-10 Ivo Hofacker ivo@tbi.univie.ac.at

• add annotation options to RNAplot

2003-08-04 Ivo Hofacker ivo@tbi.univie.ac.at

• stochastic backtracking finally works. Try e.g. RNAsubopt -p 10

2003-07-18 Ivo Hofacker ivo@tbi.univie.ac.at

• add relplot.pl and rotate_ss.pl utilities for reliability annotation and rotation of rna structure plots

2003-01-29 Ivo Hofacker ivo@tbi.univie.ac.at

• add RNALfold program to compute locally optimal structures with maximum pair span.

• add RNAcofold for computing hybrid structure

2002-11-07 Ivo Hofacker ivo@tbi.univie.ac.at

• change Make_bp_profile() and profile_edit_distance() to use simple (float *) arrays; makes Perl access much
easier. RNApdist -B now works again

2002-10-28 Ivo Hofacker ivo@tbi.univie.ac.at

• Improved Perl module with pod documentation; allow to write things like ($structure, $energy) =
RNA::fold($seq); Compatibility warning: the ptrvalue() and related functions are gone, see the pod doc-
umentation for alternatives.

2002-10-29 Ivo Hofacker ivo@tbi.univie.ac.at

• added svg structure plots in PS_dot.c and RNAplot

2002-08-15 Ivo Hofacker ivo@tbi.univie.ac.at

• Improve reading of clustal files (alifold)

• add a sample alifold.cgi script

2001-09-18 Ivo Hofacker ivo@tbi.univie.ac.at

• moved suboptimal folding into the library, thus it’s now accessible from the Perl module

2001-08-31 Ivo Hofacker ivo@tbi.univie.ac.at

• added co-folding support in energy_of_struct(), and thus RNAeval

2001-04-30 Ivo Hofacker ivo@tbi.univie.ac.at

• switch from handcrafted makefiles to automake and autoconf

2001-04-05 Ivo Hofacker ivo@tbi.univie.ac.at

• added PS_rna_plot_a to produce structure plots with annotation

2001-03-03 Ivo Hofacker ivo@tbi.univie.ac.at

• add alifold; predict consensus structures from alignment

2000-09-28 Ivo Hofacker ivo@tbi.univie.ac.at

860 Chapter 11. Changelog

mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at
mailto:ivo@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

• add -d3 option to RNAfold for co-axial stacking

11.8. History 861

ViennaRNA, Release 2.6.4

862 Chapter 11. Changelog

CHAPTER

TWELVE

BIBLIOGRAPHY

863

ViennaRNA, Release 2.6.4

864 Chapter 12. Bibliography

CHAPTER

THIRTEEN

HOW TO CITE THE VIENNARNA PACKAGE

If you use our software and implemented algorithms for your scientific work, you might want to cite the corre-
sponding publications.

13.1 Main References

The overarching main publications for the ViennaRNA Package are:

• Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph Flamm, Pe-
ter F. Stadler, and Ivo L. Hofacker. ViennaRNA package 2.0. Algorithms for Molecular Biology, 6(1):26,
2011. doi:10.1186/1748-7188-6-26.

• I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, and P. Schuster. Fast folding and
comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly, 125(2):167–188,
1994. URL: https://www.academia.edu/download/48689421/Fast_Folding_and_Comparison_of_RNA_
Secon20160908-13624-1yg70az.pdf.

13.2 Particular Algorithms and Features

To reference particular algorithms used in our sofware, you might want to consider citing the following publications:

13.2.1 Consensus structure prediction

• I.L. Hofacker, M. Fekete, and P.F. Stadler. Secondary structure prediction for aligned RNA sequences. Jour-
nal of molecular biology, 319(5):1059–1066, 2002. doi:10.1016/S0022-2836(02)00308-X.

• S.H. Bernhart, I.L. Hofacker, S. Will, A.R. Gruber, and P.F. Stadler. RNAalifold: improved consensus
structure prediction for RNA alignments. BMC bioinformatics, 9(1):474, 2008. doi:10.1186/1471-2105-9-
474.

13.2.2 Local pair probabilitiy and accessibility

• Stephan H Bernhart, Ivo L Hofacker, and Peter F Stadler. Local RNA base pairing probabilities in large
sequences. Bioinformatics, 22(5):614–615, 2005. doi:10.1093/bioinformatics/btk014.

• Stephan H Bernhart, Ullrike Mückstein, and Ivo L Hofacker. RNA accessibility in cubic time. Algorithms
for Molecular Biology, 6(1):3, 2011. doi:10.1186/1748-7188-6-3.

865

https://doi.org/10.1186/1748-7188-6-26
https://www.academia.edu/download/48689421/Fast_Folding_and_Comparison_of_RNA_Secon20160908-13624-1yg70az.pdf
https://www.academia.edu/download/48689421/Fast_Folding_and_Comparison_of_RNA_Secon20160908-13624-1yg70az.pdf
https://doi.org/10.1016/S0022-2836(02)00308-X
https://doi.org/10.1186/1471-2105-9-474
https://doi.org/10.1186/1471-2105-9-474
https://doi.org/10.1093/bioinformatics/btk014
https://doi.org/10.1186/1748-7188-6-3

ViennaRNA, Release 2.6.4

13.2.3 Suboptimal secondary structures

• S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Complete suboptimal folding of RNA and the
stability of secondary structures. Biopolymers, 49(2):145–165, February 1999. doi:10.1002/(SICI)1097-
0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G.

13.2.4 k,l - Neighborhood

• Ronny Lorenz, Christoph Flamm, and Ivo L. Hofacker. 2d projections of RNA folding landscapes. In
Ivo Grosse, Steffen Neumann, Stefan Posch, Falk Schreiber, and Peter F. Stadler, editors, German Confer-
ence on Bioinformatics 2009, volume 157 of Lecture Notes in Informatics, 11–20. Bonn, September 2009.
Gesellschaft f. Informatik. URL: https://dl.gi.de/items/8f88acfe-c389-4dfe-b975-84a638900683.

13.2.5 Experimental RNA structure probing

• Ronny Lorenz, Dominik Luntzer, Ivo L. Hofacker, Peter F. Stadler, and Michael T. Wolfinger. Shape directed
rna folding. Bioinformatics, 32(1):145–147, 2016. doi:10.1093/bioinformatics/btv523.

13.2.6 Structure Constraints

• Ronny Lorenz, Ivo L. Hofacker, and Peter F. Stadler. RNA folding with hard and soft constraints. Algorithms
for Molecular Biology, 11(1):1–13, 2016. doi:10.1186/s13015-016-0070-z.

13.2.7 Non-redundant Boltzmann sampling

• Juraj Michálik, Hélène Touzet, and Yann Ponty. Efficient approximations of RNA kinetics landscape using
non-redundant sampling. Bioinformatics, 33(14):i283–i292, 2017. doi:10.1093/bioinformatics/btx269.

866 Chapter 13. How to cite the ViennaRNA Package

https://doi.org/10.1002/(SICI)1097-0282(199902)49:2\T1\textless {}145::AID-BIP4\T1\textgreater {}3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0282(199902)49:2\T1\textless {}145::AID-BIP4\T1\textgreater {}3.0.CO;2-G
https://dl.gi.de/items/8f88acfe-c389-4dfe-b975-84a638900683
https://doi.org/10.1093/bioinformatics/btv523
https://doi.org/10.1186/s13015-016-0070-z
https://doi.org/10.1093/bioinformatics/btx269

CHAPTER

FOURTEEN

FREQUENTLY ASKED QUESTIONS

14.1 Missing EXTERN.h

When compiling from source at the Mac OS X platform, users often encounter an error message stating that the
file EXTERN.h is missing for compilation of the Perl 5 wrapper. This is a known problem and due to the fact that
users are discouraged to use the Perl 5 interpreter that is shipped with Mac OS X.

Instead, one should install a more recent version from another source, e.g. homebrew. If, however, for any reason
you do not want to install your own Perl 5 interpreter but use the one from Apple, you need to specify its include
path to enable building the ViennaRNA Perl interface. Otherwise, the file EXTERN.h will be missing at compile
time. To fix this problem, you first need to find out where EXTERN.h is located:

sudo find /Library -type f -name EXTERN.h

Then choose the one that corresponds to your default perl interpreter (find out the version number with perl -v
| grep version), simply execute the following before running the ./configure script, e.g.:

export CPATH=/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/System/Library/
→˓Perl/5.18/darwin-thread-multi-2level/CORE

if your default perl is v5.18 running on MacOSX10.15. Change the paths according to your current setup. After
that, running ./configure and compilation should run fine.

See also. . .
Related question at stackoverflow: https://stackoverflow.com/q/52682304/18609162

14.2 Linking fails with LTO error

By default, RNAlib is compiled with Link Time Optimization. This may introduce problems upon linking a third-
party program that was either compiled with a different compiler or compiler version. As a work-around solution,
we include the -fno-lto linker flag in the output of the pkg-config. This tells the linker to not perform link time
optimization even though LTO code is included in the library. Usually, this should not affect the runtime of the
algorithms too much.

However, some linkers may not support the -fno-lto flag and fail at the linker stage. In addition, if RNAlib has
been compiled with clang, it may not include the non-LTO code required for linking without LTO. To resolve this
issue, you may need to deactivate link time optimization while building RNAlib.

See also. . .
Link Time Optimization

867

https://stackoverflow.com/q/52682304/18609162

ViennaRNA, Release 2.6.4

868 Chapter 14. Frequently Asked Questions

CHAPTER

FIFTEEN

CONTRIBUTING TO THE VIENNARNA PACKAGE

15.1 Contents

• General Remarks

• Reporting Bugs

• Pull Request Process

• Contributors License Agreement (CLA)

15.2 General Remarks

The ViennaRNA Package is developed by humans and consequently may contain bugs that prevent proper operation
of the implemented algorithms. If you think you have found any of those nasty animals, please help us to improve
our software by reporting the bug to us.

The ViennaRNA Package also is open-source software, which means that everybody can have a closer look into our
implementations to understand and potentially extend it’s functionality. If you implemented any novel feature into
the ViennaRNA Package that might be of interest to a larger community, please don’t hesitate to ask for merging
of your code into our official source tree. See the Pull Request Process section below to find information on how
to do that.

Please note that we have a code of conduct. Please follow it in all your interactions with this project.

If you wish to contribute to this project, please first discuss any proposed changes with the owners and main
developers. You may do that either through making an issue at our official GitHub presence, by email, or any other
personal communication with the core developer team.

More importantly, if you wish to contribute any files or software, you need to agree to our ViennaRNA Package
Contributors License Agreement (CLA)! Otherwise, your contributions can’t be merged into our source tree. See
below for further information and the full CLA details.

15.3 Reporting Bugs

1. Please make an issue at GitHub or notify us by emailing to rna@tbi.univie.ac.at

2. In your report, include as much information as possible, such that we are able to reproduce it. If possible,
find a minimal example that triggers the bug.

3. Include the version number for the ViennaRNA Package you experience the bug with.

4. Include at least some minimal information regarding your operating system (Linux, Mac OS X, Windows,
etc.)

869

https://github.com/ViennaRNA/ViennaRNA
mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

15.4 Pull Request Process

1. Ensure that you have not checked-in any files that are automatically build!

2. When contributing C source code, follow our code formatting guide lines. You may use the tool uncrustify
together with our config located in misc/uncrustify.cfg to accomplish that.

3. Only expose symbols (functions, variables, etc.) to the libraries interface that are absolutely necessary! Hide
all other symbols in the corresponding object file(s) by declaring them as static.

4. Use the prefixes vrna_ for any symbol you add to the API of our library! Preprocessor macros in header
files require the prefix in capital letters, i.e. VRNA_.

5. Use C-style comments at any place necessary to make sure your implementation can still be understood and
followed in the future.

6. Add test cases for any new implementation! The test suite is located in the tests directory and is split into
tests for the C-library, executable programs, and the individual scripting language interfaces.

7. Run make check to ensure that all other test suites still run properly with your applied changes!

8. When contributing via GitHub, make a personal fork of our project and create a separate branch for your
changes. Then make a pull request to our user-contrib branch. Pull requests to the master branch will
be rejected to keep its history clean.

9. Pull requests that have been successfully merged into the user-contrib branch usually find their way into
the next release of the ViennaRNA Package. However, please note that the core developers may decide to
include your changes in a later version.

15.5 Contributors License Agreement

Thank you for your interest in contributing to the ViennaRNA Package (“We” or “Us”).

Before contributing, please note that we adopted a standard Contributors License Agreement (CLA) agreement
provided by Project Harmony, a community-centered group focused on contributor agreements for free and open
source software (FOSS).

This contributor agreement (“Agreement”) documents the rights granted by contributors to Us. To make this
document effective, please sign it and send it to Us by email to rna@tbi.univie.ac.at.

The respective CLA PDF documents are available in the doc/CLA directory of the distribution tarball, and online
at our official ViennaRNA Website.

870 Chapter 15. Contributing to the ViennaRNA Package

https://www.harmonyagreements.org
https://www.tbi.univie.ac.at/RNA/contributing.html

CHAPTER

SIXTEEN

LICENSE

Disclaimer and Copyright

The programs, library and source code of the Vienna RNA Package are free software. They are distributed in the
hope that they will be useful but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Permission is granted for research, educational, and commercial use and modification so long as 1) the package
and any derived works are not redistributed for any fee, other than media costs, 2) proper credit is given to the
authors and the Institute for Theoretical Chemistry of the University of Vienna.

If you want to include this software in a commercial product, please contact the authors.

871

ViennaRNA, Release 2.6.4

872 Chapter 16. License

CHAPTER

SEVENTEEN

INDICES AND TABLES

• genindex

• modindex

• search

873

ViennaRNA, Release 2.6.4

874 Chapter 17. Indices and tables

CHAPTER

EIGHTEEN

CONTRIBUTORS

Over the past decades since the ViennaRNA Package first sprang to life as part of Ivo L. Hofackers PhD project,
several authors contributed more and more algorithm implementations. In 2008, Ronny Lorenz took over the
extensive task to harmonize and simplify the already existing implementations for the sake of easier feature addition.
This eventually lead to version 2.0 of the ViennaRNA Package. Since then, he (re-)implemented a large portion of
the currently existing library features, such as the new, generalized constraints framework, RNA folding grammar
domain extensions, and the major part of the scripting language interface.

Below is a list of most people who contributed larger parts of the implementations:

• Daniel Wiegreffe (RNAturtle and RNApuzzler secondary structure layouts)

• Andreas Gruber (first approach on RNALfold Z-score filtering)

• Juraj Michalik (non-redundant Boltzmann sampling)

• Gregor Entzian (neighbor, walk)

• Mario Koestl (worked on SWIG interface and related unit testing)

• Dominik Luntzer (pertubation fold)

• Stefan Badelt (cofold evaluation, RNAdesign.pl, cofold findpath extensions)

• Stefan Hammer (parts of SWIG interface and corresponding unit tests)

• Ronny Lorenz (circfold, version 2.0, generic constraints, grammar extensions, and much more)

• Hakim Tafer (RNAplex, RNAsnoop)

• Ulrike Mueckstein (RNAup)

• Stephan Bernhart (RNAcofold, RNAplfold, unpaired probabilities, alifold, and so many more)

• Stefan Wuchty (RNAsubopt)

• Ivo Hofacker, Peter Stadler, and Christoph Flamm (almost every implementation up to version 1.8.5)

We also want to thank the following people:

• Sebastian Bonhoeffer’s implementation of partition function folding served as a precursor to our part_func.c

• Manfred Tacker hacked constrained folding into fold.c for the first time

• Martin Fekete made the first attempts at “alignment folding”

• Andrea Tanzer and Martin Raden (Mann) for not stopping to report bugs found through comprehensive usage
of our applications and RNAlib

Thanks also to everyone else who helped testing and finding bugs, especially Christoph Flamm, Martijn Huynen,
Baerbel Krakhofer, and many more.

875

ViennaRNA, Release 2.6.4

876 Chapter 18. Contributors

BIBLIOGRAPHY

[1] Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph Flamm, Pe-
ter F. Stadler, and Ivo L. Hofacker. ViennaRNA package 2.0. Algorithms for Molecular Biology, 6(1):26,
2011. doi:10.1186/1748-7188-6-26.

[2] I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, and P. Schuster. Fast folding and
comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly, 125(2):167–188,
1994. URL: https://www.academia.edu/download/48689421/Fast_Folding_and_Comparison_of_RNA_
Secon20160908-13624-1yg70az.pdf.

[3] I.L. Hofacker, M. Fekete, and P.F. Stadler. Secondary structure prediction for aligned RNA sequences. Journal
of molecular biology, 319(5):1059–1066, 2002. doi:10.1016/S0022-2836(02)00308-X.

[4] S.H. Bernhart, I.L. Hofacker, S. Will, A.R. Gruber, and P.F. Stadler. RNAalifold: improved consensus struc-
ture prediction for RNA alignments. BMC bioinformatics, 9(1):474, 2008. doi:10.1186/1471-2105-9-474.

[5] Christine E Hajdin, Stanislav Bellaousov, Wayne Huggins, Christopher W Leonard, David H Mathews, and
Kevin M Weeks. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Pro-
ceedings of the National Academy of Sciences, 110(14):5498–5503, 2013. doi:10.1073/pnas.1219988110.

[6] Robert D Jenison, Stanley C Gill, Arthur Pardi, and Barry Polisky. High-resolution molecular discrimination
by RNA. Science, 263(5152):1425–1429, 1994. doi:10.1126/science.7510417.

[7] Amy YQ Zhang, Anthony Bugaut, and Shankar Balasubramanian. A sequence-independent analysis of
the loop length dependence of intramolecular RNA G-quadruplex stability and topology. Biochemistry,
50(33):7251–7258, 2011. doi:10.1021/bi200805j.

[8] Robert A Forties and Ralf Bundschuh. Modeling the interplay of single-stranded binding proteins and nucleic
acid secondary structure. Bioinformatics, 26(1):61–67, 2010. doi:10.1093/bioinformatics/btp627.

[9] Stefan Washietl, Ivo L. Hofacker, Peter F. Stadler, and Manolis Kellis. RNA folding with soft constraints:
reconciliation of probing data and thermodynamics secondary structure prediction. Nucleic Acids Research,
40(10):4261–4272, 2012. doi:10.1093/nar/gks009.

[10] S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Complete suboptimal folding of RNA and the
stability of secondary structures. Biopolymers, 49(2):145–165, February 1999. doi:10.1002/(SICI)1097-
0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G.

[11] Ye Ding and Charles E. Lawrence. A statistical sampling algorithm for RNA secondary structure prediction.
Nucleic Acids Research, 31(24):7280–7301, 12 2003. doi:10.1093/nar/gkg938.

[12] Christoph Flamm, Ivo L Hofacker, Sebastian Maurer-Stroh, Peter F Stadler, and Martin Zehl. Design of
multistable RNA molecules. RNA, 7(02):254–265, 2001. doi:10.1017/s1355838201000863.

[13] Ronny Lorenz, Christoph Flamm, and Ivo L. Hofacker. 2d projections of RNA folding landscapes. In Ivo
Grosse, Steffen Neumann, Stefan Posch, Falk Schreiber, and Peter F. Stadler, editors, German Confer-
ence on Bioinformatics 2009, volume 157 of Lecture Notes in Informatics, 11–20. Bonn, September 2009.
Gesellschaft f. Informatik. URL: https://dl.gi.de/items/8f88acfe-c389-4dfe-b975-84a638900683.

[14] Robert Giegerich, Björn Voß, and Marc Rehmsmeier. Abstract shapes of RNA. Nucleic Acids Research,
32(16):4843–4851, 2004. doi:10.1093/nar/gkh779.

877

https://doi.org/10.1186/1748-7188-6-26
https://www.academia.edu/download/48689421/Fast_Folding_and_Comparison_of_RNA_Secon20160908-13624-1yg70az.pdf
https://www.academia.edu/download/48689421/Fast_Folding_and_Comparison_of_RNA_Secon20160908-13624-1yg70az.pdf
https://doi.org/10.1016/S0022-2836(02)00308-X
https://doi.org/10.1186/1471-2105-9-474
https://doi.org/10.1073/pnas.1219988110
https://doi.org/10.1126/science.7510417
https://doi.org/10.1021/bi200805j
https://doi.org/10.1093/bioinformatics/btp627
https://doi.org/10.1093/nar/gks009
https://doi.org/10.1002/(SICI)1097-0282(199902)49:2\T1\textless {}145::AID-BIP4\T1\textgreater {}3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0282(199902)49:2\T1\textless {}145::AID-BIP4\T1\textgreater {}3.0.CO;2-G
https://doi.org/10.1093/nar/gkg938
https://doi.org/10.1017/s1355838201000863
https://dl.gi.de/items/8f88acfe-c389-4dfe-b975-84a638900683
https://doi.org/10.1093/nar/gkh779

ViennaRNA, Release 2.6.4

[15] W. Fontana, P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker, M. Tacker, P. Tarazona, E.D.
Weinberger, and P. Schuster. RNA folding and combinatory landscapes. Physical review E, 47(3):2083, 1993.
doi:10.1103/PhysRevE.47.2083.

[16] B.A. Shapiro. An algorithm for comparing multiple RNA secondary structures. Computer applications in the
biosciences: CABIOS, 4(3):387–393, 1988. doi:10.1093/bioinformatics/4.3.387.

[17] Thomas R Einert and Roland R Netz. Theory for RNA folding, stretching, and melting including loops and
salt. Biophysical journal, 100(11):2745–2753, 2011. doi:10.1016/j.bpj.2011.04.038.

[18] Ronny Lorenz, Ivo L. Hofacker, and Peter F. Stadler. RNA folding with hard and soft constraints. Algorithms
for Molecular Biology, 11(1):1–13, 2016. doi:10.1186/s13015-016-0070-z.

[19] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermodynamics and
auxiliary information. Nucleic acids research, 9(1):133–148, 1981. doi:10.1093/nar/9.1.133.

[20] I.L. Hofacker and P.F. Stadler. Memory efficient folding algorithms for circular RNA secondary structures.
Bioinformatics, 22(10):1172–1176, 2006. doi:10.1093/bioinformatics/btl023.

[21] J.S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary
structure. Biopolymers, 29(6-7):1105–1119, 1990. doi:10.1002/bip.360290621.

[22] Stephan H Bernhart, Ivo L Hofacker, and Peter F Stadler. Local RNA base pairing probabilities in large
sequences. Bioinformatics, 22(5):614–615, 2005. doi:10.1093/bioinformatics/btk014.

[23] Stephan H Bernhart, Ullrike Mückstein, and Ivo L Hofacker. RNA accessibility in cubic time. Algorithms for
Molecular Biology, 6(1):3, 2011. doi:10.1186/1748-7188-6-3.

[24] M. Zuker. On finding all suboptimal foldings of an RNA molecule. Science, 244(4900):48–52, April 1989.
doi:10.1126/science.2468181.

[25] G Steger, H Hofmann, J Förtsch, HJ Gross, JW Randies, HL Sänger, and D Riesner. Conforma-
tional transitions in viroids and virusoids: comparison of results from energy minimization algorithm
and from experimental data. Journal of Biomolecular Structure and Dynamics, 2(3):543–571, 1984.
doi:10.1080/07391102.1984.10507591.

[26] Juraj Michálik, Hélène Touzet, and Yann Ponty. Efficient approximations of RNA kinetics landscape using
non-redundant sampling. Bioinformatics, 33(14):i283–i292, 2017. doi:10.1093/bioinformatics/btx269.

[27] S.H. Bernhart, H. Tafer, U. Mückstein, C. Flamm, P.F. Stadler, and I.L. Hofacker. Partition function
and base pairing probabilities of RNA heterodimers. Algorithms for Molecular Biology, 1(1):3, 2006.
doi:10.1186/1748-7188-1-3.

[28] Ronny Lorenz, Dominik Luntzer, Ivo L. Hofacker, Peter F. Stadler, and Michael T. Wolfinger. Shape directed
rna folding. Bioinformatics, 32(1):145–147, 2016. doi:10.1093/bioinformatics/btv523.

[29] Katherine E. Deigan, Tian W. Li, David H. Mathews, and Kevin M. Weeks. Accurate SHAPE-directed RNA
structure determination. PNAS, 106:97–102, 2009. doi:10.1073/pnas.080692910.

[30] Kourosh Zarringhalam, Michelle M. Meyer, Ivan Dotu, Jeffrey H. Chuang, and Peter Clote. In-
tegrating chemical footprinting data into RNA secondary structure prediction. PLOS ONE, 2012.
doi:10.1371/journal.pone.0045160.

[31] Pietro Boccaletto, Filip Stefaniak, Angana Ray, Andrea Cappannini, Sunandan Mukherjee, Elżbieta Purta,
Małgorzata Kurkowska, Niloofar Shirvanizadeh, Eliana Destefanis, Paula Groza, and others. MODOMICS:
a database of RNA modification pathways. 2021 update. Nucleic Acids Research, 50(D1):D231–D235, 2022.
doi:10.1093/nar/gkab1083.

[32] Elzbieta Kierzek, Xiaoju Zhang, Richard M Watson, Scott D Kennedy, Marta Szabat, Ryszard Kierzek, and
David H Mathews. Secondary structure prediction for RNA sequences including N6-methyladenosine. Nature
communications, 13(1):1–10, 2022. doi:10.1038/s41467-022-28817-4.

[33] Graham A Hudson, Richard J Bloomingdale, and Brent M Znosko. Thermodynamic contribution and nearest-
neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides. RNA, 19(11):1474–1482,
2013. doi:10.1261/rna.039610.113.

[34] Daniel J Wright, Jamie L Rice, Dawn M Yanker, and Brent M Znosko. Nearest Neighbor Parameters for
Inosine· Uridine Pairs in RNA Duplexes. Biochemistry, 46(15):4625–4634, 2007. doi:10.1021/bi0616910.

878 Bibliography

https://doi.org/10.1103/PhysRevE.47.2083
https://doi.org/10.1093/bioinformatics/4.3.387
https://doi.org/10.1016/j.bpj.2011.04.038
https://doi.org/10.1186/s13015-016-0070-z
https://doi.org/10.1093/nar/9.1.133
https://doi.org/10.1093/bioinformatics/btl023
https://doi.org/10.1002/bip.360290621
https://doi.org/10.1093/bioinformatics/btk014
https://doi.org/10.1186/1748-7188-6-3
https://doi.org/10.1126/science.2468181
https://doi.org/10.1080/07391102.1984.10507591
https://doi.org/10.1093/bioinformatics/btx269
https://doi.org/10.1186/1748-7188-1-3
https://doi.org/10.1093/bioinformatics/btv523
https://doi.org/10.1073/pnas.080692910
https://doi.org/10.1371/journal.pone.0045160
https://doi.org/10.1093/nar/gkab1083
https://doi.org/10.1038/s41467-022-28817-4
https://doi.org/10.1261/rna.039610.113
https://doi.org/10.1021/bi0616910

ViennaRNA, Release 2.6.4

[35] Daniel J Wright, Christopher R Force, and Brent M Znosko. Stability of RNA duplexes containing inosine·
cytosine pairs. Nucleic Acids Research, 46(22):12099–12108, 2018. doi:10.1093/nar/gky907.

[36] Katherine E Richardson and Brent M Znosko. Nearest-neighbor parameters for 7-deaza-adenosine· uridine
base pairs in RNA duplexes. RNA, 22(6):934–942, 2016. doi:10.1261/rna.055277.115.

[37] Elizabeth A Jolley and Brent M Znosko. The loss of a hydrogen bond: Thermodynamic contributions of a
non-standard nucleotide. Nucleic acids research, 45(3):1479–1487, 2017. doi:10.1093/nar/gkw830.

[38] Eva Freyhult, Vincent Moulton, and Paul Gardner. Predicting RNA structure using mutual information. Ap-
plied bioinformatics, 4(1):53–59, 2005. doi:10.2165/00822942-200504010-00006.

[39] Daniel Wiegreffe, Daniel Alexander, Peter F Stadler, and Dirk Zeckzer. RNApuzzler: effi-
cient outerplanar drawing of RNA-secondary structures. Bioinformatics, 35(8):1342–1349, 2019.
doi:10.1093/bioinformatics/bty817.

[40] R.E. Bruccoleri and G. Heinrich. An improved algorithm for nucleic acid secondary structure display. Com-
puter applications in the biosciences: CABIOS, 4(1):167–173, 1988. doi:10.1093/bioinformatics/4.1.167.

[41] Joe Sawada. A fast algorithm to generate necklaces with fixed content. Theoretical Computer Science,
301(1):477–489, 2003. doi:10.1016/S0304-3975(03)00049-5.

Bibliography 879

https://doi.org/10.1093/nar/gky907
https://doi.org/10.1261/rna.055277.115
https://doi.org/10.1093/nar/gkw830
https://doi.org/10.2165/00822942-200504010-00006
https://doi.org/10.1093/bioinformatics/bty817
https://doi.org/10.1093/bioinformatics/4.1.167
https://doi.org/10.1016/S0304-3975(03)00049-5

ViennaRNA, Release 2.6.4

880 Bibliography

PYTHON MODULE INDEX

r
RNA, 668

881

ViennaRNA, Release 2.6.4

882 Python Module Index

INDEX

Symbols
(

command line option, 134
()

command line option, 141
(possible

command line option, 164
,

command line option, 134, 141
.

command line option, 134, 141
-3

command line option, 182
-4

command line option, 55, 58, 65, 77, 85, 90,
99, 109, 112, 118, 125, 132, 135, 141, 145,
150, 156, 165, 177, 183

-5
command line option, 181

-A
command line option, 148, 169

-B
command line option, 80, 134, 141

-C
command line option, 64, 75, 97, 149, 171,

176, 182
-D

command line option, 80, 175
-E

command line option, 66
-F

command line option, 111
-I

command line option, 150, 171
-K

command line option, 54, 148
-L

command line option, 54, 117, 123, 149, 154,
170

-M
command line option, 148

-N
command line option, 63, 148, 163, 171, 175

-O
command line option, 152, 168

-P

command line option, 55, 57, 65, 76, 82, 85,
90, 99, 109, 112, 118, 125, 131, 135, 141,
145, 149, 156, 165, 168, 177, 183

-Q
command line option, 148

-R
command line option, 66, 91, 112, 119

-S
command line option, 54, 63, 74, 80, 96, 131,

154, 164, 168, 175, 182
-T

command line option, 55, 57, 65, 76, 82, 85,
90, 99, 112, 118, 125, 131, 135, 141, 145,
149, 156, 165, 177, 183

-U
command line option, 148, 168

-V
command line option, 53, 57, 60, 71, 80, 81,

84, 87, 93, 106, 111, 114, 121, 128, 134, 138,
140, 144, 148, 152, 159, 163, 168, 172, 181

-W
command line option, 154

-X
command line option, 80, 135, 141

--ImFeelingLucky
command line option, 96

--MEA
command line option, 63, 74, 96

--SS_cons
command line option, 64

--Tmax
command line option, 108

--Tmin
command line option, 108

--WindowLength
command line option, 149

--absolute-concentrations
command line option, 130

--accessibility-dir
command line option, 147

--alignmentLength
command line option, 170

--alignment-mode
command line option, 148, 169

--all_pf
command line option, 74, 130

883

ViennaRNA, Release 2.6.4

--allowFlipping
command line option, 161

--aln
command line option, 67, 115, 161

--aln-EPS
command line option, 119

--aln-EPS-cols
command line option, 67, 119, 161

--aln-EPS-ss
command line option, 120

--aln-stk
command line option, 67, 115

--alphabet
command line option, 112

--auto-id
command line option, 61, 72, 88, 94, 107, 116,

122, 129, 153, 159, 173
--backbone-length

command line option, 55, 58, 66, 78, 82, 86,
92, 100, 110, 113, 119, 126, 133, 136, 142,
145, 150, 157, 166, 179, 184

--backtrack
command line option, 80, 141

--backtrack-global
command line option, 124

--batch
command line option, 64, 75, 97, 176

--betaScale
command line option, 62, 74, 96, 131, 154, 175

--binaries
command line option, 153

--binary
command line option, 147

--bppmThreshold
command line option, 63, 75, 97, 131

--canonicalBPonly
command line option, 75, 97, 176

--centroid
command line option, 74

--cfactor
command line option, 66, 91, 118

--circ
command line option, 54, 63, 89, 96, 108, 175

--color
command line option, 67

--commands
command line option, 76, 98, 124, 131, 155,

177
--compare

command line option, 80, 141
--concentrations

command line option, 74, 130
--concfile

command line option, 74, 130
--constraint

command line option, 64, 75, 97, 149, 171,
176, 182

--continuous-ids

command line option, 61
--contributions

command line option, 181
--convert-to-bin

command line option, 149
--covar

command line option, 161
--csv

command line option, 115
--csv-delim

command line option, 71
--csv-noheader

command line option, 71
--cutoff

command line option, 144, 152
--dangles

command line option, 55, 58, 65, 77, 82, 85,
91, 99, 109, 112, 118, 126, 132, 136, 142,
156, 165, 178, 183

--deltaEnergy
command line option, 57, 84, 174

--deltaEnergyPost
command line option, 174

--detailed-help
command line option, 53, 57, 60, 71, 79, 81,

84, 87, 93, 106, 111, 114, 121, 128, 134, 140,
144, 147, 152, 158, 162, 168, 172, 180

--direct-redraw
command line option, 171

--distance
command line option, 80

--dos
command line option, 175

--dump
command line option, 138

--duplex-distance
command line option, 149, 169

--en-only
command line option, 174

--endgaps
command line option, 66, 135

--energyCutoff
command line option, 144

--energyModel
command line option, 66, 78, 91, 100, 109,

113, 119, 126, 132, 136, 142, 157, 166, 179,
183

--energy-threshold
command line option, 149, 169

--enforceConstraint
command line option, 64, 75, 97, 176

--extend3
command line option, 182

--extend5
command line option, 181

--extension-cost
command line option, 148, 169

--fast-folding

884 Index

ViennaRNA, Release 2.6.4

command line option, 148, 169
--filename-delim

command line option, 62, 73, 95, 116, 122,
129, 153, 160, 174

--filename-full
command line option, 73, 95, 122, 129, 154,

160, 174
--final

command line option, 111
--from-RNAplfold

command line option, 168
--from-RNAup

command line option, 168
--full-help

command line option, 53, 57, 60, 71, 81, 84,
87, 93, 106, 111, 114, 121, 128, 134, 137,
140, 144, 147, 152, 158, 163, 172, 181

--function
command line option, 111

--gape
command line option, 135

--gapo
command line option, 135

--gquad
command line option, 63, 75, 89, 97, 108, 117,

124, 131, 175
--hashtable-bits

command line option, 82
--helical-rise

command line option, 55, 58, 66, 78, 82, 86,
91, 100, 109, 113, 119, 126, 133, 136, 142,
145, 150, 157, 166, 179, 184

--help
command line option, 53, 57, 60, 71, 79, 81,

84, 87, 93, 106, 111, 114, 121, 128, 134, 137,
140, 144, 147, 152, 158, 162, 168, 172, 180

--id-delim
command line option, 61, 72, 88, 95, 107, 116,

122, 129, 153, 160, 173
--id-digits

command line option, 62, 72, 89, 95, 107, 116,
122, 129, 153, 160, 173

--id-prefix
command line option, 61, 72, 88, 94, 107, 116,

122, 129, 153, 159, 173
--id-start

command line option, 62, 73, 89, 95, 108, 116,
122, 129, 153, 160, 174

--ignoreAncestorIntersections
command line option, 161

--ignoreExteriorIntersections
command line option, 161

--ignoreSiblingIntersections
command line option, 161

--include_both
command line option, 181

--infile

command line option, 87, 94, 106, 121, 159,
173

--initialStepSize
command line option, 164

--initialVector
command line option, 164

--input
command line option, 138

--input-format
command line option, 60, 115

--interaction_first
command line option, 182

--interaction_pairwise
command line option, 182

--interaction-length
command line option, 148

--intermediatePath
command line option, 164

--ipoints
command line option, 108

--jobs
command line option, 60, 72, 88, 94, 106, 128,

159
--k-concentration

command line option, 148
--layout-type

command line option, 67, 101, 161
--logML

command line option, 91, 178
--maxBPspan

command line option, 64, 75, 97, 108, 117,
131, 165, 176

--maxDist1
command line option, 54

--maxDist2
command line option, 54

--max-energy
command line option, 82

--maximal-duplex-box-length
command line option, 170

--maximal-snoRNA-duplex-length
command line option, 170

--maximal-snoRNA-stem-loop-length
command line option, 170

--maximal-stem-asymmetry
command line option, 170

--mg-concentration
command line option, 148

--minImprovement
command line option, 164

--minStepSize
command line option, 164

--minimal-duplex
command line option, 169

--minimal-duplex-box-length
command line option, 170

--minimal-duplex-stem-energy
command line option, 170

Index 885

ViennaRNA, Release 2.6.4

--minimal-loop-energy
command line option, 169

--minimal-lower-stem-energy
command line option, 170

--minimal-right-duplex
command line option, 169

--minimal-snoRNA-duplex-length
command line option, 170

--minimal-snoRNA-stem-loop-length
command line option, 170

--minimal-total-energy
command line option, 170

--minimizer
command line option, 164

--minimizerTolerance
command line option, 164

--mis
command line option, 60, 88, 115, 159

--mod-file
command line option, 77, 99, 125, 156, 178

--mode
command line option, 135

--modifications
command line option, 77, 99, 125, 156, 177

--motif
command line option, 98

--msa
command line option, 87, 159

--na-concentration
command line option, 148

--neighborhood
command line option, 54

--nfactor
command line option, 66, 91, 119

--noBT
command line option, 54

--noClosingGU
command line option, 55, 58, 66, 78, 85, 100,

109, 113, 118, 126, 132, 136, 142, 145, 157,
166, 178, 183

--noDP
command line option, 67, 100

--noGU
command line option, 55, 58, 65, 77, 85, 100,

109, 112, 118, 126, 132, 136, 142, 145, 157,
165, 178, 183

--noLP
command line option, 58, 65, 77, 85, 100, 109,

118, 126, 132, 136, 142, 145, 156, 165, 178,
183

--noOptimization
command line option, 161

--noPS
command line option, 67, 78, 100

--noTetra
command line option, 55, 58, 65, 77, 85, 90,

99, 109, 112, 118, 125, 132, 135, 141, 145,
150, 156, 165, 177, 183

--no_header
command line option, 181

--no_output_file
command line option, 181

--noconv
command line option, 54, 61, 72, 84, 88, 94,

107, 116, 122, 129, 134, 140, 144, 153, 173,
181

--nonRedundant
command line option, 63, 163, 175

--nsp
command line option, 58, 66, 78, 85, 91, 100,

109, 113, 119, 126, 132, 136, 142, 145, 157,
166, 178, 183

--numThreads
command line option, 54, 81, 163

--objectiveFunction
command line option, 163

--old
command line option, 66, 91

--opening_energies
command line option, 152

--outfile
command line option, 94, 121, 173

--output
command line option, 138

--output_directory
command line option, 168

--output-format
command line option, 71, 159

--paramFile
command line option, 55, 57, 65, 76, 82, 85,

90, 99, 109, 112, 118, 125, 131, 135, 141,
145, 149, 156, 165, 177, 183

--partfunc
command line option, 54, 62, 73, 96, 130

--pfScale
command line option, 54, 63, 74, 96, 131, 154,

164, 175, 182
--plex_output

command line option, 152
--post

command line option, 159
--pre

command line option, 159
--printAlignment

command line option, 134
--print_onthefly

command line option, 152
--probe-concentration

command line option, 148
--probe-mode

command line option, 148
--produce-ps

command line option, 150, 171
--query

command line option, 147, 168
--quiet

886 Index

ViennaRNA, Release 2.6.4

command line option, 60, 115
--repeat

command line option, 112
--ribosum_file

command line option, 66, 91, 119
--ribosum_scoring

command line option, 66, 91, 119
--salt

command line option, 55, 58, 65, 77, 82, 85,
90, 99, 109, 112, 118, 125, 132, 135, 141,
145, 150, 156, 165, 177, 183

--saltInit
command line option, 58, 77, 85, 150, 183

--sampleSize
command line option, 163

--scale-accessibility
command line option, 148

--sci
command line option, 63

--sequence
command line option, 81

--seqw
command line option, 135

--shape
command line option, 64, 75, 89, 97, 117, 124,

155, 176
--shapeConversion

command line option, 76, 90, 98, 124, 155,
163, 177

--shapeMethod
command line option, 65, 76, 89, 97, 117, 124,

155, 176
--shapiro

command line option, 80
--silent

command line option, 138
--sorted

command line option, 57, 84, 174
--span

command line option, 123, 154
--split-contributions

command line option, 115
--stepsize

command line option, 108
--stochBT

command line option, 54, 63, 175
--stochBT_en

command line option, 63, 175
--subopts

command line option, 144
--suffix

command line option, 168
--target

command line option, 147, 168
--tauSigmaRatio

command line option, 163
--temp

command line option, 55, 57, 65, 76, 82, 85,

90, 99, 112, 118, 125, 131, 135, 141, 145,
149, 156, 165, 177, 183

--threshold
command line option, 117

--tris-concentration
command line option, 148

--ulength
command line option, 154, 181

--unordered
command line option, 61, 72, 88, 94, 107, 128

--vanilla
command line option, 138

--verbose
command line option, 60, 71, 81, 87, 93, 111,

114, 121, 128, 144, 152, 172
--version

command line option, 53, 57, 60, 71, 80, 81,
84, 87, 93, 106, 111, 114, 121, 128, 134, 138,
140, 144, 147, 152, 159, 163, 168, 172, 181

--window
command line option, 181

--winsize
command line option, 154

--without-BulgeE
command line option, 138

--without-Dangle3
command line option, 139

--without-Dangle5
command line option, 139

--without-HairpinE
command line option, 138

--without-IntE
command line option, 138

--without-Misc
command line option, 139

--without-MismatchE
command line option, 138

--without-MismatchH
command line option, 138

--without-MismatchI
command line option, 139

--without-MismatchM
command line option, 139

--without-MultiE
command line option, 138

--without-StackE
command line option, 138

--zscore
command line option, 123

--zscore-pre-filter
command line option, 123

--zscore-report-subsumed
command line option, 123

--zuker
command line option, 175

-a
command line option, 74, 87, 112, 130, 147,

159, 170

Index 887

ViennaRNA, Release 2.6.4

-b
command line option, 82, 124, 147, 153, 170,

181
-c

command line option, 54, 63, 74, 89, 96, 108,
130, 144, 148, 152, 169, 175, 181

-d
command line option, 55, 58, 65, 77, 82, 85,

91, 99, 109, 112, 118, 126, 132, 136, 142,
156, 165, 169, 178, 183

-e
command line option, 57, 66, 78, 82, 84, 91,

100, 109, 113, 119, 126, 132, 136, 142, 144,
149, 157, 166, 169, 174, 183

-f
command line option, 60, 74, 111, 115, 130,

148, 169
-g

command line option, 63, 75, 89, 97, 108, 117,
124, 131, 175

-h
command line option, 53, 57, 60, 71, 79, 81,

84, 87, 93, 106, 111, 114, 121, 128, 134, 137,
140, 144, 147, 152, 158, 162, 172, 180

-i
command line option, 87, 94, 106, 121, 138,

159, 173
-j

command line option, 54, 60, 72, 81, 88, 94,
106, 128, 159, 163, 170

-k
command line option, 149, 170

-l
command line option, 148, 169

-m
command line option, 77, 99, 108, 125, 156,

170, 177
-n

command line option, 61, 170
-o

command line option, 94, 121, 138, 152, 159,
169, 173, 181

-p
command line option, 54, 62, 73, 96, 130, 148,

175
-q

command line option, 60, 115, 147, 169
-r

command line option, 66, 91, 119
-s

command line option, 57, 63, 81, 84, 144, 168,
174

-t
command line option, 67, 101, 147, 161, 168

-u
command line option, 154, 181

-v
command line option, 60, 71, 81, 87, 93, 111,

114, 121, 128, 144, 152, 170, 172
-w

command line option, 170, 181
-x

command line option, 170
-y

command line option, 170
-z

command line option, 123, 149, 175
{

command line option, 134
{}

command line option, 141
``m``

command line option, 135
|

command line option, 134, 141

A
a2s (RNA.fold_compound attribute), 726
abstract_shapes() (in module RNA), 687
add_auxdata() (RNA.fold_compound method), 730
add_callback() (RNA.fold_compound method), 730
add_root (C function), 513
add_root() (in module RNA), 688
advance() (RNA.SwigPyIterator method), 686
alias (RNA.md attribute), 784
alias (RNA.md property), 785
aliduplex_subopt() (in module RNA), 688
aliduplexfold() (in module RNA), 688
alifold (C function), 373
alifold() (in module RNA), 688
alignment (RNA.fold_compound attribute), 722
aliLfold (C function), 384
aliLfold() (in module RNA), 688
aliLfold_cb (C function), 384
aliLfold_cb() (in module RNA), 688
alimake_pair_table (C function), 515
alipbacktrack (C function), 408
alipf_circ_fold (C function), 407
alipf_fold (C function), 407
alipf_fold_par (C function), 407
aliPS_color_aln (C function), 556
alloc_sequence_arrays (C function), 519
aln_consensus_mis() (in module RNA), 689
aln_consensus_sequence() (in module RNA), 689
aln_conservation_col() (in module RNA), 689
aln_conservation_struct() (in module RNA), 690
aln_mpi() (in module RNA), 690
aln_pscore() (in module RNA), 690
alpha (RNA.exp_param attribute), 710
alpha (RNA.exp_param property), 711
append() (RNA.ConstCharVector method), 668
append() (RNA.CoordinateVector method), 669
append() (RNA.DoubleDoubleVector method), 670
append() (RNA.DoubleVector method), 671
append() (RNA.DuplexVector method), 672
append() (RNA.ElemProbVector method), 675

888 Index

ViennaRNA, Release 2.6.4

append() (RNA.HeatCapacityVector method), 676
append() (RNA.HelixVector method), 677
append() (RNA.IntIntVector method), 678
append() (RNA.IntVector method), 678
append() (RNA.MoveVector method), 681
append() (RNA.PathVector method), 683
append() (RNA.SOLUTIONVector method), 684
append() (RNA.StringVector method), 685
append() (RNA.SuboptVector method), 686
append() (RNA.UIntVector method), 687
assign() (RNA.ConstCharVector method), 668
assign() (RNA.CoordinateVector method), 669
assign() (RNA.DoubleDoubleVector method), 670
assign() (RNA.DoubleVector method), 671
assign() (RNA.DuplexVector method), 672
assign() (RNA.ElemProbVector method), 675
assign() (RNA.HeatCapacityVector method), 676
assign() (RNA.HelixVector method), 677
assign() (RNA.IntIntVector method), 678
assign() (RNA.IntVector method), 678
assign() (RNA.MoveVector method), 681
assign() (RNA.PathVector method), 683
assign() (RNA.SOLUTIONVector method), 684
assign() (RNA.StringVector method), 685
assign() (RNA.SuboptVector method), 686
assign() (RNA.UIntVector method), 687
assign_plist_from_db (C function), 416
assign_plist_from_pr (C function), 417
aux_grammar (RNA.fold_compound attribute), 723
auxdata (RNA.fold_compound attribute), 723
available (RNA.sc_mod_param attribute), 807

B
b2C (C function), 512
b2C() (in module RNA), 690
b2HIT (C function), 512
b2HIT() (in module RNA), 691
b2Shapiro (C function), 512
b2Shapiro() (in module RNA), 691
back() (RNA.ConstCharVector method), 668
back() (RNA.CoordinateVector method), 669
back() (RNA.DoubleDoubleVector method), 670
back() (RNA.DoubleVector method), 671
back() (RNA.DuplexVector method), 672
back() (RNA.ElemProbVector method), 675
back() (RNA.HeatCapacityVector method), 676
back() (RNA.HelixVector method), 677
back() (RNA.IntIntVector method), 678
back() (RNA.IntVector method), 678
back() (RNA.MoveVector method), 681
back() (RNA.PathVector method), 683
back() (RNA.SOLUTIONVector method), 684
back() (RNA.StringVector method), 685
back() (RNA.SuboptVector method), 686
back() (RNA.UIntVector method), 687
backbone_length (C var), 307
backbone_length (RNA.md property), 785
backtrack (RNA.md attribute), 783

backtrack (RNA.md property), 785
backtrack() (RNA.fold_compound method), 730
backtrack_fold_from_pair (C function), 379
backtrack_GQuad_IntLoop (C function), 477
backtrack_GQuad_IntLoop_comparative (C func-

tion), 478
backtrack_GQuad_IntLoop_L (C function), 478
backtrack_GQuad_IntLoop_L_comparative (C

function), 478
backtrack_type (C var), 306
backtrack_type (RNA.md attribute), 783
backtrack_type (RNA.md property), 785
basepair (class in RNA), 691
begin() (RNA.ConstCharVector method), 668
begin() (RNA.CoordinateVector method), 669
begin() (RNA.DoubleDoubleVector method), 670
begin() (RNA.DoubleVector method), 671
begin() (RNA.DuplexVector method), 672
begin() (RNA.ElemProbVector method), 675
begin() (RNA.HeatCapacityVector method), 676
begin() (RNA.HelixVector method), 677
begin() (RNA.IntIntVector method), 678
begin() (RNA.IntVector method), 678
begin() (RNA.MoveVector method), 681
begin() (RNA.PathVector method), 683
begin() (RNA.SOLUTIONVector method), 684
begin() (RNA.StringVector method), 685
begin() (RNA.SuboptVector method), 686
begin() (RNA.UIntVector method), 687
beginning

command line option, 170
betaScale (RNA.md attribute), 782
betaScale (RNA.md property), 785
bondT (C type), 611
boustrophedon() (in module RNA), 691
bp_distance (C function), 515
bp_distance() (in module RNA), 692
bpdist (RNA.fold_compound attribute), 728
bpp() (RNA.fold_compound method), 731
bppm_symbol (C function), 516
bppm_to_structure (C function), 516
bulge (RNA.param attribute), 790
bulge (RNA.param property), 794

C
c (RNA.mx_mfe property), 789
capacity() (RNA.ConstCharVector method), 668
capacity() (RNA.CoordinateVector method), 669
capacity() (RNA.DoubleDoubleVector method), 670
capacity() (RNA.DoubleVector method), 671
capacity() (RNA.DuplexVector method), 672
capacity() (RNA.ElemProbVector method), 675
capacity() (RNA.HeatCapacityVector method), 676
capacity() (RNA.HelixVector method), 677
capacity() (RNA.IntIntVector method), 678
capacity() (RNA.IntVector method), 678
capacity() (RNA.MoveVector method), 681
capacity() (RNA.PathVector method), 683

Index 889

ViennaRNA, Release 2.6.4

capacity() (RNA.SOLUTIONVector method), 684
capacity() (RNA.StringVector method), 685
capacity() (RNA.SuboptVector method), 686
capacity() (RNA.UIntVector method), 687
cast() (RNA.doubleArray method), 697
cast() (RNA.floatArray method), 720
cast() (RNA.intArray method), 777
cdata() (in module RNA), 692
centroid() (in module RNA), 692
centroid() (RNA.fold_compound method), 731
circ (C var), 306
circ (RNA.md attribute), 783
circ (RNA.md property), 785
circalifold (C function), 373
circalifold() (in module RNA), 692
circfold (C function), 378
circfold() (in module RNA), 693
clear() (RNA.ConstCharVector method), 668
clear() (RNA.CoordinateVector method), 669
clear() (RNA.DoubleDoubleVector method), 670
clear() (RNA.DoubleVector method), 671
clear() (RNA.DuplexVector method), 672
clear() (RNA.ElemProbVector method), 675
clear() (RNA.HeatCapacityVector method), 676
clear() (RNA.HelixVector method), 677
clear() (RNA.IntIntVector method), 678
clear() (RNA.IntVector method), 678
clear() (RNA.MoveVector method), 681
clear() (RNA.PathVector method), 683
clear() (RNA.SOLUTIONVector method), 684
clear() (RNA.StringVector method), 685
clear() (RNA.SuboptVector method), 686
clear() (RNA.UIntVector method), 687
cmd (class in RNA), 693
co_pf_fold (C function), 414
co_pf_fold() (in module RNA), 693
co_pf_fold_par (C function), 414
cofold (C function), 374
cofold() (in module RNA), 693
cofold_par (C function), 374
cofoldF (C type), 450
command line option

(, 134
(), 141
(possible, 164
,, 134, 141
., 134, 141
-3, 182
-4, 55, 58, 65, 77, 85, 90, 99, 109, 112, 118, 125,

132, 135, 141, 145, 150, 156, 165, 177, 183
-5, 181
-A, 148, 169
-B, 80, 134, 141
-C, 64, 75, 97, 149, 171, 176, 182
-D, 80, 175
-E, 66
-F, 111
-I, 150, 171

-K, 54, 148
-L, 54, 117, 123, 149, 154, 170
-M, 148
-N, 63, 148, 163, 171, 175
-O, 152, 168
-P, 55, 57, 65, 76, 82, 85, 90, 99, 109, 112, 118,

125, 131, 135, 141, 145, 149, 156, 165, 168,
177, 183

-Q, 148
-R, 66, 91, 112, 119
-S, 54, 63, 74, 80, 96, 131, 154, 164, 168, 175, 182
-T, 55, 57, 65, 76, 82, 85, 90, 99, 112, 118, 125,

131, 135, 141, 145, 149, 156, 165, 177, 183
-U, 148, 168
-V, 53, 57, 60, 71, 80, 81, 84, 87, 93, 106, 111, 114,

121, 128, 134, 138, 140, 144, 148, 152, 159,
163, 168, 172, 181

-W, 154
-X, 80, 135, 141
--ImFeelingLucky, 96
--MEA, 63, 74, 96
--SS_cons, 64
--Tmax, 108
--Tmin, 108
--WindowLength, 149
--absolute-concentrations, 130
--accessibility-dir, 147
--alignmentLength, 170
--alignment-mode, 148, 169
--all_pf, 74, 130
--allowFlipping, 161
--aln, 67, 115, 161
--aln-EPS, 119
--aln-EPS-cols, 67, 119, 161
--aln-EPS-ss, 120
--aln-stk, 67, 115
--alphabet, 112
--auto-id, 61, 72, 88, 94, 107, 116, 122, 129,

153, 159, 173
--backbone-length, 55, 58, 66, 78, 82, 86, 92,

100, 110, 113, 119, 126, 133, 136, 142, 145,
150, 157, 166, 179, 184

--backtrack, 80, 141
--backtrack-global, 124
--batch, 64, 75, 97, 176
--betaScale, 62, 74, 96, 131, 154, 175
--binaries, 153
--binary, 147
--bppmThreshold, 63, 75, 97, 131
--canonicalBPonly, 75, 97, 176
--centroid, 74
--cfactor, 66, 91, 118
--circ, 54, 63, 89, 96, 108, 175
--color, 67
--commands, 76, 98, 124, 131, 155, 177
--compare, 80, 141
--concentrations, 74, 130
--concfile, 74, 130

890 Index

ViennaRNA, Release 2.6.4

--constraint, 64, 75, 97, 149, 171, 176, 182
--continuous-ids, 61
--contributions, 181
--convert-to-bin, 149
--covar, 161
--csv, 115
--csv-delim, 71
--csv-noheader, 71
--cutoff, 144, 152
--dangles, 55, 58, 65, 77, 82, 85, 91, 99, 109,

112, 118, 126, 132, 136, 142, 156, 165, 178,
183

--deltaEnergy, 57, 84, 174
--deltaEnergyPost, 174
--detailed-help, 53, 57, 60, 71, 79, 81, 84, 87,

93, 106, 111, 114, 121, 128, 134, 140, 144,
147, 152, 158, 162, 168, 172, 180

--direct-redraw, 171
--distance, 80
--dos, 175
--dump, 138
--duplex-distance, 149, 169
--en-only, 174
--endgaps, 66, 135
--energyCutoff, 144
--energyModel, 66, 78, 91, 100, 109, 113, 119,

126, 132, 136, 142, 157, 166, 179, 183
--energy-threshold, 149, 169
--enforceConstraint, 64, 75, 97, 176
--extend3, 182
--extend5, 181
--extension-cost, 148, 169
--fast-folding, 148, 169
--filename-delim, 62, 73, 95, 116, 122, 129,

153, 160, 174
--filename-full, 73, 95, 122, 129, 154, 160,

174
--final, 111
--from-RNAplfold, 168
--from-RNAup, 168
--full-help, 53, 57, 60, 71, 81, 84, 87, 93, 106,

111, 114, 121, 128, 134, 137, 140, 144, 147,
152, 158, 163, 172, 181

--function, 111
--gape, 135
--gapo, 135
--gquad, 63, 75, 89, 97, 108, 117, 124, 131, 175
--hashtable-bits, 82
--helical-rise, 55, 58, 66, 78, 82, 86, 91, 100,

109, 113, 119, 126, 133, 136, 142, 145, 150,
157, 166, 179, 184

--help, 53, 57, 60, 71, 79, 81, 84, 87, 93, 106,
111, 114, 121, 128, 134, 137, 140, 144, 147,
152, 158, 162, 168, 172, 180

--id-delim, 61, 72, 88, 95, 107, 116, 122, 129,
153, 160, 173

--id-digits, 62, 72, 89, 95, 107, 116, 122, 129,
153, 160, 173

--id-prefix, 61, 72, 88, 94, 107, 116, 122, 129,
153, 159, 173

--id-start, 62, 73, 89, 95, 108, 116, 122, 129,
153, 160, 174

--ignoreAncestorIntersections, 161
--ignoreExteriorIntersections, 161
--ignoreSiblingIntersections, 161
--include_both, 181
--infile, 87, 94, 106, 121, 159, 173
--initialStepSize, 164
--initialVector, 164
--input, 138
--input-format, 60, 115
--interaction_first, 182
--interaction_pairwise, 182
--interaction-length, 148
--intermediatePath, 164
--ipoints, 108
--jobs, 60, 72, 88, 94, 106, 128, 159
--k-concentration, 148
--layout-type, 67, 101, 161
--logML, 91, 178
--maxBPspan, 64, 75, 97, 108, 117, 131, 165, 176
--maxDist1, 54
--maxDist2, 54
--max-energy, 82
--maximal-duplex-box-length, 170
--maximal-snoRNA-duplex-length, 170
--maximal-snoRNA-stem-loop-length, 170
--maximal-stem-asymmetry, 170
--mg-concentration, 148
--minImprovement, 164
--minStepSize, 164
--minimal-duplex, 169
--minimal-duplex-box-length, 170
--minimal-duplex-stem-energy, 170
--minimal-loop-energy, 169
--minimal-lower-stem-energy, 170
--minimal-right-duplex, 169
--minimal-snoRNA-duplex-length, 170
--minimal-snoRNA-stem-loop-length, 170
--minimal-total-energy, 170
--minimizer, 164
--minimizerTolerance, 164
--mis, 60, 88, 115, 159
--mod-file, 77, 99, 125, 156, 178
--mode, 135
--modifications, 77, 99, 125, 156, 177
--motif, 98
--msa, 87, 159
--na-concentration, 148
--neighborhood, 54
--nfactor, 66, 91, 119
--noBT, 54
--noClosingGU, 55, 58, 66, 78, 85, 100, 109, 113,

118, 126, 132, 136, 142, 145, 157, 166, 178,
183

--noDP, 67, 100

Index 891

ViennaRNA, Release 2.6.4

--noGU, 55, 58, 65, 77, 85, 100, 109, 112, 118,
126, 132, 136, 142, 145, 157, 165, 178, 183

--noLP, 58, 65, 77, 85, 100, 109, 118, 126, 132,
136, 142, 145, 156, 165, 178, 183

--noOptimization, 161
--noPS, 67, 78, 100
--noTetra, 55, 58, 65, 77, 85, 90, 99, 109, 112,

118, 125, 132, 135, 141, 145, 150, 156, 165,
177, 183

--no_header, 181
--no_output_file, 181
--noconv, 54, 61, 72, 84, 88, 94, 107, 116, 122,

129, 134, 140, 144, 153, 173, 181
--nonRedundant, 63, 163, 175
--nsp, 58, 66, 78, 85, 91, 100, 109, 113, 119, 126,

132, 136, 142, 145, 157, 166, 178, 183
--numThreads, 54, 81, 163
--objectiveFunction, 163
--old, 66, 91
--opening_energies, 152
--outfile, 94, 121, 173
--output, 138
--output_directory, 168
--output-format, 71, 159
--paramFile, 55, 57, 65, 76, 82, 85, 90, 99, 109,

112, 118, 125, 131, 135, 141, 145, 149, 156,
165, 177, 183

--partfunc, 54, 62, 73, 96, 130
--pfScale, 54, 63, 74, 96, 131, 154, 164, 175,

182
--plex_output, 152
--post, 159
--pre, 159
--printAlignment, 134
--print_onthefly, 152
--probe-concentration, 148
--probe-mode, 148
--produce-ps, 150, 171
--query, 147, 168
--quiet, 60, 115
--repeat, 112
--ribosum_file, 66, 91, 119
--ribosum_scoring, 66, 91, 119
--salt, 55, 58, 65, 77, 82, 85, 90, 99, 109, 112,

118, 125, 132, 135, 141, 145, 150, 156, 165,
177, 183

--saltInit, 58, 77, 85, 150, 183
--sampleSize, 163
--scale-accessibility, 148
--sci, 63
--sequence, 81
--seqw, 135
--shape, 64, 75, 89, 97, 117, 124, 155, 176
--shapeConversion, 76, 90, 98, 124, 155, 163,

177
--shapeMethod, 65, 76, 89, 97, 117, 124, 155,

176
--shapiro, 80

--silent, 138
--sorted, 57, 84, 174
--span, 123, 154
--split-contributions, 115
--stepsize, 108
--stochBT, 54, 63, 175
--stochBT_en, 63, 175
--subopts, 144
--suffix, 168
--target, 147, 168
--tauSigmaRatio, 163
--temp, 55, 57, 65, 76, 82, 85, 90, 99, 112, 118,

125, 131, 135, 141, 145, 149, 156, 165, 177,
183

--threshold, 117
--tris-concentration, 148
--ulength, 154, 181
--unordered, 61, 72, 88, 94, 107, 128
--vanilla, 138
--verbose, 60, 71, 81, 87, 93, 111, 114, 121, 128,

144, 152, 172
--version, 53, 57, 60, 71, 80, 81, 84, 87, 93, 106,

111, 114, 121, 128, 134, 138, 140, 144, 147,
152, 159, 163, 168, 172, 181

--window, 181
--winsize, 154
--without-BulgeE, 138
--without-Dangle3, 139
--without-Dangle5, 139
--without-HairpinE, 138
--without-IntE, 138
--without-Misc, 139
--without-MismatchE, 138
--without-MismatchH, 138
--without-MismatchI, 139
--without-MismatchM, 139
--without-MultiE, 138
--without-StackE, 138
--zscore, 123
--zscore-pre-filter, 123
--zscore-report-subsumed, 123
--zuker, 175
-a, 74, 87, 112, 130, 147, 159, 170
-b, 82, 124, 147, 153, 170, 181
-c, 54, 63, 74, 89, 96, 108, 130, 144, 148, 152,

169, 175, 181
-d, 55, 58, 65, 77, 82, 85, 91, 99, 109, 112, 118,

126, 132, 136, 142, 156, 165, 169, 178, 183
-e, 57, 66, 78, 82, 84, 91, 100, 109, 113, 119, 126,

132, 136, 142, 144, 149, 157, 166, 169, 174,
183

-f, 60, 74, 111, 115, 130, 148, 169
-g, 63, 75, 89, 97, 108, 117, 124, 131, 175
-h, 53, 57, 60, 71, 79, 81, 84, 87, 93, 106, 111,

114, 121, 128, 134, 137, 140, 144, 147, 152,
158, 162, 172, 180

-i, 87, 94, 106, 121, 138, 159, 173
-j, 54, 60, 72, 81, 88, 94, 106, 128, 159, 163, 170

892 Index

ViennaRNA, Release 2.6.4

-k, 149, 170
-l, 148, 169
-m, 77, 99, 108, 125, 156, 170, 177
-n, 61, 170
-o, 94, 121, 138, 152, 159, 169, 173, 181
-p, 54, 62, 73, 96, 130, 148, 175
-q, 60, 115, 147, 169
-r, 66, 91, 119
-s, 57, 63, 81, 84, 144, 168, 174
-t, 67, 101, 147, 161, 168
-u, 154, 181
-v, 60, 71, 81, 87, 93, 111, 114, 121, 128, 144,

152, 170, 172
-w, 170, 181
-x, 170
-y, 170
-z, 123, 149, 175
{, 134
{}, 141
``m``, 135
|, 134, 141
beginning, 170
profiles, 134

commands_apply() (RNA.fold_compound method),
731

compare() (RNA.move method), 788
compute_BPdifferences (C function), 516
compute_bpp (RNA.md attribute), 783
compute_bpp (RNA.md property), 785
compute_probabilities (C function), 415
ConcEnt (C type), 448
cons_seq (RNA.fold_compound attribute), 725
consens_mis (C function), 518
consens_mis() (in module RNA), 694
consensus (C function), 518
ConstCharVector (class in RNA), 668
constrain (C struct), 615
constrain (C type), 611
constrain.indx (C var), 615
constrain.ptype (C var), 615
constraints_add() (RNA.fold_compound method),

731
convert_parameter_file (C function), 264
COORDINATE (C struct), 558
COORDINATE (class in RNA), 668
COORDINATE.X (C var), 558
COORDINATE.Y (C var), 558
CoordinateVector (class in RNA), 669
copy() (RNA.SwigPyIterator method), 686
copy_pair_table (C function), 515
copy_parameters (C function), 272
copy_pf_param (C function), 272
cpair (C type), 610
cut_point (C var), 286
cutpoint (RNA.fold_compound attribute), 721
cv_fact (C var), 307
cv_fact (RNA.md attribute), 784
cv_fact (RNA.md property), 786

D
dangle3 (RNA.param attribute), 791
dangle3 (RNA.param property), 794
dangle3_dG (RNA.sc_mod_param attribute), 808
dangle3_dH (RNA.sc_mod_param attribute), 808
dangle5 (RNA.param attribute), 791
dangle5 (RNA.param property), 794
dangle5_dG (RNA.sc_mod_param attribute), 808
dangle5_dH (RNA.sc_mod_param attribute), 808
dangles (C var), 305
dangles (RNA.md attribute), 782
dangles (RNA.md property), 786
data (RNA.hc attribute), 775
db_flatten() (in module RNA), 694
db_from_plist() (in module RNA), 695
db_from_probs() (RNA.fold_compound method), 732
db_from_ptable() (in module RNA), 695
db_from_WUSS() (in module RNA), 694
db_pack() (in module RNA), 695
db_pk_remove() (in module RNA), 696
db_to_element_string() (in module RNA), 696
db_to_tree_string() (in module RNA), 696
db_unpack() (in module RNA), 697
decr() (RNA.SwigPyIterator method), 686
delete_doubleP() (in module RNA), 697
delete_floatP() (in module RNA), 697
delete_intP() (in module RNA), 697
delete_shortP() (in module RNA), 697
delete_ushortP() (in module RNA), 697
density_of_states (C var), 463
depot (RNA.hc attribute), 775
deref_any() (in module RNA), 697
destroy_TwoDfold_variables (C function), 454
dist_mountain() (in module RNA), 697
distance() (RNA.SwigPyIterator method), 686
do_backtrack (C var), 306
domains_struc (RNA.fold_compound attribute), 723
domains_up (RNA.fold_compound attribute), 723
doubleArray (class in RNA), 697
doubleArray_frompointer() (in module RNA), 698
DoubleDoubleVector (class in RNA), 670
doubleP_getitem() (in module RNA), 698
doubleP_setitem() (in module RNA), 698
DoublePair (class in RNA), 671
DoubleVector (class in RNA), 671
duplex_list_t (class in RNA), 698
duplex_subopt() (in module RNA), 698
duplexfold() (in module RNA), 698
DuplexInit (RNA.param attribute), 792
DuplexInit (RNA.param property), 794
duplexT (C struct), 615
duplexT.ddG (C var), 616
duplexT.dG1 (C var), 616
duplexT.dG2 (C var), 616
duplexT.end (C var), 615
duplexT.energy (C var), 615
duplexT.energy_backtrack (C var), 616
duplexT.i (C var), 615

Index 893

ViennaRNA, Release 2.6.4

duplexT.j (C var), 615
duplexT.offset (C var), 616
duplexT.opening_backtrack_x (C var), 616
duplexT.opening_backtrack_y (C var), 616
duplexT.qb (C var), 616
duplexT.qe (C var), 616
duplexT.structure (C var), 615
duplexT.tb (C var), 616
duplexT.te (C var), 616
DuplexVector (class in RNA), 671
dupVar (C struct), 617
dupVar (C type), 611
dupVar.ddG (C var), 618
dupVar.dG1 (C var), 618
dupVar.dG2 (C var), 618
dupVar.end (C var), 617
dupVar.energy (C var), 618
dupVar.i (C var), 617
dupVar.inactive (C var), 618
dupVar.j (C var), 617
dupVar.offset (C var), 618
dupVar.pk_helix (C var), 617
dupVar.processed (C var), 618
dupVar.qb (C var), 618
dupVar.qe (C var), 618
dupVar.structure (C var), 618
dupVar.tb (C var), 618
dupVar.te (C var), 618

E
E_ext_hp_loop() (RNA.fold_compound method), 729
E_ext_int_loop() (RNA.fold_compound method),

729
E_ext_stem() (in module RNA), 675
E_ExtLoop (C function), 284
E_ExtLoop() (in module RNA), 672
E_gquad (C function), 476
E_gquad_ali_en (C function), 476
E_GQuad_IntLoop (C function), 479
E_GQuad_IntLoop_comparative (C function), 479
E_GQuad_IntLoop_exhaustive (C function), 479
E_GQuad_IntLoop_L (C function), 479
E_GQuad_IntLoop_L_comparative (C function), 479
E_Hairpin (C function), 231
E_Hairpin() (in module RNA), 672
E_hp_loop() (RNA.fold_compound method), 729
E_int_loop() (RNA.fold_compound method), 729
E_IntLoop (C function), 284
E_IntLoop() (in module RNA), 673
E_IntLoop_Co (C function), 286
E_IntLoop_Co() (in module RNA), 674
E_ml_rightmost_stem (C function), 234
E_ml_rightmost_stem() (in module RNA), 675
E_MLstem (C function), 286
E_MLstem() (in module RNA), 674
E_stack() (RNA.fold_compound method), 729
E_Stem (C function), 283
E_Stem() (in module RNA), 674

ElemProbVector (class in RNA), 675
empty() (RNA.ConstCharVector method), 669
empty() (RNA.CoordinateVector method), 669
empty() (RNA.DoubleDoubleVector method), 670
empty() (RNA.DoubleVector method), 671
empty() (RNA.DuplexVector method), 672
empty() (RNA.ElemProbVector method), 675
empty() (RNA.HeatCapacityVector method), 676
empty() (RNA.HelixVector method), 677
empty() (RNA.IntIntVector method), 678
empty() (RNA.IntVector method), 678
empty() (RNA.MoveVector method), 681
empty() (RNA.PathVector method), 683
empty() (RNA.SOLUTIONVector method), 684
empty() (RNA.StringVector method), 685
empty() (RNA.SuboptVector method), 686
empty() (RNA.UIntVector method), 687
en (RNA.path property), 799
encode_ali_sequence (C function), 519
encode_seq() (in module RNA), 698
encoding3 (RNA.fold_compound attribute), 724
encoding5 (RNA.fold_compound attribute), 724
end (RNA.hx property), 777
end() (RNA.ConstCharVector method), 669
end() (RNA.CoordinateVector method), 669
end() (RNA.DoubleDoubleVector method), 670
end() (RNA.DoubleVector method), 671
end() (RNA.DuplexVector method), 672
end() (RNA.ElemProbVector method), 675
end() (RNA.HeatCapacityVector method), 676
end() (RNA.HelixVector method), 677
end() (RNA.IntIntVector method), 678
end() (RNA.IntVector method), 679
end() (RNA.MoveVector method), 681
end() (RNA.PathVector method), 683
end() (RNA.SOLUTIONVector method), 684
end() (RNA.StringVector method), 685
end() (RNA.SuboptVector method), 686
end() (RNA.UIntVector method), 687
energy (RNA.duplex_list_t property), 698
energy (RNA.SOLUTION property), 684
energy (RNA.struct_en attribute), 812
energy (RNA.struct_en property), 812
energy (RNA.subopt_solution property), 812
energy_of_circ_struct (C function), 282
energy_of_circ_struct() (in module RNA), 698
energy_of_circ_struct_par (C function), 279
energy_of_circ_structure (C function), 278
energy_of_circ_structure() (in module RNA),

698
energy_of_gquad_struct_par (C function), 279
energy_of_gquad_structure (C function), 279
energy_of_gquad_structure() (in module RNA),

699
energy_of_move (C function), 280
energy_of_move() (in module RNA), 699
energy_of_move_pt (C function), 281
energy_of_move_pt() (in module RNA), 699

894 Index

ViennaRNA, Release 2.6.4

energy_of_struct (C function), 281
energy_of_struct() (in module RNA), 700
energy_of_struct_par (C function), 278
energy_of_struct_pt (C function), 282
energy_of_struct_pt() (in module RNA), 700
energy_of_struct_pt_par (C function), 280
energy_of_structure (C function), 277
energy_of_structure() (in module RNA), 701
energy_of_structure_pt (C function), 279
energy_of_structure_pt() (in module RNA), 701
energy_set (C var), 306
energy_set (RNA.md attribute), 783
energy_set (RNA.md property), 786
ensemble_defect() (RNA.fold_compound method),

732
enumerate_necklaces() (in module RNA), 702
eos_debug (C var), 286
ep (class in RNA), 702
equal() (RNA.SwigPyIterator method), 686
erase() (RNA.ConstCharVector method), 669
erase() (RNA.CoordinateVector method), 669
erase() (RNA.DoubleDoubleVector method), 670
erase() (RNA.DoubleVector method), 671
erase() (RNA.DuplexVector method), 672
erase() (RNA.ElemProbVector method), 675
erase() (RNA.HeatCapacityVector method), 676
erase() (RNA.HelixVector method), 677
erase() (RNA.IntIntVector method), 678
erase() (RNA.IntVector method), 679
erase() (RNA.MoveVector method), 682
erase() (RNA.PathVector method), 683
erase() (RNA.SOLUTIONVector method), 684
erase() (RNA.StringVector method), 685
erase() (RNA.SuboptVector method), 686
erase() (RNA.UIntVector method), 687
eval_circ_gquad_structure() (in module RNA),

703
eval_circ_structure() (in module RNA), 703
eval_covar_structure() (RNA.fold_compound

method), 733
eval_ext_hp_loop() (RNA.fold_compound method),

733
eval_ext_stem() (RNA.fold_compound method), 733
eval_gquad_structure() (in module RNA), 704
eval_hp_loop() (RNA.fold_compound method), 734
eval_int_loop() (RNA.fold_compound method), 734
eval_loop_pt() (RNA.fold_compound method), 734
eval_move() (RNA.fold_compound method), 734
eval_move_pt() (RNA.fold_compound method), 735
eval_structure() (RNA.fold_compound method),

735
eval_structure_pt() (RNA.fold_compound

method), 736
eval_structure_pt_simple() (in module RNA),

704
eval_structure_pt_verbose()

(RNA.fold_compound method), 736
eval_structure_simple() (in module RNA), 705

eval_structure_verbose() (RNA.fold_compound
method), 736

exp_E_ext_stem() (in module RNA), 707
exp_E_ext_stem() (RNA.fold_compound method),

737
exp_E_ExtLoop (C function), 284
exp_E_ExtLoop() (in module RNA), 705
exp_E_gquad (C function), 476
exp_E_GQuad_IntLoop (C function), 479
exp_E_GQuad_IntLoop_comparative (C function),

479
exp_E_Hairpin (C function), 232
exp_E_Hairpin() (in module RNA), 705
exp_E_hp_loop() (RNA.fold_compound method), 737
exp_E_int_loop() (RNA.fold_compound method),

737
exp_E_interior_loop() (RNA.fold_compound

method), 738
exp_E_IntLoop (C function), 285
exp_E_IntLoop() (in module RNA), 706
exp_E_MLstem (C function), 286
exp_E_MLstem() (in module RNA), 707
exp_E_Stem (C function), 284
exp_E_Stem() (in module RNA), 707
exp_matrices (RNA.fold_compound attribute), 722
exp_matrices (RNA.fold_compound property), 738
exp_param (class in RNA), 707
exp_params (RNA.fold_compound attribute), 722
exp_params (RNA.fold_compound property), 738
exp_params_rescale() (RNA.fold_compound

method), 738
exp_params_reset() (RNA.fold_compound method),

738
exp_params_subst() (RNA.fold_compound method),

739
expand_Full (C function), 513
expand_Full() (in module RNA), 712
expand_Shapiro (C function), 513
expand_Shapiro() (in module RNA), 713
expbulge (RNA.exp_param attribute), 707
expbulge (RNA.exp_param property), 712
expdangle3 (RNA.exp_param attribute), 708
expdangle3 (RNA.exp_param property), 712
expdangle5 (RNA.exp_param attribute), 708
expdangle5 (RNA.exp_param property), 712
expDuplexInit (RNA.exp_param attribute), 709
expDuplexInit (RNA.exp_param property), 711
expgquad (RNA.exp_param attribute), 710
expgquad (RNA.exp_param property), 712
expgquadLayerMismatch (RNA.exp_param at-

tribute), 710
expgquadLayerMismatch (RNA.exp_param prop-

erty), 712
exphairpin (RNA.exp_param attribute), 707
exphairpin (RNA.exp_param property), 712
exphex (RNA.exp_param attribute), 709
exphex (RNA.exp_param property), 712
expint11 (RNA.exp_param attribute), 708

Index 895

ViennaRNA, Release 2.6.4

expint11 (RNA.exp_param property), 712
expint21 (RNA.exp_param attribute), 708
expint21 (RNA.exp_param property), 712
expint22 (RNA.exp_param attribute), 708
expint22 (RNA.exp_param property), 712
expinternal (RNA.exp_param attribute), 707
expinternal (RNA.exp_param property), 712
expmismatch1nI (RNA.exp_param attribute), 708
expmismatch1nI (RNA.exp_param property), 712
expmismatch23I (RNA.exp_param attribute), 708
expmismatch23I (RNA.exp_param property), 712
expmismatchExt (RNA.exp_param attribute), 707
expmismatchExt (RNA.exp_param property), 712
expmismatchH (RNA.exp_param attribute), 708
expmismatchH (RNA.exp_param property), 712
expmismatchI (RNA.exp_param attribute), 707
expmismatchI (RNA.exp_param property), 712
expmismatchM (RNA.exp_param attribute), 708
expmismatchM (RNA.exp_param property), 712
expMLbase (RNA.exp_param attribute), 708
expMLbase (RNA.exp_param property), 711
expMLbase (RNA.mx_pf property), 789
expMLclosing (RNA.exp_param attribute), 709
expMLclosing (RNA.exp_param property), 711
expMLintern (RNA.exp_param attribute), 708
expMLintern (RNA.exp_param property), 711
expMultipleCA (RNA.exp_param attribute), 709
expMultipleCA (RNA.exp_param property), 711
expMultipleCB (RNA.exp_param attribute), 709
expMultipleCB (RNA.exp_param property), 711
expninio (RNA.exp_param attribute), 708
expninio (RNA.exp_param property), 712
export_ali_bppm (C function), 408
export_bppm (C function), 412
export_circfold_arrays (C function), 379
export_circfold_arrays_par (C function), 379
export_co_bppm (C function), 415
export_cofold_arrays (C function), 375
export_cofold_arrays_gq (C function), 375
export_fold_arrays (C function), 378
export_fold_arrays_par (C function), 378
expSaltLoop (RNA.exp_param attribute), 710
expSaltLoop (RNA.exp_param property), 711
expSaltStack (RNA.exp_param attribute), 710
expSaltStack (RNA.exp_param property), 711
expstack (RNA.exp_param attribute), 707
expstack (RNA.exp_param property), 712
expTermAU (RNA.exp_param attribute), 709
expTermAU (RNA.exp_param property), 711
exptetra (RNA.exp_param attribute), 709
exptetra (RNA.exp_param property), 712
exptri (RNA.exp_param attribute), 709
exptri (RNA.exp_param property), 712
expTriloop (RNA.exp_param attribute), 709
expTriloop (RNA.exp_param property), 711
expTripleC (RNA.exp_param attribute), 709
expTripleC (RNA.exp_param property), 711
extract_record_rest_structure (C function), 530

extract_record_rest_structure() (in module
RNA), 713

F
f (RNA.hc attribute), 775
f3 (RNA.mx_mfe property), 789
f5 (RNA.mx_mfe property), 789
F_monomer (C var), 450
fallback (RNA.sc_mod_param attribute), 808
fallback_encoding (RNA.sc_mod_param attribute),

808
Fc (RNA.mx_mfe property), 789
fc_add_pycallback() (in module RNA), 713
fc_add_pydata() (in module RNA), 713
FcH (RNA.mx_mfe property), 789
FcI (RNA.mx_mfe property), 789
FcM (RNA.mx_mfe property), 789
file_commands_apply() (RNA.fold_compound

method), 739
file_commands_read() (in module RNA), 714
file_connect_read_record() (in module RNA),

714
file_fasta_read() (in module RNA), 714
file_msa_detect_format() (in module RNA), 715
file_msa_read() (in module RNA), 716
file_msa_read_record() (in module RNA), 717
file_msa_write() (in module RNA), 718
file_PS_aln() (in module RNA), 713
file_PS_rnaplot() (in module RNA), 713
file_PS_rnaplot_a() (in module RNA), 713
file_RNAstrand_db_read_record() (in module

RNA), 713
file_SHAPE_read() (in module RNA), 713
FILENAME_ID_LENGTH (C macro), 491
FILENAME_MAX_LENGTH (C macro), 491
filename_sanitize() (in module RNA), 719
final_cost (C var), 464
find_saddle (C function), 367
find_saddle() (in module RNA), 719
first (RNA.DoublePair property), 671
floatArray (class in RNA), 720
floatArray_frompointer() (in module RNA), 720
floatP_getitem() (in module RNA), 720
floatP_setitem() (in module RNA), 720
FLT_OR_DBL (C type), 610
fM1 (RNA.mx_mfe property), 789
fM2 (RNA.mx_mfe property), 789
fML (RNA.mx_mfe property), 789
fold (C function), 377
fold() (in module RNA), 720
fold_compound (class in RNA), 720
fold_par (C function), 376
folden (C type), 611
free_alifold_arrays (C function), 374
free_alifold_arrays() (in module RNA), 771
free_alipf_arrays (C function), 408
free_arrays (C function), 378
free_arrays() (in module RNA), 771

896 Index

ViennaRNA, Release 2.6.4

free_auxdata (RNA.fold_compound attribute), 723
free_co_arrays (C function), 374
free_co_arrays() (in module RNA), 771
free_co_pf_arrays (C function), 416
free_co_pf_arrays() (in module RNA), 771
free_data (RNA.hc attribute), 775
free_interact (C function), 451
free_path (C function), 367
free_path() (in module RNA), 771
free_pf_arrays (C function), 411
free_pf_arrays() (in module RNA), 771
free_profile() (in module RNA), 772
free_pu_contrib (C function), 451
free_pu_contrib_struct (C function), 451
free_sequence_arrays (C function), 520
free_tree() (in module RNA), 772
frompointer() (RNA.doubleArray static method),

698
frompointer() (RNA.floatArray static method), 720
frompointer() (RNA.intArray static method), 778
front() (RNA.ConstCharVector method), 669
front() (RNA.CoordinateVector method), 669
front() (RNA.DoubleDoubleVector method), 670
front() (RNA.DoubleVector method), 671
front() (RNA.DuplexVector method), 672
front() (RNA.ElemProbVector method), 676
front() (RNA.HeatCapacityVector method), 676
front() (RNA.HelixVector method), 677
front() (RNA.IntIntVector method), 678
front() (RNA.IntVector method), 679
front() (RNA.MoveVector method), 682
front() (RNA.PathVector method), 683
front() (RNA.SOLUTIONVector method), 684
front() (RNA.StringVector method), 685
front() (RNA.SuboptVector method), 686
front() (RNA.UIntVector method), 687

G
G (RNA.mx_pf property), 789
get() (RNA.COORDINATE method), 668
get() (RNA.SOLUTION method), 684
get() (RNA.varArrayChar method), 815
get() (RNA.varArrayFLTorDBL method), 815
get() (RNA.varArrayInt method), 815
get() (RNA.varArrayMove method), 816
get() (RNA.varArrayShort method), 816
get() (RNA.varArrayUChar method), 816
get() (RNA.varArrayUInt method), 816
get_aligned_line() (in module RNA), 772
get_alipf_arrays (C function), 408
get_allocator() (RNA.ConstCharVector method),

669
get_allocator() (RNA.CoordinateVector method),

669
get_allocator() (RNA.DoubleDoubleVector

method), 670
get_allocator() (RNA.DoubleVector method), 671
get_allocator() (RNA.DuplexVector method), 672

get_allocator() (RNA.ElemProbVector method),
676

get_allocator() (RNA.HeatCapacityVector
method), 676

get_allocator() (RNA.HelixVector method), 677
get_allocator() (RNA.IntIntVector method), 678
get_allocator() (RNA.IntVector method), 679
get_allocator() (RNA.MoveVector method), 682
get_allocator() (RNA.PathVector method), 683
get_allocator() (RNA.SOLUTIONVector method),

684
get_allocator() (RNA.StringVector method), 685
get_allocator() (RNA.SuboptVector method), 686
get_allocator() (RNA.UIntVector method), 687
get_boltzmann_factor_copy (C function), 271
get_boltzmann_factors (C function), 270
get_boltzmann_factors_ali (C function), 271
get_centroid_struct_pl() (in module RNA), 772
get_centroid_struct_pr() (in module RNA), 772
get_concentrations() (in module RNA), 772
get_gquad_ali_matrix (C function), 476
get_gquad_count (C function), 477
get_gquad_L_matrix (C function), 477
get_gquad_layer_count (C function), 477
get_gquad_matrix (C function), 476
get_gquad_pattern_exhaustive (C function), 477
get_gquad_pattern_mfe (C function), 477
get_gquad_pattern_mfe_ali (C function), 477
get_gquad_pattern_pf (C function), 477
get_gquad_pf_matrix (C function), 476
get_gquad_pf_matrix_comparative (C function),

476
get_input_line (C function), 626
get_mpi (C function), 519
get_multi_input_line (C function), 530
get_multi_input_line() (in module RNA), 772
get_parameter_copy (C function), 270
get_path (C function), 368
get_path() (in module RNA), 772
get_pf_arrays (C function), 412
get_plist_gquad_from_db (C function), 477
get_plist_gquad_from_pr (C function), 477
get_plist_gquad_from_pr_max (C function), 477
get_pr() (in module RNA), 772
get_pu_contrib_struct (C function), 451
get_ribosum (C function), 538
get_scaled_alipf_parameters (C function), 271
get_scaled_parameters (C function), 272
get_scaled_pf_parameters (C function), 270
get_subseq_F (C function), 413
get_TwoDfold_variables (C function), 454
get_ungapped_sequence (C function), 518
get_xy_coordinates() (in module RNA), 772
gettype (C function), 262
gettype() (in module RNA), 773
ggg (RNA.mx_mfe property), 789
give_up (C var), 464
gmlRNA (C function), 559

Index 897

ViennaRNA, Release 2.6.4

gmlRNA() (in module RNA), 773
gquad (C var), 306
gquad (RNA.md attribute), 783
gquad (RNA.md property), 786
gquad (RNA.param attribute), 793
gquad (RNA.param property), 794
gquadLayerMismatch (RNA.param attribute), 793
gquadLayerMismatch (RNA.param property), 794
gquadLayerMismatchMax (RNA.exp_param at-

tribute), 710
gquadLayerMismatchMax (RNA.exp_param prop-

erty), 712
gquadLayerMismatchMax (RNA.param attribute), 793
gquadLayerMismatchMax (RNA.param property), 794

H
hairpin (RNA.param attribute), 790
hairpin (RNA.param property), 795
HairpinE (C function), 379
hamming() (in module RNA), 773
hamming_bound() (in module RNA), 773
hamming_distance() (in module RNA), 774
hamming_distance_bound() (in module RNA), 774
hc (class in RNA), 774
hc (RNA.fold_compound attribute), 722
hc (RNA.fold_compound property), 739
hc_add_bp() (RNA.fold_compound method), 739
hc_add_bp_nonspecific() (RNA.fold_compound

method), 740
hc_add_from_db() (RNA.fold_compound method),

740
hc_add_up() (RNA.fold_compound method), 740
hc_init() (RNA.fold_compound method), 740
heat_capacity (RNA.heat_capacity_result property),

777
heat_capacity() (in module RNA), 776
heat_capacity() (RNA.fold_compound method), 741
heat_capacity_cb() (RNA.fold_compound method),

741
heat_capacity_result (class in RNA), 776
HeatCapacityVector (class in RNA), 676
helical_rise (C var), 307
helical_rise (RNA.md property), 786
helix_size (C var), 517
HelixVector (class in RNA), 677
Hexaloop_E (RNA.param attribute), 792
Hexaloop_E (RNA.param property), 794
Hexaloops (RNA.exp_param attribute), 709
Hexaloops (RNA.exp_param property), 711
Hexaloops (RNA.param attribute), 792
Hexaloops (RNA.param property), 794
hx (class in RNA), 777
hx_from_ptable() (in module RNA), 777

I
i (RNA.basepair property), 691
i (RNA.duplex_list_t property), 698
i (RNA.ep attribute), 702

i (RNA.ep property), 703
id (RNA.exp_param attribute), 707
id (RNA.exp_param property), 712
id (RNA.param attribute), 790
id (RNA.param property), 795
iindx (RNA.fold_compound attribute), 723
iindx (RNA.fold_compound property), 742
incr() (RNA.SwigPyIterator method), 686
init_co_pf_fold (C function), 415
init_pf_fold (C function), 414
init_pf_fold() (in module RNA), 777
init_rand() (in module RNA), 777
initialize_cofold (C function), 376
initialize_cofold() (in module RNA), 777
initialize_fold (C function), 379
insert() (RNA.ConstCharVector method), 669
insert() (RNA.CoordinateVector method), 669
insert() (RNA.DoubleDoubleVector method), 670
insert() (RNA.DoubleVector method), 671
insert() (RNA.DuplexVector method), 672
insert() (RNA.ElemProbVector method), 676
insert() (RNA.HeatCapacityVector method), 676
insert() (RNA.HelixVector method), 677
insert() (RNA.IntIntVector method), 678
insert() (RNA.IntVector method), 679
insert() (RNA.MoveVector method), 682
insert() (RNA.PathVector method), 683
insert() (RNA.SOLUTIONVector method), 684
insert() (RNA.StringVector method), 685
insert() (RNA.SuboptVector method), 686
insert() (RNA.UIntVector method), 687
int11 (RNA.param attribute), 791
int11 (RNA.param property), 795
int21 (RNA.param attribute), 791
int21 (RNA.param property), 795
int22 (RNA.param attribute), 791
int22 (RNA.param property), 795
int_urn() (in module RNA), 778
intArray (class in RNA), 777
intArray_frompointer() (in module RNA), 778
interact (C struct), 614
interact (C type), 611
interact.Gi (C var), 614
interact.Gikjl (C var), 614
interact.Gikjl_wo (C var), 614
interact.i (C var), 614
interact.j (C var), 614
interact.k (C var), 614
interact.l (C var), 614
interact.length (C var), 614
interact.Pi (C var), 614
internal_loop (RNA.param attribute), 790
internal_loop (RNA.param property), 795
IntIntVector (class in RNA), 677
intP_getitem() (in module RNA), 778
intP_setitem() (in module RNA), 778
IntVector (class in RNA), 678
inv_verbose (C var), 464

898 Index

ViennaRNA, Release 2.6.4

inverse_fold (C function), 463
inverse_fold() (in module RNA), 778
inverse_pf_fold (C function), 463
inverse_pf_fold() (in module RNA), 778
is_insertion() (RNA.move method), 788
is_removal() (RNA.move method), 788
is_shift() (RNA.move method), 788
iterator() (RNA.ConstCharVector method), 669
iterator() (RNA.CoordinateVector method), 669
iterator() (RNA.DoubleDoubleVector method), 670
iterator() (RNA.DoubleVector method), 671
iterator() (RNA.DuplexVector method), 672
iterator() (RNA.ElemProbVector method), 676
iterator() (RNA.HeatCapacityVector method), 676
iterator() (RNA.HelixVector method), 677
iterator() (RNA.IntIntVector method), 678
iterator() (RNA.IntVector method), 679
iterator() (RNA.MoveVector method), 682
iterator() (RNA.PathVector method), 683
iterator() (RNA.SOLUTIONVector method), 684
iterator() (RNA.StringVector method), 685
iterator() (RNA.SuboptVector method), 686
iterator() (RNA.UIntVector method), 687

J
j (RNA.basepair property), 691
j (RNA.duplex_list_t property), 698
j (RNA.ep attribute), 702
j (RNA.ep property), 703
jindx (RNA.fold_compound attribute), 723
jindx (RNA.fold_compound property), 742

K
kT (RNA.exp_param attribute), 710
kT (RNA.exp_param property), 712

L
last_parameter_file (C function), 261
last_parameter_file() (in module RNA), 779
length (RNA.fold_compound attribute), 721
length (RNA.fold_compound property), 742
length (RNA.hx property), 777
length (RNA.mx_mfe property), 789
length (RNA.mx_pf property), 789
letter_structure (C function), 518
Lfold (C function), 384
Lfold() (in module RNA), 679
Lfold_cb() (in module RNA), 679
Lfoldz (C function), 384
Lfoldz() (in module RNA), 679
Lfoldz_cb() (in module RNA), 680
logML (C var), 307
logML (RNA.md attribute), 783
logML (RNA.md property), 786
loop_degree (C var), 517
loop_energy (C function), 281
loop_energy() (in module RNA), 779
loop_size (C var), 517

LoopEnergy (C function), 379
loopidx_from_ptable() (in module RNA), 779
loops (C var), 517
lxc (RNA.exp_param attribute), 708
lxc (RNA.exp_param property), 712
lxc (RNA.param attribute), 791
lxc (RNA.param property), 795

M
Make_bp_profile() (in module RNA), 681
Make_bp_profile_bppm() (in module RNA), 681
make_loop_index() (in module RNA), 779
make_loop_index_pt (C function), 518
make_pair_table (C function), 514
make_pair_table_pk (C function), 518
make_pair_table_snoop (C function), 515
make_referenceBP_array (C function), 515
Make_swString() (in module RNA), 681
make_tree() (in module RNA), 779
matrices (RNA.fold_compound attribute), 722
matrices (RNA.fold_compound property), 742
matrix_local (RNA.hc attribute), 775
MAX2 (C macro), 624
MAX3 (C macro), 624
max_bp_span (C var), 306
max_bp_span (RNA.md attribute), 784
max_bp_span (RNA.md property), 786
MAXALPHA (C macro), 292
maxD1 (RNA.fold_compound attribute), 727
maxD2 (RNA.fold_compound attribute), 727
maximum_matching() (in module RNA), 779
maxmimum_matching() (RNA.fold_compound

method), 742
md (class in RNA), 779
MEA (C function), 446
MEA() (RNA.fold_compound method), 729
MEA_from_plist() (in module RNA), 680
mean_bp_distance (C function), 413
mean_bp_distance() (in module RNA), 787
mean_bp_distance() (RNA.fold_compound method),

742
mean_bp_distance_pr (C function), 413
memmove() (in module RNA), 787
mfe() (RNA.fold_compound method), 743
mfe_dimer() (RNA.fold_compound method), 743
mfe_window() (RNA.fold_compound method), 744
mfe_window_cb() (RNA.fold_compound method), 744
mfe_window_zscore() (RNA.fold_compound

method), 744
mfe_window_zscore_cb() (RNA.fold_compound

method), 744
MIN2 (C macro), 624
MIN3 (C macro), 624
min_loop_size (RNA.md attribute), 784
min_loop_size (RNA.md property), 786
mirnatog (C var), 450
mismatch1nI (RNA.param attribute), 791
mismatch1nI (RNA.param property), 795

Index 899

ViennaRNA, Release 2.6.4

mismatch23I (RNA.param attribute), 791
mismatch23I (RNA.param property), 795
mismatch_dG (RNA.sc_mod_param attribute), 809
mismatch_dH (RNA.sc_mod_param attribute), 809
mismatchExt (RNA.param attribute), 791
mismatchExt (RNA.param property), 795
mismatchH (RNA.param attribute), 791
mismatchH (RNA.param property), 795
mismatchI (RNA.param attribute), 791
mismatchI (RNA.param property), 795
mismatchM (RNA.param attribute), 791
mismatchM (RNA.param property), 795
MLbase (RNA.param attribute), 792
MLbase (RNA.param property), 794
MLclosing (RNA.param attribute), 792
MLclosing (RNA.param property), 794
MLintern (RNA.param attribute), 792
MLintern (RNA.param property), 794
mm1 (RNA.fold_compound attribute), 728
mm2 (RNA.fold_compound attribute), 728
model_details (RNA.exp_param attribute), 710
model_details (RNA.exp_param property), 712
model_details (RNA.param attribute), 793
model_details (RNA.param property), 795
model_detailsT (C macro), 292
module

RNA, 668
move (class in RNA), 787
move (RNA.path property), 799
move_neighbor_diff() (RNA.fold_compound

method), 744
move_standard() (in module RNA), 789
MoveVector (class in RNA), 681
MultipleCA (RNA.param attribute), 792
MultipleCA (RNA.param property), 794
MultipleCB (RNA.param attribute), 793
MultipleCB (RNA.param property), 794
mx (RNA.hc attribute), 774
mx (RNA.hc property), 776
mx_mfe (class in RNA), 789
mx_pf (class in RNA), 789
my_aln_consensus_sequence2() (in module RNA),

790
my_PS_rna_plot_snoop_a() (in module RNA), 790

N
n (RNA.hc attribute), 774
n (RNA.hc property), 776
n_seq (RNA.fold_compound attribute), 725
name (RNA.sc_mod_param attribute), 807
naview_xy_coordinates() (in module RNA), 790
NBASES (C macro), 288
nc_fact (C var), 307
nc_fact (RNA.md attribute), 784
nc_fact (RNA.md property), 786
neighbors() (RNA.fold_compound method), 745
new_doubleP() (in module RNA), 790
new_floatP() (in module RNA), 790

new_intP() (in module RNA), 790
new_shortP() (in module RNA), 790
new_ushortP() (in module RNA), 790
next (RNA.move attribute), 787
next() (RNA.SwigPyIterator method), 686
next() (RNA.var_array_Iterator method), 816
ninio (RNA.param attribute), 791
ninio (RNA.param property), 795
no_closingGU (C var), 306
node (C struct), 616
node.energy (C var), 616
node.k (C var), 616
node.next (C var), 616
noGU (C var), 306
noGU (RNA.md attribute), 783
noGU (RNA.md property), 786
noGUclosure (RNA.md attribute), 783
noGUclosure (RNA.md property), 786
noLonelyPairs (C var), 306
noLP (RNA.md attribute), 783
noLP (RNA.md property), 786
nonstandards (C var), 306
nonstandards (RNA.md attribute), 784
nonstandards (RNA.md property), 786
nucleotides (RNA.fold_compound attribute), 722
num_ptypes (RNA.sc_mod_param attribute), 808

O
oldAliEn (C var), 307
oldAliEn (RNA.fold_compound attribute), 727
oldAliEn (RNA.md attribute), 784
oldAliEn (RNA.md property), 786
ON_SAME_STRAND (C macro), 277
one_letter_code (RNA.sc_mod_param attribute),

807
option_string (C function), 305
option_string() (RNA.md method), 786

P
p (RNA.ep attribute), 702
p (RNA.ep property), 703
pack_structure (C function), 514
pack_structure() (in module RNA), 790
PAIR (C type), 610
pair (RNA.md attribute), 785
pair (RNA.md property), 786
pair_dist (RNA.md attribute), 785
pair_info (C type), 518
pairing_partners (RNA.sc_mod_param attribute),

808
pairing_partners_encoding (RNA.sc_mod_param

attribute), 808
pairs (C var), 517
param (class in RNA), 790
param_file (RNA.exp_param attribute), 710
param_file (RNA.exp_param property), 712
param_file (RNA.param attribute), 793
param_file (RNA.param property), 795

900 Index

ViennaRNA, Release 2.6.4

params (RNA.fold_compound attribute), 722
params (RNA.fold_compound property), 745
params_load() (in module RNA), 795
params_load_DNA_Mathews1999() (in module

RNA), 796
params_load_DNA_Mathews2004() (in module

RNA), 796
params_load_from_string() (in module RNA), 798
params_load_RNA_Andronescu2007() (in module

RNA), 796
params_load_RNA_Langdon2018() (in module

RNA), 797
params_load_RNA_misc_special_hairpins() (in

module RNA), 798
params_load_RNA_Turner1999() (in module RNA),

797
params_load_RNA_Turner2004() (in module RNA),

798
params_reset() (RNA.fold_compound method), 745
params_save() (in module RNA), 799
params_subst() (RNA.fold_compound method), 746
paramT (C type), 265
parenthesis_structure (C function), 516
parenthesis_zuker (C function), 516
parse_gquad (C function), 477
parse_structure (C function), 513
parse_structure() (in module RNA), 799
parset (C enum), 255
parset.B (C enumerator), 255
parset.B_H (C enumerator), 255
parset.D3 (C enumerator), 256
parset.D3_H (C enumerator), 256
parset.D5 (C enumerator), 256
parset.D5_H (C enumerator), 256
parset.HEX (C enumerator), 256
parset.HP (C enumerator), 255
parset.HP_H (C enumerator), 255
parset.IL (C enumerator), 255
parset.IL_H (C enumerator), 255
parset.INT11 (C enumerator), 256
parset.INT11_H (C enumerator), 256
parset.INT21 (C enumerator), 256
parset.INT21_H (C enumerator), 256
parset.INT22 (C enumerator), 256
parset.INT22_H (C enumerator), 256
parset.MISC (C enumerator), 256
parset.ML (C enumerator), 256
parset.MME (C enumerator), 256
parset.MME_H (C enumerator), 256
parset.MMH (C enumerator), 255
parset.MMH_H (C enumerator), 255
parset.MMI (C enumerator), 255
parset.MMI1N (C enumerator), 255
parset.MMI1N_H (C enumerator), 255
parset.MMI23 (C enumerator), 255
parset.MMI23_H (C enumerator), 256
parset.MMI_H (C enumerator), 255
parset.MMM (C enumerator), 256

parset.MMM_H (C enumerator), 256
parset.NIN (C enumerator), 256
parset.QUIT (C enumerator), 255
parset.S (C enumerator), 255
parset.S_H (C enumerator), 255
parset.TL (C enumerator), 256
parset.TRI (C enumerator), 256
parset.UNKNOWN (C enumerator), 255
path (class in RNA), 799
path() (RNA.fold_compound method), 746
path_direct() (RNA.fold_compound method), 747
path_findpath() (RNA.fold_compound method), 747
path_findpath_saddle() (RNA.fold_compound

method), 747
path_gradient() (RNA.fold_compound method), 748
path_options (class in RNA), 800
path_options_findpath() (in module RNA), 800
path_random() (RNA.fold_compound method), 749
path_t (C type), 367
PathVector (class in RNA), 683
pbacktrack (C function), 444
pbacktrack() (in module RNA), 800
pbacktrack() (RNA.fold_compound method), 749
pbacktrack5 (C function), 444
pbacktrack5() (in module RNA), 801
pbacktrack5() (RNA.fold_compound method), 750
pbacktrack_circ (C function), 444
pbacktrack_circ() (in module RNA), 801
pbacktrack_mem (class in RNA), 801
pbacktrack_sub() (RNA.fold_compound method),

751
pf() (RNA.fold_compound method), 752
pf_add() (in module RNA), 801
pf_circ_fold (C function), 411
pf_circ_fold() (in module RNA), 801
pf_dimer() (RNA.fold_compound method), 753
pf_float_precision() (in module RNA), 801
pf_fold (C function), 410
pf_fold() (in module RNA), 801
pf_fold_par (C function), 409
pf_interact (C function), 450
pf_paramT (C type), 265
pf_scale (C var), 305
pf_scale (RNA.exp_param attribute), 710
pf_scale (RNA.exp_param property), 712
pf_smooth (RNA.md attribute), 782
pf_smooth (RNA.md property), 786
pf_unstru (C function), 450
pfl_fold (C function), 418
pfl_fold() (in module RNA), 801
pfl_fold_cb() (in module RNA), 802
pfl_fold_par (C function), 418
pfl_fold_up() (in module RNA), 802
pfl_fold_up_cb() (in module RNA), 802
plist (C type), 610
plist() (in module RNA), 802
plist_from_probs() (RNA.fold_compound method),

753

Index 901

ViennaRNA, Release 2.6.4

plot_dp_EPS() (in module RNA), 803
pop() (RNA.ConstCharVector method), 669
pop() (RNA.CoordinateVector method), 669
pop() (RNA.DoubleDoubleVector method), 670
pop() (RNA.DoubleVector method), 671
pop() (RNA.DuplexVector method), 672
pop() (RNA.ElemProbVector method), 676
pop() (RNA.HeatCapacityVector method), 676
pop() (RNA.HelixVector method), 677
pop() (RNA.IntIntVector method), 678
pop() (RNA.IntVector method), 679
pop() (RNA.MoveVector method), 682
pop() (RNA.PathVector method), 683
pop() (RNA.SOLUTIONVector method), 684
pop() (RNA.StringVector method), 685
pop() (RNA.SuboptVector method), 686
pop() (RNA.UIntVector method), 687
pop_back() (RNA.ConstCharVector method), 669
pop_back() (RNA.CoordinateVector method), 670
pop_back() (RNA.DoubleDoubleVector method), 670
pop_back() (RNA.DoubleVector method), 671
pop_back() (RNA.DuplexVector method), 672
pop_back() (RNA.ElemProbVector method), 676
pop_back() (RNA.HeatCapacityVector method), 676
pop_back() (RNA.HelixVector method), 677
pop_back() (RNA.IntIntVector method), 678
pop_back() (RNA.IntVector method), 679
pop_back() (RNA.MoveVector method), 682
pop_back() (RNA.PathVector method), 683
pop_back() (RNA.SOLUTIONVector method), 684
pop_back() (RNA.StringVector method), 685
pop_back() (RNA.SuboptVector method), 686
pop_back() (RNA.UIntVector method), 687
pos_3 (RNA.move attribute), 787
pos_3 (RNA.move property), 789
pos_5 (RNA.move attribute), 787
pos_5 (RNA.move property), 789
positional_entropy() (RNA.fold_compound

method), 754
pr_energy() (RNA.fold_compound method), 754
pr_structure() (RNA.fold_compound method), 754
previous() (RNA.SwigPyIterator method), 687
print_bppm() (in module RNA), 803
print_energy (C var), 424
print_tree() (in module RNA), 803
PRIVATE (C macro), 623
probs (RNA.mx_pf property), 789
probs_window() (RNA.fold_compound method), 755
profile_edit_distance() (in module RNA), 803
profiles

command line option, 134
progress_callback (C type), 468
PS_color_aln (C function), 556
PS_color_dot_plot (C function), 557
PS_color_dot_plot() (in module RNA), 682
PS_color_dot_plot_turn (C function), 557
PS_color_dot_plot_turn() (in module RNA), 682
PS_dot_plot (C function), 557

PS_dot_plot() (in module RNA), 682
PS_dot_plot_list (C function), 557
PS_dot_plot_list() (in module RNA), 682
PS_dot_plot_turn (C function), 557
PS_dot_plot_turn() (in module RNA), 683
PS_rna_plot (C function), 560
PS_rna_plot() (in module RNA), 683
PS_rna_plot_a (C function), 560
PS_rna_plot_a() (in module RNA), 683
PS_rna_plot_a_gquad (C function), 560
PS_rna_plot_a_gquad() (in module RNA), 683
PS_rna_plot_snoop_a (C function), 559
pscore (RNA.fold_compound attribute), 726
pscore_local (RNA.fold_compound attribute), 727
pscore_pf_compat (RNA.fold_compound attribute),

727
pt_pk_remove() (in module RNA), 803
ptable() (in module RNA), 804
ptable_pk() (in module RNA), 804
ptype (RNA.fold_compound attribute), 724
ptype_local (RNA.fold_compound attribute), 728
ptype_pf_compat (RNA.fold_compound attribute),

725
ptypes (RNA.sc_mod_param attribute), 808
pu_contrib (C struct), 613
pu_contrib (C type), 611
pu_contrib.E (C var), 614
pu_contrib.H (C var), 614
pu_contrib.I (C var), 614
pu_contrib.length (C var), 614
pu_contrib.M (C var), 614
pu_contrib.w (C var), 614
pu_out (C struct), 615
pu_out (C type), 611
pu_out.contribs (C var), 615
pu_out.header (C var), 615
pu_out.len (C var), 615
pu_out.u_vals (C var), 615
pu_out.u_values (C var), 615
PUBLIC (C macro), 623
push_back() (RNA.ConstCharVector method), 669
push_back() (RNA.CoordinateVector method), 670
push_back() (RNA.DoubleDoubleVector method),

670
push_back() (RNA.DoubleVector method), 671
push_back() (RNA.DuplexVector method), 672
push_back() (RNA.ElemProbVector method), 676
push_back() (RNA.HeatCapacityVector method), 676
push_back() (RNA.HelixVector method), 677
push_back() (RNA.IntIntVector method), 678
push_back() (RNA.IntVector method), 679
push_back() (RNA.MoveVector method), 682
push_back() (RNA.PathVector method), 684
push_back() (RNA.SOLUTIONVector method), 684
push_back() (RNA.StringVector method), 685
push_back() (RNA.SuboptVector method), 686
push_back() (RNA.UIntVector method), 687
putoutpU_prob (C function), 418

902 Index

ViennaRNA, Release 2.6.4

putoutpU_prob_bin (C function), 419

Q
q (RNA.mx_pf property), 789
q1k (RNA.mx_pf property), 789
qb (RNA.mx_pf property), 789
qho (RNA.mx_pf property), 789
qio (RNA.mx_pf property), 789
qln (RNA.mx_pf property), 790
qm (RNA.mx_pf property), 790
qm1 (RNA.mx_pf property), 790
qm2 (RNA.mx_pf property), 790
qmo (RNA.mx_pf property), 790
qo (RNA.mx_pf property), 790

R
random_string() (in module RNA), 805
rbegin() (RNA.ConstCharVector method), 669
rbegin() (RNA.CoordinateVector method), 670
rbegin() (RNA.DoubleDoubleVector method), 670
rbegin() (RNA.DoubleVector method), 671
rbegin() (RNA.DuplexVector method), 672
rbegin() (RNA.ElemProbVector method), 676
rbegin() (RNA.HeatCapacityVector method), 676
rbegin() (RNA.HelixVector method), 677
rbegin() (RNA.IntIntVector method), 678
rbegin() (RNA.IntVector method), 679
rbegin() (RNA.MoveVector method), 682
rbegin() (RNA.PathVector method), 684
rbegin() (RNA.SOLUTIONVector method), 685
rbegin() (RNA.StringVector method), 685
rbegin() (RNA.SuboptVector method), 686
rbegin() (RNA.UIntVector method), 687
read_clustal (C function), 518
read_parameter_file (C function), 261
read_parameter_file() (in module RNA), 805
read_record (C function), 530
read_record() (in module RNA), 805
readribosum (C function), 538
reference_pt1 (RNA.fold_compound attribute), 728
reference_pt2 (RNA.fold_compound attribute), 728
referenceBPs1 (RNA.fold_compound attribute), 728
referenceBPs2 (RNA.fold_compound attribute), 728
rend() (RNA.ConstCharVector method), 669
rend() (RNA.CoordinateVector method), 670
rend() (RNA.DoubleDoubleVector method), 670
rend() (RNA.DoubleVector method), 671
rend() (RNA.DuplexVector method), 672
rend() (RNA.ElemProbVector method), 676
rend() (RNA.HeatCapacityVector method), 677
rend() (RNA.HelixVector method), 677
rend() (RNA.IntIntVector method), 678
rend() (RNA.IntVector method), 679
rend() (RNA.MoveVector method), 682
rend() (RNA.PathVector method), 684
rend() (RNA.SOLUTIONVector method), 685
rend() (RNA.StringVector method), 685
rend() (RNA.SuboptVector method), 686

rend() (RNA.UIntVector method), 687
reserve() (RNA.ConstCharVector method), 669
reserve() (RNA.CoordinateVector method), 670
reserve() (RNA.DoubleDoubleVector method), 670
reserve() (RNA.DoubleVector method), 671
reserve() (RNA.DuplexVector method), 672
reserve() (RNA.ElemProbVector method), 676
reserve() (RNA.HeatCapacityVector method), 677
reserve() (RNA.HelixVector method), 677
reserve() (RNA.IntIntVector method), 678
reserve() (RNA.IntVector method), 679
reserve() (RNA.MoveVector method), 682
reserve() (RNA.PathVector method), 684
reserve() (RNA.SOLUTIONVector method), 685
reserve() (RNA.StringVector method), 685
reserve() (RNA.SuboptVector method), 686
reserve() (RNA.UIntVector method), 687
reset() (RNA.md method), 786
resize() (RNA.ConstCharVector method), 669
resize() (RNA.CoordinateVector method), 670
resize() (RNA.DoubleDoubleVector method), 670
resize() (RNA.DoubleVector method), 671
resize() (RNA.DuplexVector method), 672
resize() (RNA.ElemProbVector method), 676
resize() (RNA.HeatCapacityVector method), 677
resize() (RNA.HelixVector method), 677
resize() (RNA.IntIntVector method), 678
resize() (RNA.IntVector method), 679
resize() (RNA.MoveVector method), 682
resize() (RNA.PathVector method), 684
resize() (RNA.SOLUTIONVector method), 685
resize() (RNA.StringVector method), 685
resize() (RNA.SuboptVector method), 686
resize() (RNA.UIntVector method), 687
ribo (C var), 307
ribo (RNA.md attribute), 784
ribo (RNA.md property), 786
RNA

module, 668
rna_plot_type (C var), 558
rotational_symmetry() (in module RNA), 805
rotational_symmetry_db() (RNA.fold_compound

method), 755
rtype (RNA.md attribute), 784
rtype (RNA.md property), 786

S
S (RNA.fold_compound attribute), 726
s (RNA.path property), 800
S3 (RNA.fold_compound attribute), 726
S5 (RNA.fold_compound attribute), 726
S_cons (RNA.fold_compound attribute), 726
salt (C var), 307
salt (RNA.md attribute), 785
salt (RNA.md property), 786
salt_duplex_init() (in module RNA), 806
salt_loop() (in module RNA), 806
salt_loop_int() (in module RNA), 806

Index 903

ViennaRNA, Release 2.6.4

salt_ml() (in module RNA), 807
salt_stack() (in module RNA), 807
saltDPXInit (C var), 307
SaltDPXInit (RNA.exp_param attribute), 711
SaltDPXInit (RNA.exp_param property), 711
saltDPXInit (RNA.md attribute), 785
saltDPXInit (RNA.md property), 786
SaltDPXInit (RNA.param attribute), 794
SaltDPXInit (RNA.param property), 794
saltDPXInitFact (RNA.md attribute), 785
saltDPXInitFact (RNA.md property), 786
SaltLoop (RNA.param attribute), 793
SaltLoop (RNA.param property), 794
SaltLoopDbl (RNA.exp_param attribute), 710
SaltLoopDbl (RNA.exp_param property), 711
SaltLoopDbl (RNA.param attribute), 793
SaltLoopDbl (RNA.param property), 794
SaltMLbase (RNA.exp_param attribute), 711
SaltMLbase (RNA.exp_param property), 711
SaltMLbase (RNA.param attribute), 793
SaltMLbase (RNA.param property), 794
SaltMLclosing (RNA.exp_param attribute), 711
SaltMLclosing (RNA.exp_param property), 711
SaltMLclosing (RNA.param attribute), 793
SaltMLclosing (RNA.param property), 794
SaltMLintern (RNA.exp_param attribute), 711
SaltMLintern (RNA.exp_param property), 711
SaltMLintern (RNA.param attribute), 793
SaltMLintern (RNA.param property), 794
saltMLLower (RNA.md attribute), 785
saltMLLower (RNA.md property), 786
saltMLUpper (RNA.md attribute), 785
saltMLUpper (RNA.md property), 786
SaltStack (RNA.param attribute), 793
SaltStack (RNA.param property), 794
sc (RNA.fold_compound attribute), 725
sc_add_bp() (RNA.fold_compound method), 758
sc_add_bt() (RNA.fold_compound method), 758
sc_add_bt_pycallback() (in module RNA), 807
sc_add_data() (RNA.fold_compound method), 759
sc_add_exp_f() (RNA.fold_compound method), 759
sc_add_exp_f_pycallback() (in module RNA), 807
sc_add_f() (RNA.fold_compound method), 760
sc_add_f_pycallback() (in module RNA), 807
sc_add_hi_motif() (RNA.fold_compound method),

760
sc_add_pydata() (in module RNA), 807
sc_add_SHAPE_deigan() (RNA.fold_compound

method), 756
sc_add_SHAPE_deigan_ali() (RNA.fold_compound

method), 757
sc_add_SHAPE_zarringhalam()

(RNA.fold_compound method), 757
sc_add_stack() (RNA.fold_compound method), 760
sc_add_up() (RNA.fold_compound method), 760
sc_init() (RNA.fold_compound method), 761
sc_mod() (RNA.fold_compound method), 761
sc_mod_7DA() (RNA.fold_compound method), 762

sc_mod_dihydrouridine() (RNA.fold_compound
method), 762

sc_mod_inosine() (RNA.fold_compound method),
763

sc_mod_json() (RNA.fold_compound method), 763
sc_mod_jsonfile() (RNA.fold_compound method),

764
sc_mod_m6A() (RNA.fold_compound method), 764
sc_mod_param (class in RNA), 807
sc_mod_parameters_free() (in module RNA), 809
sc_mod_pseudouridine() (RNA.fold_compound

method), 765
sc_mod_purine() (RNA.fold_compound method), 765
sc_mod_read_from_json() (in module RNA), 809
sc_mod_read_from_jsonfile() (in module RNA),

809
sc_remove() (RNA.fold_compound method), 766
sc_set_bp() (RNA.fold_compound method), 766
sc_set_stack() (RNA.fold_compound method), 766
sc_set_up() (RNA.fold_compound method), 766
scale (RNA.mx_pf property), 790
scale_parameters (C function), 271
scale_pf_parameters (C function), 272
scs (RNA.fold_compound attribute), 727
second (RNA.DoublePair property), 671
sect (C type), 610
seq_encode() (in module RNA), 810
sequence (RNA.fold_compound attribute), 724
sequence (RNA.fold_compound property), 767
sequence_add() (RNA.fold_compound method), 767
sequence_encoding (RNA.fold_compound attribute),

724
sequence_encoding (RNA.fold_compound property),

767
sequence_encoding2 (RNA.fold_compound at-

tribute), 724
sequence_encoding2 (RNA.fold_compound prop-

erty), 767
sequence_prepare() (RNA.fold_compound method),

767
sequence_remove() (RNA.fold_compound method),

767
sequence_remove_all() (RNA.fold_compound

method), 767
sequences (RNA.fold_compound attribute), 725
set_from_globals() (RNA.md method), 786
set_model_details (C function), 304
set_parameters (C function), 272
set_pf_param (C function), 272
settype (C function), 262
settype() (in module RNA), 810
sfact (RNA.md attribute), 784
sfact (RNA.md property), 786
shortP_getitem() (in module RNA), 810
shortP_setitem() (in module RNA), 810
simple_circplot_coordinates (C function), 556
simple_circplot_coordinates() (in module

RNA), 810

904 Index

ViennaRNA, Release 2.6.4

simple_xy_coordinates (C function), 556
simple_xy_coordinates() (in module RNA), 810
size() (RNA.ConstCharVector method), 669
size() (RNA.CoordinateVector method), 670
size() (RNA.DoubleDoubleVector method), 670
size() (RNA.DoubleVector method), 671
size() (RNA.DuplexVector method), 672
size() (RNA.ElemProbVector method), 676
size() (RNA.HeatCapacityVector method), 677
size() (RNA.HelixVector method), 677
size() (RNA.IntIntVector method), 678
size() (RNA.IntVector method), 679
size() (RNA.MoveVector method), 682
size() (RNA.PathVector method), 684
size() (RNA.SOLUTION method), 684
size() (RNA.SOLUTIONVector method), 685
size() (RNA.StringVector method), 685
size() (RNA.SuboptVector method), 686
size() (RNA.UIntVector method), 687
size() (RNA.varArrayChar method), 815
size() (RNA.varArrayFLTorDBL method), 815
size() (RNA.varArrayInt method), 815
size() (RNA.varArrayMove method), 816
size() (RNA.varArrayShort method), 816
size() (RNA.varArrayUChar method), 816
size() (RNA.varArrayUInt method), 816
snoopT (C struct), 616
snoopT.Duplex_El (C var), 617
snoopT.Duplex_Er (C var), 617
snoopT.Duplex_Ol (C var), 617
snoopT.Duplex_Or (C var), 617
snoopT.Duplex_Ot (C var), 617
snoopT.energy (C var), 617
snoopT.fullStemEnergy (C var), 617
snoopT.i (C var), 617
snoopT.j (C var), 617
snoopT.Loop_D (C var), 617
snoopT.Loop_E (C var), 617
snoopT.pscd (C var), 617
snoopT.pscg (C var), 617
snoopT.psct (C var), 617
snoopT.structure (C var), 617
snoopT.u (C var), 617
SOLUTION (class in RNA), 684
SOLUTIONVector (class in RNA), 684
special_hp (RNA.md attribute), 782
special_hp (RNA.md property), 786
Ss (RNA.fold_compound attribute), 726
ssv_rna_plot (C function), 559
ssv_rna_plot() (in module RNA), 811
st_back (C var), 445
stack (RNA.param attribute), 790
stack (RNA.param property), 795
stack_dG (RNA.sc_mod_param attribute), 808
stack_dH (RNA.sc_mod_param attribute), 808
stackProb (C function), 414
start (RNA.hx property), 777
stat_cb (RNA.fold_compound attribute), 723

state (RNA.hc attribute), 774
STR (C macro), 491
strand_end (RNA.fold_compound attribute), 722
strand_end (RNA.fold_compound property), 767
strand_number (RNA.fold_compound attribute), 721
strand_number (RNA.fold_compound property), 767
strand_order (RNA.fold_compound attribute), 721
strand_order (RNA.fold_compound property), 767
strand_order_uniq (RNA.fold_compound attribute),

722
strand_start (RNA.fold_compound attribute), 722
strand_start (RNA.fold_compound property), 767
strands (RNA.fold_compound attribute), 722
strands (RNA.fold_compound property), 767
strands (RNA.mx_mfe property), 789
string_edit_distance() (in module RNA), 811
StringVector (class in RNA), 685
strtrim() (in module RNA), 811
STRUC (C macro), 512
struct_en (class in RNA), 812
structure (RNA.duplex_list_t property), 698
structure (RNA.SOLUTION property), 684
structure (RNA.struct_en attribute), 812
structure (RNA.struct_en property), 812
structure (RNA.subopt_solution property), 813
subopt (C function), 423
subopt() (in module RNA), 812
subopt() (RNA.fold_compound method), 767
subopt_cb() (RNA.fold_compound method), 768
subopt_circ (C function), 423
subopt_par (C function), 423
subopt_solution (class in RNA), 812
subopt_sorted (C var), 424
subopt_zuker() (RNA.fold_compound method), 768
SuboptVector (class in RNA), 685
svg_rna_plot (C function), 560
svg_rna_plot() (in module RNA), 813
swap() (RNA.ConstCharVector method), 669
swap() (RNA.CoordinateVector method), 670
swap() (RNA.DoubleDoubleVector method), 670
swap() (RNA.DoubleVector method), 671
swap() (RNA.DuplexVector method), 672
swap() (RNA.ElemProbVector method), 676
swap() (RNA.HeatCapacityVector method), 677
swap() (RNA.HelixVector method), 677
swap() (RNA.IntIntVector method), 678
swap() (RNA.IntVector method), 679
swap() (RNA.MoveVector method), 682
swap() (RNA.PathVector method), 684
swap() (RNA.SOLUTIONVector method), 685
swap() (RNA.StringVector method), 685
swap() (RNA.SuboptVector method), 686
swap() (RNA.UIntVector method), 687
SwigPyIterator (class in RNA), 686
symbolset (C var), 464

T
temperature (C var), 305

Index 905

ViennaRNA, Release 2.6.4

temperature (RNA.exp_param attribute), 710
temperature (RNA.exp_param property), 712
temperature (RNA.heat_capacity_result property),

777
temperature (RNA.md attribute), 782
temperature (RNA.md property), 786
temperature (RNA.param attribute), 793
temperature (RNA.param property), 795
terminal_dG (RNA.sc_mod_param attribute), 809
terminal_dH (RNA.sc_mod_param attribute), 809
TerminalAU (RNA.param attribute), 792
TerminalAU (RNA.param property), 794
tetra_loop (C var), 306
Tetraloop_E (RNA.param attribute), 792
Tetraloop_E (RNA.param property), 794
Tetraloops (RNA.exp_param attribute), 709
Tetraloops (RNA.exp_param property), 711
Tetraloops (RNA.param attribute), 792
Tetraloops (RNA.param property), 794
thisown (RNA.basepair property), 691
thisown (RNA.cmd property), 693
thisown (RNA.ConstCharVector property), 669
thisown (RNA.COORDINATE property), 668
thisown (RNA.CoordinateVector property), 670
thisown (RNA.doubleArray property), 698
thisown (RNA.DoubleDoubleVector property), 671
thisown (RNA.DoublePair property), 671
thisown (RNA.DoubleVector property), 671
thisown (RNA.duplex_list_t property), 698
thisown (RNA.DuplexVector property), 672
thisown (RNA.ElemProbVector property), 676
thisown (RNA.ep property), 703
thisown (RNA.exp_param property), 712
thisown (RNA.floatArray property), 720
thisown (RNA.fold_compound property), 768
thisown (RNA.hc property), 776
thisown (RNA.heat_capacity_result property), 777
thisown (RNA.HeatCapacityVector property), 677
thisown (RNA.HelixVector property), 677
thisown (RNA.hx property), 777
thisown (RNA.intArray property), 778
thisown (RNA.IntIntVector property), 678
thisown (RNA.IntVector property), 679
thisown (RNA.md property), 787
thisown (RNA.move property), 789
thisown (RNA.MoveVector property), 682
thisown (RNA.mx_mfe property), 789
thisown (RNA.mx_pf property), 790
thisown (RNA.param property), 795
thisown (RNA.path property), 800
thisown (RNA.path_options property), 800
thisown (RNA.PathVector property), 684
thisown (RNA.pbacktrack_mem property), 801
thisown (RNA.sc_mod_param property), 809
thisown (RNA.SOLUTION property), 684
thisown (RNA.SOLUTIONVector property), 685
thisown (RNA.StringVector property), 685
thisown (RNA.struct_en property), 812

thisown (RNA.subopt_solution property), 813
thisown (RNA.SuboptVector property), 686
thisown (RNA.SwigPyIterator property), 687
thisown (RNA.UIntVector property), 687
thisown (RNA.varArrayChar property), 815
thisown (RNA.varArrayFLTorDBL property), 815
thisown (RNA.varArrayInt property), 816
thisown (RNA.varArrayMove property), 816
thisown (RNA.varArrayShort property), 816
thisown (RNA.varArrayUChar property), 816
thisown (RNA.varArrayUInt property), 816
tree_edit_distance() (in module RNA), 813
tree_string_to_db() (in module RNA), 813
tree_string_unweight() (in module RNA), 813
Triloop_E (RNA.param attribute), 792
Triloop_E (RNA.param property), 794
Triloops (RNA.exp_param attribute), 709
Triloops (RNA.exp_param property), 711
Triloops (RNA.param attribute), 792
Triloops (RNA.param property), 794
TripleC (RNA.param attribute), 792
TripleC (RNA.param property), 794
TwoDfold (C function), 456
TwoDfold_backtrack_f5 (C function), 455
TwoDfold_solution (C macro), 453
TwoDfold_vars (C struct), 456
TwoDfold_vars.bpdist (C var), 457
TwoDfold_vars.circ (C var), 457
TwoDfold_vars.compatibility (C var), 460
TwoDfold_vars.dangles (C var), 457
TwoDfold_vars.do_backtrack (C var), 456
TwoDfold_vars.E_C (C var), 458
TwoDfold_vars.E_C_rem (C var), 460
TwoDfold_vars.E_F3 (C var), 458
TwoDfold_vars.E_F3_rem (C var), 460
TwoDfold_vars.E_F5 (C var), 457
TwoDfold_vars.E_F5_rem (C var), 460
TwoDfold_vars.E_Fc (C var), 458
TwoDfold_vars.E_Fc_rem (C var), 460
TwoDfold_vars.E_FcH (C var), 458
TwoDfold_vars.E_FcH_rem (C var), 460
TwoDfold_vars.E_FcI (C var), 458
TwoDfold_vars.E_FcI_rem (C var), 460
TwoDfold_vars.E_FcM (C var), 458
TwoDfold_vars.E_FcM_rem (C var), 460
TwoDfold_vars.E_M (C var), 458
TwoDfold_vars.E_M1 (C var), 458
TwoDfold_vars.E_M1_rem (C var), 460
TwoDfold_vars.E_M2 (C var), 458
TwoDfold_vars.E_M2_rem (C var), 460
TwoDfold_vars.E_M_rem (C var), 460
TwoDfold_vars.k_max_values (C var), 458
TwoDfold_vars.k_max_values_f (C var), 459
TwoDfold_vars.k_max_values_f3 (C var), 459
TwoDfold_vars.k_max_values_fc (C var), 459
TwoDfold_vars.k_max_values_fcH (C var), 459
TwoDfold_vars.k_max_values_fcI (C var), 459
TwoDfold_vars.k_max_values_fcM (C var), 460

906 Index

ViennaRNA, Release 2.6.4

TwoDfold_vars.k_max_values_m (C var), 458
TwoDfold_vars.k_max_values_m1 (C var), 458
TwoDfold_vars.k_max_values_m2 (C var), 459
TwoDfold_vars.k_min_values (C var), 458
TwoDfold_vars.k_min_values_f (C var), 459
TwoDfold_vars.k_min_values_f3 (C var), 459
TwoDfold_vars.k_min_values_fc (C var), 459
TwoDfold_vars.k_min_values_fcH (C var), 459
TwoDfold_vars.k_min_values_fcI (C var), 459
TwoDfold_vars.k_min_values_fcM (C var), 460
TwoDfold_vars.k_min_values_m (C var), 458
TwoDfold_vars.k_min_values_m1 (C var), 458
TwoDfold_vars.k_min_values_m2 (C var), 459
TwoDfold_vars.l_max_values (C var), 458
TwoDfold_vars.l_max_values_f (C var), 458
TwoDfold_vars.l_max_values_f3 (C var), 459
TwoDfold_vars.l_max_values_fc (C var), 459
TwoDfold_vars.l_max_values_fcH (C var), 459
TwoDfold_vars.l_max_values_fcI (C var), 459
TwoDfold_vars.l_max_values_fcM (C var), 460
TwoDfold_vars.l_max_values_m (C var), 458
TwoDfold_vars.l_max_values_m1 (C var), 458
TwoDfold_vars.l_max_values_m2 (C var), 459
TwoDfold_vars.l_min_values (C var), 458
TwoDfold_vars.l_min_values_f (C var), 458
TwoDfold_vars.l_min_values_f3 (C var), 459
TwoDfold_vars.l_min_values_fc (C var), 459
TwoDfold_vars.l_min_values_fcH (C var), 459
TwoDfold_vars.l_min_values_fcI (C var), 459
TwoDfold_vars.l_min_values_fcM (C var), 459
TwoDfold_vars.l_min_values_m (C var), 458
TwoDfold_vars.l_min_values_m1 (C var), 458
TwoDfold_vars.l_min_values_m2 (C var), 459
TwoDfold_vars.maxD1 (C var), 457
TwoDfold_vars.maxD2 (C var), 457
TwoDfold_vars.mm1 (C var), 457
TwoDfold_vars.mm2 (C var), 457
TwoDfold_vars.my_iindx (C var), 457
TwoDfold_vars.P (C var), 456
TwoDfold_vars.ptype (C var), 456
TwoDfold_vars.reference_pt1 (C var), 457
TwoDfold_vars.reference_pt2 (C var), 457
TwoDfold_vars.referenceBPs1 (C var), 457
TwoDfold_vars.referenceBPs2 (C var), 457
TwoDfold_vars.S (C var), 457
TwoDfold_vars.S1 (C var), 457
TwoDfold_vars.seq_length (C var), 457
TwoDfold_vars.sequence (C var), 457
TwoDfold_vars.temperature (C var), 457
TwoDfoldList (C function), 455
type (RNA.ep attribute), 702
type (RNA.ep property), 703
type (RNA.fold_compound attribute), 721
type (RNA.fold_compound property), 769
type (RNA.hc attribute), 774
type (RNA.hc property), 776
type (RNA.mx_mfe property), 789
type (RNA.mx_pf property), 790

type (RNA.path property), 800
type() (RNA.varArrayChar method), 815
type() (RNA.varArrayFLTorDBL method), 815
type() (RNA.varArrayInt method), 816
type() (RNA.varArrayMove method), 816
type() (RNA.varArrayShort method), 816
type() (RNA.varArrayUChar method), 816
type() (RNA.varArrayUInt method), 816

U
ubf_eval_ext_int_loop (C function), 286
ubf_eval_ext_int_loop() (in module RNA), 814
ubf_eval_int_loop (C function), 286
ubf_eval_int_loop() (in module RNA), 814
ubf_eval_int_loop2 (C function), 286
ubf_eval_int_loop2() (in module RNA), 814
ud_add_motif() (RNA.fold_compound method), 769
ud_remove() (RNA.fold_compound method), 769
ud_set_data() (RNA.fold_compound method), 769
ud_set_exp_prod_cb() (in module RNA), 814
ud_set_exp_prod_rule_cb() (RNA.fold_compound

method), 769
ud_set_prob_cb() (in module RNA), 814
ud_set_prob_cb() (RNA.fold_compound method),

770
ud_set_prod_cb() (in module RNA), 814
ud_set_prod_rule_cb() (RNA.fold_compound

method), 770
ud_set_pydata() (in module RNA), 814
UIntVector (class in RNA), 687
unexpand_aligned_F (C function), 513
unexpand_aligned_F() (in module RNA), 814
unexpand_Full (C function), 513
unexpand_Full() (in module RNA), 814
uniq_ML (C var), 306
uniq_ML (RNA.md attribute), 783
uniq_ML (RNA.md property), 787
unmodified (RNA.sc_mod_param attribute), 807
unmodified_encoding (RNA.sc_mod_param at-

tribute), 808
unpack_structure (C function), 514
unpack_structure() (in module RNA), 814
unpaired (C var), 517
unweight (C function), 513
unweight() (in module RNA), 814
up3 (RNA.hx property), 777
up5 (RNA.hx property), 777
up_ext (RNA.hc attribute), 775
up_ext (RNA.hc property), 776
up_hp (RNA.hc attribute), 775
up_hp (RNA.hc property), 776
up_int (RNA.hc attribute), 775
up_int (RNA.hc property), 776
up_ml (RNA.hc attribute), 775
up_ml (RNA.hc property), 776
Up_plot (C function), 451
update_co_pf_params (C function), 416
update_co_pf_params() (in module RNA), 814

Index 907

ViennaRNA, Release 2.6.4

update_co_pf_params_par (C function), 416
update_cofold_params (C function), 375
update_cofold_params() (in module RNA), 814
update_cofold_params_par (C function), 375
update_fold_params (C function), 378
update_fold_params() (in module RNA), 814
update_fold_params_par (C function), 378
update_pf_params (C function), 412
update_pf_params() (in module RNA), 815
update_pf_params_par (C function), 412
update_pf_paramsLP (C function), 418
update_pf_paramsLP_par (C function), 418
urn() (in module RNA), 815
ushortP_getitem() (in module RNA), 815
ushortP_setitem() (in module RNA), 815

V
value() (RNA.SwigPyIterator method), 687
var_array_Iterator (class in RNA), 816
varArrayChar (class in RNA), 815
varArrayFLTorDBL (class in RNA), 815
varArrayInt (class in RNA), 815
varArrayMove (class in RNA), 816
varArrayShort (class in RNA), 816
varArrayUChar (class in RNA), 816
varArrayUInt (class in RNA), 816
vrna__array_set_capacity (C function), 604
vrna_abstract_shapes (C function), 507
vrna_abstract_shapes_pt (C function), 507
vrna_alifold (C function), 371
vrna_alignment_s (C struct), 490
vrna_alignment_s.a2s (C var), 490
vrna_alignment_s.gapfree_seq (C var), 490
vrna_alignment_s.gapfree_size (C var), 490
vrna_alignment_s.genome_size (C var), 490
vrna_alignment_s.n_seq (C var), 490
vrna_alignment_s.orientation (C var), 490
vrna_alignment_s.sequences (C var), 490
vrna_alignment_s.start (C var), 490
vrna_aliLfold (C function), 382
vrna_aliLfold_cb (C function), 382
vrna_alloc (C function), 625
vrna_aln_consensus_mis (C function), 524
vrna_aln_consensus_sequence (C function), 524
vrna_aln_conservation_col (C function), 523
vrna_aln_conservation_struct (C function), 523
vrna_aln_copy (C function), 522
VRNA_ALN_DEFAULT (C macro), 520
VRNA_ALN_DNA (C macro), 520
vrna_aln_encode (C function), 489
vrna_aln_free (C function), 522
VRNA_ALN_LOWERCASE (C macro), 520
vrna_aln_mpi (C function), 521
vrna_aln_pinfo (C function), 521
vrna_aln_pscore (C function), 521
VRNA_ALN_RNA (C macro), 520
vrna_aln_slice (C function), 521
vrna_aln_toRNA (C function), 522

vrna_aln_uppercase (C function), 522
VRNA_ALN_UPPERCASE (C macro), 520
vrna_annotate_covar_db (C function), 551
vrna_annotate_covar_db_extended (C function),

551
vrna_annotate_covar_pairs (C function), 551
VRNA_ANY_LOOP (C macro), 396
vrna_array (C macro), 603
vrna_array_append (C macro), 603
vrna_array_capacity (C macro), 603
vrna_array_free (C macro), 603
vrna_array_grow (C macro), 603
VRNA_ARRAY_GROW_FORMULA (C macro), 603
VRNA_ARRAY_HEADER (C macro), 603
vrna_array_header_s (C struct), 604
vrna_array_header_s.num (C var), 604
vrna_array_header_s.size (C var), 604
vrna_array_header_t (C type), 604
vrna_array_init (C macro), 603
vrna_array_init_size (C macro), 603
vrna_array_make (C macro), 603
vrna_array_set_capacity (C macro), 603
vrna_array_size (C macro), 603
vrna_auxdata_free_f (C type), 570
vrna_auxdata_prepare_f (C type), 570
vrna_backtrack5 (C function), 384
vrna_backtrack5_TwoD (C function), 453
vrna_backtrack_from_intervals (C function), 384
vrna_backtrack_window (C function), 385
vrna_basename (C function), 538
vrna_basepair_s (C struct), 612
vrna_basepair_s.i (C var), 612
vrna_basepair_s.j (C var), 612
vrna_basepair_t (C type), 610
vrna_boustrophedon (C function), 567
vrna_boustrophedon_pos (C function), 567
vrna_bp_distance (C function), 511
vrna_bp_distance_pt (C function), 511
vrna_bp_stack_s (C struct), 613
vrna_bp_stack_s.i (C var), 613
vrna_bp_stack_s.j (C var), 613
vrna_bp_stack_t (C type), 610
vrna_bpp_symbol (C function), 517
VRNA_BRACKETS_ALPHA (C macro), 498
VRNA_BRACKETS_ANG (C macro), 498
VRNA_BRACKETS_ANY (C macro), 499
VRNA_BRACKETS_CLY (C macro), 498
VRNA_BRACKETS_DEFAULT (C macro), 499
VRNA_BRACKETS_RND (C macro), 498
VRNA_BRACKETS_SQR (C macro), 498
vrna_bs_result_f (C type), 424
vrna_BT_ext_loop_f3 (C function), 385
vrna_BT_ext_loop_f3_pp (C function), 385
vrna_BT_ext_loop_f5 (C function), 385
vrna_BT_gquad_int (C function), 478
vrna_BT_gquad_mfe (C function), 478
vrna_BT_hp_loop (C function), 385
vrna_BT_int_loop (C function), 385

908 Index

ViennaRNA, Release 2.6.4

vrna_BT_mb_loop (C function), 385
vrna_BT_mb_loop_split (C function), 386
vrna_BT_stack (C function), 385
vrna_C11_features (C function), 611
vrna_centroid (C function), 447
vrna_centroid_from_plist (C function), 447
vrna_centroid_from_probs (C function), 447
vrna_circalifold (C function), 371
vrna_circfold (C function), 370
VRNA_CMD_PARSE_DEFAULTS (C macro), 536
VRNA_CMD_PARSE_HC (C macro), 535
VRNA_CMD_PARSE_SC (C macro), 535
VRNA_CMD_PARSE_SD (C macro), 535
VRNA_CMD_PARSE_SILENT (C macro), 536
VRNA_CMD_PARSE_UD (C macro), 535
vrna_cmd_t (C type), 536
vrna_cofold (C function), 372
vrna_color_s (C struct), 612
vrna_color_s.bri (C var), 613
vrna_color_s.hue (C var), 613
vrna_color_s.sat (C var), 613
vrna_color_t (C type), 610
vrna_commands_apply (C function), 537
vrna_commands_free (C function), 537
VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS (C macro),

322
VRNA_CONSTRAINT_CONTEXT_EXT_LOOP (C macro),

321
VRNA_CONSTRAINT_CONTEXT_HP_LOOP (C macro),

321
VRNA_CONSTRAINT_CONTEXT_INT_LOOP (C macro),

321
VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC (C

macro), 321
VRNA_CONSTRAINT_CONTEXT_MB_LOOP (C macro),

322
VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC (C

macro), 322
VRNA_CONSTRAINT_DB (C macro), 319
VRNA_CONSTRAINT_DB_DEFAULT (C macro), 321
VRNA_CONSTRAINT_DB_DOT (C macro), 320
VRNA_CONSTRAINT_DB_ENFORCE_BP (C macro), 319
VRNA_CONSTRAINT_DB_GQUAD (C macro), 321
VRNA_CONSTRAINT_DB_INTERMOL (C macro), 320
VRNA_CONSTRAINT_DB_INTRAMOL (C macro), 320
VRNA_CONSTRAINT_DB_PIPE (C macro), 320
VRNA_CONSTRAINT_DB_RND_BRACK (C macro), 320
VRNA_CONSTRAINT_DB_WUSS (C macro), 321
VRNA_CONSTRAINT_DB_X (C macro), 320
VRNA_CONSTRAINT_FILE (C macro), 338
VRNA_CONSTRAINT_MULTILINE (C macro), 525
VRNA_CONSTRAINT_SOFT_MFE (C macro), 338
VRNA_CONSTRAINT_SOFT_PF (C macro), 338
vrna_constraints_add (C function), 323
vrna_constraints_add_SHAPE (C function), 464
vrna_constraints_add_SHAPE_ali (C function),

464
vrna_convert_dcal_to_kcal (C function), 623

vrna_convert_energy (C function), 622
vrna_convert_kcal_to_dcal (C function), 623
VRNA_CONVERT_OUTPUT_ALL (C macro), 262
VRNA_CONVERT_OUTPUT_BULGE (C macro), 263
VRNA_CONVERT_OUTPUT_DANGLE3 (C macro), 262
VRNA_CONVERT_OUTPUT_DANGLE5 (C macro), 262
VRNA_CONVERT_OUTPUT_DUMP (C macro), 263
VRNA_CONVERT_OUTPUT_HP (C macro), 262
VRNA_CONVERT_OUTPUT_INT (C macro), 263
VRNA_CONVERT_OUTPUT_INT_11 (C macro), 263
VRNA_CONVERT_OUTPUT_INT_21 (C macro), 263
VRNA_CONVERT_OUTPUT_INT_22 (C macro), 263
VRNA_CONVERT_OUTPUT_MISC (C macro), 263
VRNA_CONVERT_OUTPUT_ML (C macro), 263
VRNA_CONVERT_OUTPUT_MM_EXT (C macro), 262
VRNA_CONVERT_OUTPUT_MM_HP (C macro), 262
VRNA_CONVERT_OUTPUT_MM_INT (C macro), 262
VRNA_CONVERT_OUTPUT_MM_INT_1N (C macro), 262
VRNA_CONVERT_OUTPUT_MM_INT_23 (C macro), 262
VRNA_CONVERT_OUTPUT_MM_MULTI (C macro), 262
VRNA_CONVERT_OUTPUT_NINIO (C macro), 263
VRNA_CONVERT_OUTPUT_SPECIAL_HP (C macro), 263
VRNA_CONVERT_OUTPUT_STACK (C macro), 262
VRNA_CONVERT_OUTPUT_VANILLA (C macro), 263
vrna_convert_temperature (C function), 622
vrna_cpair_s (C struct), 612
vrna_cpair_s.hue (C var), 612
vrna_cpair_s.i (C var), 612
vrna_cpair_s.j (C var), 612
vrna_cpair_s.mfe (C var), 612
vrna_cpair_s.p (C var), 612
vrna_cpair_s.sat (C var), 612
vrna_cpair_s.type (C var), 612
vrna_cpair_t (C type), 610
vrna_cstr (C function), 606
vrna_cstr_close (C function), 607
vrna_cstr_discard (C function), 606
vrna_cstr_fflush (C function), 607
vrna_cstr_free (C function), 606
vrna_cstr_message_info (C function), 607
vrna_cstr_message_vinfo (C function), 607
vrna_cstr_message_vwarning (C function), 607
vrna_cstr_message_warning (C function), 607
vrna_cstr_print_eval_ext_loop (C function), 608
vrna_cstr_print_eval_gquad (C function), 608
vrna_cstr_print_eval_hp_loop (C function), 608
vrna_cstr_print_eval_hp_loop_revert (C func-

tion), 608
vrna_cstr_print_eval_int_loop (C function), 608
vrna_cstr_print_eval_int_loop_revert (C

function), 608
vrna_cstr_print_eval_mb_loop (C function), 608
vrna_cstr_print_eval_mb_loop_revert (C func-

tion), 608
vrna_cstr_print_eval_sd_corr (C function), 608
vrna_cstr_print_fasta_header (C function), 607
vrna_cstr_printf (C function), 607
vrna_cstr_printf_comment (C function), 608

Index 909

ViennaRNA, Release 2.6.4

vrna_cstr_printf_structure (C function), 607
vrna_cstr_printf_tbody (C function), 608
vrna_cstr_printf_thead (C function), 608
vrna_cstr_string (C function), 607
vrna_cstr_t (C type), 605
vrna_cstr_vprintf (C function), 607
vrna_cstr_vprintf_comment (C function), 608
vrna_cstr_vprintf_structure (C function), 607
vrna_cstr_vprintf_tbody (C function), 608
vrna_cstr_vprintf_thead (C function), 608
vrna_cut_point_insert (C function), 497
vrna_cut_point_remove (C function), 497
vrna_data_lin_t (C type), 610
vrna_data_linear_s (C struct), 613
vrna_data_linear_s.color (C var), 613
vrna_data_linear_s.position (C var), 613
vrna_data_linear_s.value (C var), 613
vrna_db_flatten (C function), 500
vrna_db_flatten_to (C function), 500
vrna_db_from_bp_stack (C function), 517
vrna_db_from_plist (C function), 501
vrna_db_from_probs (C function), 517
vrna_db_from_ptable (C function), 501
vrna_db_from_WUSS (C function), 502
vrna_db_pack (C function), 499
vrna_db_pk_remove (C function), 501
vrna_db_to_element_string (C function), 501
vrna_db_to_tree_string (C function), 509
vrna_db_unpack (C function), 499
VRNA_DECOMP_EXT_EXT (C macro), 340
VRNA_DECOMP_EXT_EXT_EXT (C macro), 341
VRNA_DECOMP_EXT_EXT_STEM (C macro), 342
VRNA_DECOMP_EXT_EXT_STEM1 (C macro), 342
VRNA_DECOMP_EXT_STEM (C macro), 341
VRNA_DECOMP_EXT_STEM_EXT (C macro), 341
VRNA_DECOMP_EXT_STEM_OUTSIDE (C macro), 342
VRNA_DECOMP_EXT_UP (C macro), 341
VRNA_DECOMP_ML_COAXIAL (C macro), 340
VRNA_DECOMP_ML_COAXIAL_ENC (C macro), 340
VRNA_DECOMP_ML_ML (C macro), 339
VRNA_DECOMP_ML_ML_ML (C macro), 339
VRNA_DECOMP_ML_ML_STEM (C macro), 340
VRNA_DECOMP_ML_STEM (C macro), 339
VRNA_DECOMP_ML_UP (C macro), 340
VRNA_DECOMP_PAIR_HP (C macro), 338
VRNA_DECOMP_PAIR_IL (C macro), 338
VRNA_DECOMP_PAIR_ML (C macro), 339
vrna_dimer_conc_t (C type), 448
vrna_dimer_pf_s (C struct), 392
vrna_dimer_pf_s.F0AB (C var), 392
vrna_dimer_pf_s.FA (C var), 392
vrna_dimer_pf_s.FAB (C var), 392
vrna_dimer_pf_s.FB (C var), 392
vrna_dimer_pf_s.FcAB (C var), 392
vrna_dimer_pf_t (C type), 449
vrna_dirname (C function), 538
vrna_dist_mountain (C function), 512
vrna_DNA_complement (C function), 496

vrna_dotplot_auxdata_t (C struct), 554
vrna_dotplot_auxdata_t.bottom (C var), 554
vrna_dotplot_auxdata_t.bottom_title (C var),

554
vrna_dotplot_auxdata_t.comment (C var), 554
vrna_dotplot_auxdata_t.left (C var), 554
vrna_dotplot_auxdata_t.left_title (C var),

554
vrna_dotplot_auxdata_t.right (C var), 554
vrna_dotplot_auxdata_t.right_title (C var),

554
vrna_dotplot_auxdata_t.title (C var), 554
vrna_dotplot_auxdata_t.top (C var), 554
vrna_dotplot_auxdata_t.top_title (C var), 554
vrna_E_ext_hp_loop (C function), 231
vrna_E_ext_int_loop (C function), 233
vrna_E_ext_loop_3 (C function), 230
vrna_E_ext_loop_5 (C function), 230
vrna_E_ext_stem (C function), 229
vrna_E_hp_loop (C function), 230
vrna_E_int_loop (C function), 233
vrna_E_mb_loop_fast (C function), 234
vrna_E_mb_loop_stack (C function), 234
vrna_E_ml_stems_fast (C function), 234
vrna_E_stack (C function), 233
vrna_elem_prob_s (C struct), 506
vrna_elem_prob_s.i (C var), 506
vrna_elem_prob_s.j (C var), 506
vrna_elem_prob_s.p (C var), 506
vrna_elem_prob_s.type (C var), 506
vrna_ensemble_defect (C function), 401
vrna_ensemble_defect_pt (C function), 400
vrna_enumerate_necklaces (C function), 563
vrna_ep_t (C type), 505
vrna_equilibrium_constants (C function), 449
vrna_eval_circ_consensus_structure (C func-

tion), 245
vrna_eval_circ_consensus_structure_v (C

function), 248
vrna_eval_circ_gquad_consensus_structure

(C function), 246
vrna_eval_circ_gquad_consensus_structure_v

(C function), 249
vrna_eval_circ_gquad_structure (C function),

241
vrna_eval_circ_gquad_structure_v (C function),

244
vrna_eval_circ_structure (C function), 240
vrna_eval_circ_structure_v (C function), 243
vrna_eval_consensus_structure_pt_simple (C

function), 252
vrna_eval_consensus_structure_pt_simple_v

(C function), 252
vrna_eval_consensus_structure_pt_simple_verbose

(C function), 252
vrna_eval_consensus_structure_simple (C

function), 245

910 Index

ViennaRNA, Release 2.6.4

vrna_eval_consensus_structure_simple_v (C
function), 247

vrna_eval_consensus_structure_simple_verbose
(C function), 247

vrna_eval_covar_structure (C function), 237
vrna_eval_ext_hp_loop (C function), 231
vrna_eval_ext_stem (C function), 230
vrna_eval_gquad_consensus_structure (C func-

tion), 246
vrna_eval_gquad_consensus_structure_v (C

function), 249
vrna_eval_gquad_structure (C function), 241
vrna_eval_gquad_structure_v (C function), 243
vrna_eval_hp_loop (C function), 231
vrna_eval_int_loop (C function), 233
vrna_eval_loop_pt (C function), 228
vrna_eval_loop_pt_v (C function), 228
vrna_eval_move (C function), 235
vrna_eval_move_pt (C function), 235
vrna_eval_move_pt_simple (C function), 236
vrna_eval_move_shift_pt (C function), 236
vrna_eval_structure (C function), 236
vrna_eval_structure_cstr (C function), 238
vrna_eval_structure_pt (C function), 239
vrna_eval_structure_pt_simple (C function), 250
vrna_eval_structure_pt_simple_v (C function),

251
vrna_eval_structure_pt_simple_verbose (C

function), 251
vrna_eval_structure_pt_v (C function), 239
vrna_eval_structure_pt_verbose (C function),

239
vrna_eval_structure_simple (C function), 240
vrna_eval_structure_simple_v (C function), 242
vrna_eval_structure_simple_verbose (C func-

tion), 242
vrna_eval_structure_v (C function), 238
vrna_eval_structure_verbose (C function), 237
vrna_exp_E_ext_fast (C function), 229
vrna_exp_E_ext_fast_free (C function), 229
vrna_exp_E_ext_fast_init (C function), 229
vrna_exp_E_ext_fast_rotate (C function), 229
vrna_exp_E_ext_fast_update (C function), 229
vrna_exp_E_ext_stem (C function), 228
vrna_exp_E_hp_loop (C function), 232
vrna_exp_E_int_loop (C function), 233
vrna_exp_E_interior_loop (C function), 233
vrna_exp_E_mb_loop_fast (C function), 234
vrna_exp_E_ml_fast (C function), 234
vrna_exp_E_ml_fast_free (C function), 234
vrna_exp_E_ml_fast_init (C function), 234
vrna_exp_E_ml_fast_qqm (C function), 234
vrna_exp_E_ml_fast_qqm1 (C function), 234
vrna_exp_E_ml_fast_rotate (C function), 234
vrna_exp_param_s (C struct), 274
vrna_exp_param_s.alpha (C var), 276
vrna_exp_param_s.expbulge (C var), 275
vrna_exp_param_s.expdangle3 (C var), 275

vrna_exp_param_s.expdangle5 (C var), 275
vrna_exp_param_s.expDuplexInit (C var), 276
vrna_exp_param_s.expgquad (C var), 276
vrna_exp_param_s.expgquadLayerMismatch (C

var), 276
vrna_exp_param_s.exphairpin (C var), 275
vrna_exp_param_s.exphex (C var), 276
vrna_exp_param_s.expint11 (C var), 275
vrna_exp_param_s.expint21 (C var), 275
vrna_exp_param_s.expint22 (C var), 275
vrna_exp_param_s.expinternal (C var), 275
vrna_exp_param_s.expmismatch1nI (C var), 275
vrna_exp_param_s.expmismatch23I (C var), 275
vrna_exp_param_s.expmismatchExt (C var), 275
vrna_exp_param_s.expmismatchH (C var), 275
vrna_exp_param_s.expmismatchI (C var), 275
vrna_exp_param_s.expmismatchM (C var), 275
vrna_exp_param_s.expMLbase (C var), 275
vrna_exp_param_s.expMLclosing (C var), 275
vrna_exp_param_s.expMLintern (C var), 275
vrna_exp_param_s.expMultipleCA (C var), 276
vrna_exp_param_s.expMultipleCB (C var), 276
vrna_exp_param_s.expninio (C var), 275
vrna_exp_param_s.expSaltLoop (C var), 277
vrna_exp_param_s.expSaltStack (C var), 277
vrna_exp_param_s.expstack (C var), 275
vrna_exp_param_s.expTermAU (C var), 276
vrna_exp_param_s.exptetra (C var), 276
vrna_exp_param_s.exptri (C var), 276
vrna_exp_param_s.expTriloop (C var), 276
vrna_exp_param_s.expTripleC (C var), 276
vrna_exp_param_s.gquadLayerMismatchMax (C

var), 276
vrna_exp_param_s.Hexaloops (C var), 276
vrna_exp_param_s.id (C var), 275
vrna_exp_param_s.kT (C var), 276
vrna_exp_param_s.lxc (C var), 275
vrna_exp_param_s.model_details (C var), 276
vrna_exp_param_s.param_file (C var), 277
vrna_exp_param_s.pf_scale (C var), 276
vrna_exp_param_s.SaltDPXInit (C var), 277
vrna_exp_param_s.SaltLoopDbl (C var), 277
vrna_exp_param_s.SaltMLbase (C var), 277
vrna_exp_param_s.SaltMLclosing (C var), 277
vrna_exp_param_s.SaltMLintern (C var), 277
vrna_exp_param_s.temperature (C var), 276
vrna_exp_param_s.Tetraloops (C var), 276
vrna_exp_param_s.Triloops (C var), 276
vrna_exp_param_t (C type), 265
vrna_exp_params (C function), 266
vrna_exp_params_comparative (C function), 267
vrna_exp_params_copy (C function), 267
vrna_exp_params_rescale (C function), 268
vrna_exp_params_reset (C function), 269
vrna_exp_params_subst (C function), 268
VRNA_EXT_LOOP (C macro), 396
vrna_extract_record_rest_constraint (C func-

tion), 529

Index 911

ViennaRNA, Release 2.6.4

vrna_extract_record_rest_structure (C func-
tion), 528

vrna_fc_s (C struct), 574
vrna_fc_s.a2s (C var), 580
vrna_fc_s.alignment (C var), 576
vrna_fc_s.aux_grammar (C var), 577
vrna_fc_s.auxdata (C var), 577
vrna_fc_s.bpdist (C var), 581
vrna_fc_s.cons_seq (C var), 579
vrna_fc_s.cutpoint (C var), 575
vrna_fc_s.domains_struc (C var), 577
vrna_fc_s.domains_up (C var), 577
vrna_fc_s.encoding3 (C var), 578
vrna_fc_s.encoding5 (C var), 578
vrna_fc_s.exp_matrices (C var), 576
vrna_fc_s.exp_params (C var), 576
vrna_fc_s.free_auxdata (C var), 577
vrna_fc_s.hc (C var), 576
vrna_fc_s.iindx (C var), 576
vrna_fc_s.jindx (C var), 576
vrna_fc_s.length (C var), 575
vrna_fc_s.matrices (C var), 576
vrna_fc_s.maxD1 (C var), 581
vrna_fc_s.maxD2 (C var), 581
vrna_fc_s.mm1 (C var), 581
vrna_fc_s.mm2 (C var), 581
vrna_fc_s.n_seq (C var), 579
vrna_fc_s.nucleotides (C var), 576
vrna_fc_s.oldAliEn (C var), 581
vrna_fc_s.params (C var), 576
vrna_fc_s.pscore (C var), 580
vrna_fc_s.pscore_local (C var), 580
vrna_fc_s.pscore_pf_compat (C var), 580
vrna_fc_s.ptype (C var), 578
vrna_fc_s.ptype_local (C var), 581
vrna_fc_s.ptype_pf_compat (C var), 578
vrna_fc_s.reference_pt1 (C var), 581
vrna_fc_s.reference_pt2 (C var), 581
vrna_fc_s.referenceBPs1 (C var), 581
vrna_fc_s.referenceBPs2 (C var), 581
vrna_fc_s.S (C var), 579
vrna_fc_s.S3 (C var), 580
vrna_fc_s.S5 (C var), 579
vrna_fc_s.S_cons (C var), 579
vrna_fc_s.sc (C var), 578
vrna_fc_s.scs (C var), 580
vrna_fc_s.sequence (C var), 577
vrna_fc_s.sequence_encoding (C var), 577
vrna_fc_s.sequence_encoding2 (C var), 578
vrna_fc_s.sequences (C var), 579
vrna_fc_s.Ss (C var), 580
vrna_fc_s.stat_cb (C var), 577
vrna_fc_s.strand_end (C var), 576
vrna_fc_s.strand_number (C var), 575
vrna_fc_s.strand_order (C var), 576
vrna_fc_s.strand_order_uniq (C var), 576
vrna_fc_s.strand_start (C var), 576
vrna_fc_s.strands (C var), 576

vrna_fc_s.type (C var), 575
vrna_fc_s.window_size (C var), 581
vrna_fc_s.zscore_data (C var), 581
vrna_fc_s.[anonymous] (C var), 582
vrna_fc_type_e (C enum), 571
vrna_fc_type_e.VRNA_FC_TYPE_COMPARATIVE (C

enumerator), 571
vrna_fc_type_e.VRNA_FC_TYPE_SINGLE (C enu-

merator), 571
vrna_file_bpseq (C function), 526
vrna_file_commands_apply (C function), 536
vrna_file_commands_read (C function), 536
vrna_file_connect (C function), 526
vrna_file_connect_read_record (C function), 529
vrna_file_copy (C function), 538
vrna_file_exists (C function), 539
vrna_file_fasta_read_record (C function), 527
VRNA_FILE_FORMAT_MSA_APPEND (C macro), 531
VRNA_FILE_FORMAT_MSA_CLUSTAL (C macro), 530
VRNA_FILE_FORMAT_MSA_DEFAULT (C macro), 531
VRNA_FILE_FORMAT_MSA_FASTA (C macro), 530
VRNA_FILE_FORMAT_MSA_MAF (C macro), 530
VRNA_FILE_FORMAT_MSA_MIS (C macro), 530
VRNA_FILE_FORMAT_MSA_NOCHECK (C macro), 531
VRNA_FILE_FORMAT_MSA_QUIET (C macro), 531
VRNA_FILE_FORMAT_MSA_SILENT (C macro), 531
VRNA_FILE_FORMAT_MSA_STOCKHOLM (C macro), 530
VRNA_FILE_FORMAT_MSA_UNKNOWN (C macro), 531
vrna_file_helixlist (C function), 526
vrna_file_json (C function), 527
vrna_file_msa_detect_format (C function), 534
vrna_file_msa_read (C function), 532
vrna_file_msa_read_record (C function), 533
vrna_file_msa_write (C function), 534
vrna_file_PS_aln (C function), 554
vrna_file_PS_aln_slice (C function), 555
vrna_file_PS_rnaplot (C function), 558
vrna_file_PS_rnaplot_a (C function), 559
vrna_file_PS_rnaplot_layout (C function), 559
vrna_file_RNAstrand_db_read_record (C func-

tion), 529
vrna_file_SHAPE_read (C function), 529
vrna_filename_sanitize (C function), 538
vrna_fold (C function), 370
vrna_fold_compound (C function), 571
vrna_fold_compound_add_auxdata (C function),

574
vrna_fold_compound_add_callback (C function),

574
vrna_fold_compound_comparative (C function),

572
vrna_fold_compound_comparative2 (C function),

573
vrna_fold_compound_free (C function), 573
vrna_fold_compound_prepare (C function), 573
vrna_fold_compound_t (C type), 570
vrna_fold_compound_TwoD (C function), 573
vrna_get_plist_gquad_from_pr (C function), 477

912 Index

ViennaRNA, Release 2.6.4

vrna_get_plist_gquad_from_pr_max (C function),
477

vrna_get_ptype (C function), 489
vrna_get_ptype_md (C function), 489
vrna_get_ptype_window (C function), 489
VRNA_GQUAD_MAX_BOX_SIZE (C macro), 265
VRNA_GQUAD_MAX_LINKER_LENGTH (C macro), 265
VRNA_GQUAD_MAX_STACK_SIZE (C macro), 265
VRNA_GQUAD_MIN_BOX_SIZE (C macro), 265
VRNA_GQUAD_MIN_LINKER_LENGTH (C macro), 265
VRNA_GQUAD_MIN_STACK_SIZE (C macro), 265
vrna_gquad_mx_local_update (C function), 477
vrna_gr_aux_s (C struct), 348
vrna_gr_aux_s.cb_aux (C var), 348
vrna_gr_aux_s.cb_aux_c (C var), 348
vrna_gr_aux_s.cb_aux_exp (C var), 348
vrna_gr_aux_s.cb_aux_exp_c (C var), 348
vrna_gr_aux_s.cb_aux_exp_f (C var), 348
vrna_gr_aux_s.cb_aux_exp_m (C var), 348
vrna_gr_aux_s.cb_aux_exp_m1 (C var), 348
vrna_gr_aux_s.cb_aux_f (C var), 348
vrna_gr_aux_s.cb_aux_m (C var), 348
vrna_gr_aux_s.cb_aux_m1 (C var), 348
vrna_gr_aux_s.cb_proc (C var), 348
vrna_gr_aux_s.data (C var), 348
vrna_gr_aux_s.free_data (C var), 348
vrna_gr_aux_t (C type), 347
vrna_gr_reset (C function), 347
vrna_gr_set_aux (C function), 347
vrna_gr_set_aux_c (C function), 347
vrna_gr_set_aux_exp (C function), 347
vrna_gr_set_aux_exp_c (C function), 347
vrna_gr_set_aux_exp_f (C function), 347
vrna_gr_set_aux_exp_m (C function), 347
vrna_gr_set_aux_exp_m1 (C function), 347
vrna_gr_set_aux_f (C function), 347
vrna_gr_set_aux_m (C function), 347
vrna_gr_set_aux_m1 (C function), 347
vrna_gr_set_cond (C function), 347
vrna_gr_set_data (C function), 347
vrna_grammar_cond_f (C type), 347
vrna_grammar_data_free_f (C type), 347
vrna_grammar_rule_f (C type), 346
vrna_grammar_rule_f_aux (C type), 346
vrna_grammar_rule_f_aux_exp (C type), 347
vrna_grammar_rule_f_exp (C type), 346
vrna_hamming_distance (C function), 495
vrna_hamming_distance_bound (C function), 496
vrna_hash_table_t (C type), 593
vrna_hc_add_bp (C function), 324
vrna_hc_add_bp_nonspecific (C function), 325
vrna_hc_add_from_db (C function), 325
vrna_hc_add_up (C function), 324
vrna_hc_add_up_batch (C function), 324
vrna_hc_eval_f (C type), 322
vrna_hc_free (C function), 325
vrna_hc_init (C function), 324
vrna_hc_s (C struct), 326

vrna_hc_s.data (C var), 327
vrna_hc_s.depot (C var), 327
vrna_hc_s.f (C var), 327
vrna_hc_s.free_data (C var), 327
vrna_hc_s.matrix_local (C var), 326
vrna_hc_s.mx (C var), 326
vrna_hc_s.n (C var), 326
vrna_hc_s.state (C var), 326
vrna_hc_s.type (C var), 326
vrna_hc_s.up_ext (C var), 326
vrna_hc_s.up_hp (C var), 327
vrna_hc_s.up_int (C var), 327
vrna_hc_s.up_ml (C var), 327
vrna_hc_s.[anonymous] (C var), 326
vrna_hc_t (C type), 322
vrna_hc_up_s (C struct), 327
vrna_hc_up_s.options (C var), 327
vrna_hc_up_s.position (C var), 327
vrna_hc_up_s.strand (C var), 327
vrna_hc_up_t (C type), 322
vrna_heap_cmp_f (C type), 598
vrna_heap_free (C function), 600
vrna_heap_get_pos_f (C type), 599
vrna_heap_init (C function), 599
vrna_heap_insert (C function), 600
vrna_heap_pop (C function), 601
vrna_heap_remove (C function), 601
vrna_heap_set_pos_f (C type), 599
vrna_heap_size (C function), 600
vrna_heap_t (C type), 598
vrna_heap_top (C function), 601
vrna_heap_update (C function), 601
vrna_heat_capacity (C function), 403
vrna_heat_capacity_cb (C function), 404
vrna_heat_capacity_f (C type), 406
vrna_heat_capacity_s (C struct), 406
vrna_heat_capacity_s.heat_capacity (C var),

406
vrna_heat_capacity_s.temperature (C var), 406
vrna_heat_capacity_simple (C function), 405
vrna_heat_capacity_t (C type), 406
VRNA_HP_LOOP (C macro), 396
vrna_ht_clear (C function), 596
vrna_ht_cmp_f (C type), 593
vrna_ht_collisions (C function), 595
vrna_ht_db_comp (C function), 597
vrna_ht_db_free_entry (C function), 597
vrna_ht_db_hash_func (C function), 597
vrna_ht_entry_db_t (C struct), 597
vrna_ht_entry_db_t.energy (C var), 598
vrna_ht_entry_db_t.structure (C var), 598
vrna_ht_free (C function), 596
vrna_ht_free_f (C type), 594
vrna_ht_get (C function), 595
vrna_ht_hashfunc_f (C type), 593
vrna_ht_init (C function), 594
vrna_ht_insert (C function), 595
vrna_ht_remove (C function), 596

Index 913

ViennaRNA, Release 2.6.4

vrna_ht_size (C function), 595
vrna_hx_from_ptable (C function), 508
vrna_hx_merge (C function), 508
vrna_hx_s (C struct), 508
vrna_hx_s.end (C var), 508
vrna_hx_s.length (C var), 508
vrna_hx_s.start (C var), 508
vrna_hx_s.up3 (C var), 508
vrna_hx_s.up5 (C var), 508
vrna_hx_t (C type), 508
vrna_idx_col_wise (C function), 627
vrna_idx_row_wise (C function), 626
vrna_init_rand (C function), 625
vrna_init_rand_seed (C function), 625
VRNA_INPUT_BLANK_LINE (C macro), 624
VRNA_INPUT_COMMENT (C macro), 624
VRNA_INPUT_CONSTRAINT (C macro), 624
VRNA_INPUT_ERROR (C macro), 623
VRNA_INPUT_FASTA_HEADER (C macro), 623
VRNA_INPUT_MISC (C macro), 623
VRNA_INPUT_NO_REST (C macro), 624
VRNA_INPUT_NO_SPAN (C macro), 624
VRNA_INPUT_NO_TRUNCATION (C macro), 624
VRNA_INPUT_NOSKIP_BLANK_LINES (C macro), 624
VRNA_INPUT_NOSKIP_COMMENTS (C macro), 624
VRNA_INPUT_QUIT (C macro), 623
VRNA_INPUT_SEQUENCE (C macro), 624
VRNA_INPUT_VERBOSE (C macro), 526
VRNA_INT_LOOP (C macro), 396
vrna_int_urn (C function), 625
vrna_letter_structure (C function), 518
vrna_Lfold (C function), 381
vrna_Lfold_cb (C function), 381
vrna_Lfoldz (C function), 382
vrna_Lfoldz_cb (C function), 382
vrna_loopidx_from_ptable (C function), 517
vrna_loopidx_update (C function), 354
VRNA_MB_LOOP (C macro), 396
vrna_md_copy (C function), 293
vrna_md_defaults_backbone_length (C function),

304
vrna_md_defaults_backbone_length_get (C

function), 304
vrna_md_defaults_backtrack (C function), 299
vrna_md_defaults_backtrack_get (C function),

299
vrna_md_defaults_backtrack_type (C function),

299
vrna_md_defaults_backtrack_type_get (C func-

tion), 299
vrna_md_defaults_betaScale (C function), 294
vrna_md_defaults_betaScale_get (C function),

294
vrna_md_defaults_circ (C function), 297
vrna_md_defaults_circ_get (C function), 297
vrna_md_defaults_compute_bpp (C function), 299
vrna_md_defaults_compute_bpp_get (C function),

300

vrna_md_defaults_cv_fact (C function), 302
vrna_md_defaults_cv_fact_get (C function), 302
vrna_md_defaults_dangles (C function), 294
vrna_md_defaults_dangles_get (C function), 294
vrna_md_defaults_energy_set (C function), 298
vrna_md_defaults_energy_set_get (C function),

298
vrna_md_defaults_gquad (C function), 297
vrna_md_defaults_gquad_get (C function), 297
vrna_md_defaults_helical_rise (C function), 304
vrna_md_defaults_helical_rise_get (C func-

tion), 304
vrna_md_defaults_logML (C function), 296
vrna_md_defaults_logML_get (C function), 297
vrna_md_defaults_max_bp_span (C function), 300
vrna_md_defaults_max_bp_span_get (C function),

300
vrna_md_defaults_min_loop_size (C function),

300
vrna_md_defaults_min_loop_size_get (C func-

tion), 300
vrna_md_defaults_nc_fact (C function), 302
vrna_md_defaults_nc_fact_get (C function), 303
vrna_md_defaults_noGU (C function), 296
vrna_md_defaults_noGU_get (C function), 296
vrna_md_defaults_noGUclosure (C function), 296
vrna_md_defaults_noGUclosure_get (C function),

296
vrna_md_defaults_noLP (C function), 295
vrna_md_defaults_noLP_get (C function), 295
vrna_md_defaults_oldAliEn (C function), 301
vrna_md_defaults_oldAliEn_get (C function), 301
vrna_md_defaults_pf_smooth (C function), 294
vrna_md_defaults_pf_smooth_get (C function),

294
vrna_md_defaults_reset (C function), 293
vrna_md_defaults_ribo (C function), 302
vrna_md_defaults_ribo_get (C function), 302
vrna_md_defaults_salt (C function), 303
vrna_md_defaults_salt_get (C function), 303
vrna_md_defaults_saltDPXInit (C function), 304
vrna_md_defaults_saltDPXInit_get (C function),

304
vrna_md_defaults_saltDPXInitFact (C function),

304
vrna_md_defaults_saltDPXInitFact_get (C

function), 304
vrna_md_defaults_saltMLLower (C function), 303
vrna_md_defaults_saltMLLower_get (C function),

304
vrna_md_defaults_saltMLUpper (C function), 304
vrna_md_defaults_saltMLUpper_get (C function),

304
vrna_md_defaults_sfact (C function), 303
vrna_md_defaults_sfact_get (C function), 303
vrna_md_defaults_special_hp (C function), 295
vrna_md_defaults_special_hp_get (C function),

295

914 Index

ViennaRNA, Release 2.6.4

vrna_md_defaults_temperature (C function), 293
vrna_md_defaults_temperature_get (C function),

294
vrna_md_defaults_uniq_ML (C function), 298
vrna_md_defaults_uniq_ML_get (C function), 298
vrna_md_defaults_window_size (C function), 301
vrna_md_defaults_window_size_get (C function),

301
vrna_md_option_string (C function), 293
vrna_md_s (C struct), 307
vrna_md_s.alias (C var), 310
vrna_md_s.backbone_length (C var), 311
vrna_md_s.backtrack (C var), 309
vrna_md_s.backtrack_type (C var), 309
vrna_md_s.betaScale (C var), 308
vrna_md_s.circ (C var), 309
vrna_md_s.compute_bpp (C var), 309
vrna_md_s.cv_fact (C var), 310
vrna_md_s.dangles (C var), 308
vrna_md_s.energy_set (C var), 309
vrna_md_s.gquad (C var), 309
vrna_md_s.helical_rise (C var), 311
vrna_md_s.logML (C var), 309
vrna_md_s.max_bp_span (C var), 310
vrna_md_s.min_loop_size (C var), 310
vrna_md_s.nc_fact (C var), 310
vrna_md_s.noGU (C var), 309
vrna_md_s.noGUclosure (C var), 309
vrna_md_s.noLP (C var), 309
vrna_md_s.nonstandards (C var), 309
vrna_md_s.oldAliEn (C var), 310
vrna_md_s.pair (C var), 310
vrna_md_s.pair_dist (C var), 310
vrna_md_s.pf_smooth (C var), 308
vrna_md_s.ribo (C var), 310
vrna_md_s.rtype (C var), 310
vrna_md_s.salt (C var), 310
vrna_md_s.saltDPXInit (C var), 310
vrna_md_s.saltDPXInitFact (C var), 311
vrna_md_s.saltMLLower (C var), 310
vrna_md_s.saltMLUpper (C var), 310
vrna_md_s.sfact (C var), 310
vrna_md_s.special_hp (C var), 309
vrna_md_s.temperature (C var), 308
vrna_md_s.uniq_ML (C var), 309
vrna_md_s.window_size (C var), 310
vrna_md_set_default (C function), 292
vrna_md_set_nonstandards (C function), 293
vrna_md_t (C type), 292
vrna_md_update (C function), 292
vrna_MEA (C function), 445
vrna_MEA_from_plist (C function), 446
vrna_mean_bp_distance (C function), 400
vrna_mean_bp_distance_pr (C function), 399
VRNA_MEASURE_SHANNON_ENTROPY (C macro), 520
vrna_message_constraint_options (C function),

342

vrna_message_constraint_options_all (C func-
tion), 343

vrna_message_error (C function), 618
vrna_message_info (C function), 619
vrna_message_input_msa (C function), 620
vrna_message_input_seq (C function), 620
vrna_message_input_seq_simple (C function), 620
vrna_message_verror (C function), 618
vrna_message_vinfo (C function), 620
vrna_message_vwarning (C function), 619
vrna_message_warning (C function), 619
vrna_mfe (C function), 369
vrna_mfe_dimer (C function), 369
vrna_mfe_TwoD (C function), 453
vrna_mfe_window (C function), 380
vrna_mfe_window_cb (C function), 380
vrna_mfe_window_f (C type), 383
vrna_mfe_window_zscore (C function), 380
vrna_mfe_window_zscore_cb (C function), 381
vrna_mfe_window_zscore_f (C type), 383
VRNA_MINIMIZER_CONJUGATE_FR (C macro), 467
VRNA_MINIMIZER_CONJUGATE_PR (C macro), 467
VRNA_MINIMIZER_DEFAULT (C macro), 467
VRNA_MINIMIZER_STEEPEST_DESCENT (C macro),

468
VRNA_MINIMIZER_VECTOR_BFGS (C macro), 467
VRNA_MINIMIZER_VECTOR_BFGS2 (C macro), 467
vrna_mkdir_p (C function), 538
VRNA_MODEL_BACKBONE_LENGTH_DNA (C macro), 292
VRNA_MODEL_BACKBONE_LENGTH_RNA (C macro), 292
VRNA_MODEL_DEFAULT_ALI_CV_FACT (C macro), 291
VRNA_MODEL_DEFAULT_ALI_NC_FACT (C macro), 291
VRNA_MODEL_DEFAULT_ALI_OLD_EN (C macro), 290
VRNA_MODEL_DEFAULT_ALI_RIBO (C macro), 291
VRNA_MODEL_DEFAULT_BACKBONE_LENGTH (C

macro), 292
VRNA_MODEL_DEFAULT_BACKTRACK (C macro), 290
VRNA_MODEL_DEFAULT_BACKTRACK_TYPE (C macro),

290
VRNA_MODEL_DEFAULT_BETA_SCALE (C macro), 288
VRNA_MODEL_DEFAULT_CIRC (C macro), 289
VRNA_MODEL_DEFAULT_COMPUTE_BPP (C macro), 290
VRNA_MODEL_DEFAULT_DANGLES (C macro), 288
VRNA_MODEL_DEFAULT_ENERGY_SET (C macro), 289
VRNA_MODEL_DEFAULT_GQUAD (C macro), 289
VRNA_MODEL_DEFAULT_HELICAL_RISE (C macro),

292
VRNA_MODEL_DEFAULT_LOG_ML (C macro), 290
VRNA_MODEL_DEFAULT_MAX_BP_SPAN (C macro), 290
VRNA_MODEL_DEFAULT_NO_GU (C macro), 289
VRNA_MODEL_DEFAULT_NO_GU_CLOSURE (C macro),

289
VRNA_MODEL_DEFAULT_NO_LP (C macro), 289
VRNA_MODEL_DEFAULT_PF_SCALE (C macro), 288
VRNA_MODEL_DEFAULT_PF_SMOOTH (C macro), 291
VRNA_MODEL_DEFAULT_SALT (C macro), 291
VRNA_MODEL_DEFAULT_SALT_DPXINIT (C macro),

291

Index 915

ViennaRNA, Release 2.6.4

VRNA_MODEL_DEFAULT_SALT_DPXINIT_FACT (C
macro), 291

VRNA_MODEL_DEFAULT_SALT_MLLOWER (C macro),
291

VRNA_MODEL_DEFAULT_SALT_MLUPPER (C macro),
291

VRNA_MODEL_DEFAULT_SPECIAL_HP (C macro), 288
VRNA_MODEL_DEFAULT_TEMPERATURE (C macro), 288
VRNA_MODEL_DEFAULT_UNIQ_ML (C macro), 289
VRNA_MODEL_DEFAULT_WINDOW_SIZE (C macro), 290
VRNA_MODEL_HELICAL_RISE_DNA (C macro), 292
VRNA_MODEL_HELICAL_RISE_RNA (C macro), 292
VRNA_MODEL_SALT_DPXINIT_FACT_DNA (C macro),

291
VRNA_MODEL_SALT_DPXINIT_FACT_RNA (C macro),

291
vrna_move_apply (C function), 353
vrna_move_apply_db (C function), 353
vrna_move_compare (C function), 353
vrna_move_init (C function), 352
vrna_move_is_insertion (C function), 353
vrna_move_is_removal (C function), 353
vrna_move_is_shift (C function), 353
vrna_move_list_free (C function), 352
vrna_move_neighbor_diff (C function), 355
vrna_move_neighbor_diff_cb (C function), 355
VRNA_MOVE_NO_APPLY (C macro), 351
vrna_move_s (C struct), 356
vrna_move_s.next (C var), 356
vrna_move_s.pos_3 (C var), 356
vrna_move_s.pos_5 (C var), 356
vrna_move_t (C type), 352
vrna_move_update_f (C type), 352
VRNA_MOVESET_DEFAULT (C macro), 351
VRNA_MOVESET_DELETION (C macro), 350
VRNA_MOVESET_INSERTION (C macro), 350
VRNA_MOVESET_NO_LP (C macro), 351
VRNA_MOVESET_SHIFT (C macro), 351
vrna_msa_add (C function), 489
vrna_msa_t (C type), 487
vrna_multimer_pf_s (C struct), 392
vrna_multimer_pf_s.F_connected (C var), 392
vrna_multimer_pf_s.F_monomers (C var), 392
vrna_multimer_pf_s.num_monomers (C var), 392
vrna_mx_add (C function), 583
vrna_mx_mfe_add (C function), 583
vrna_mx_mfe_free (C function), 583
vrna_mx_mfe_s (C struct), 584
vrna_mx_mfe_s.c (C var), 584
vrna_mx_mfe_s.c_local (C var), 585
vrna_mx_mfe_s.E_C (C var), 586
vrna_mx_mfe_s.E_C_rem (C var), 588
vrna_mx_mfe_s.E_F3 (C var), 586
vrna_mx_mfe_s.E_F3_rem (C var), 588
vrna_mx_mfe_s.E_F5 (C var), 586
vrna_mx_mfe_s.E_F5_rem (C var), 588
vrna_mx_mfe_s.E_Fc (C var), 587
vrna_mx_mfe_s.E_Fc_rem (C var), 588

vrna_mx_mfe_s.E_FcH (C var), 587
vrna_mx_mfe_s.E_FcH_rem (C var), 588
vrna_mx_mfe_s.E_FcI (C var), 587
vrna_mx_mfe_s.E_FcI_rem (C var), 588
vrna_mx_mfe_s.E_FcM (C var), 588
vrna_mx_mfe_s.E_FcM_rem (C var), 588
vrna_mx_mfe_s.E_M (C var), 586
vrna_mx_mfe_s.E_M1 (C var), 587
vrna_mx_mfe_s.E_M1_rem (C var), 588
vrna_mx_mfe_s.E_M2 (C var), 587
vrna_mx_mfe_s.E_M2_rem (C var), 588
vrna_mx_mfe_s.E_M_rem (C var), 588
vrna_mx_mfe_s.f3 (C var), 584
vrna_mx_mfe_s.f3_local (C var), 585
vrna_mx_mfe_s.f5 (C var), 584
vrna_mx_mfe_s.Fc (C var), 585
vrna_mx_mfe_s.FcH (C var), 585
vrna_mx_mfe_s.FcI (C var), 585
vrna_mx_mfe_s.FcM (C var), 585
vrna_mx_mfe_s.fM1 (C var), 585
vrna_mx_mfe_s.fM2 (C var), 585
vrna_mx_mfe_s.fML (C var), 585
vrna_mx_mfe_s.fML_local (C var), 585
vrna_mx_mfe_s.fms3 (C var), 584
vrna_mx_mfe_s.fms5 (C var), 584
vrna_mx_mfe_s.ggg (C var), 585
vrna_mx_mfe_s.ggg_local (C var), 585
vrna_mx_mfe_s.k_max_C (C var), 586
vrna_mx_mfe_s.k_max_F3 (C var), 586
vrna_mx_mfe_s.k_max_F5 (C var), 586
vrna_mx_mfe_s.k_max_Fc (C var), 587
vrna_mx_mfe_s.k_max_FcH (C var), 587
vrna_mx_mfe_s.k_max_FcI (C var), 588
vrna_mx_mfe_s.k_max_FcM (C var), 588
vrna_mx_mfe_s.k_max_M (C var), 586
vrna_mx_mfe_s.k_max_M1 (C var), 587
vrna_mx_mfe_s.k_max_M2 (C var), 587
vrna_mx_mfe_s.k_min_C (C var), 586
vrna_mx_mfe_s.k_min_F3 (C var), 586
vrna_mx_mfe_s.k_min_F5 (C var), 586
vrna_mx_mfe_s.k_min_Fc (C var), 587
vrna_mx_mfe_s.k_min_FcH (C var), 587
vrna_mx_mfe_s.k_min_FcI (C var), 588
vrna_mx_mfe_s.k_min_FcM (C var), 588
vrna_mx_mfe_s.k_min_M (C var), 586
vrna_mx_mfe_s.k_min_M1 (C var), 587
vrna_mx_mfe_s.k_min_M2 (C var), 587
vrna_mx_mfe_s.l_max_C (C var), 586
vrna_mx_mfe_s.l_max_F3 (C var), 586
vrna_mx_mfe_s.l_max_F5 (C var), 586
vrna_mx_mfe_s.l_max_Fc (C var), 587
vrna_mx_mfe_s.l_max_FcH (C var), 587
vrna_mx_mfe_s.l_max_FcI (C var), 587
vrna_mx_mfe_s.l_max_FcM (C var), 588
vrna_mx_mfe_s.l_max_M (C var), 586
vrna_mx_mfe_s.l_max_M1 (C var), 587
vrna_mx_mfe_s.l_max_M2 (C var), 587
vrna_mx_mfe_s.l_min_C (C var), 586

916 Index

ViennaRNA, Release 2.6.4

vrna_mx_mfe_s.l_min_F3 (C var), 586
vrna_mx_mfe_s.l_min_F5 (C var), 586
vrna_mx_mfe_s.l_min_Fc (C var), 587
vrna_mx_mfe_s.l_min_FcH (C var), 587
vrna_mx_mfe_s.l_min_FcI (C var), 587
vrna_mx_mfe_s.l_min_FcM (C var), 588
vrna_mx_mfe_s.l_min_M (C var), 586
vrna_mx_mfe_s.l_min_M1 (C var), 587
vrna_mx_mfe_s.l_min_M2 (C var), 587
vrna_mx_mfe_s.length (C var), 584
vrna_mx_mfe_s.strands (C var), 584
vrna_mx_mfe_s.type (C var), 584
vrna_mx_mfe_s.[anonymous] (C var), 588
vrna_mx_mfe_t (C type), 582
vrna_mx_pf_add (C function), 583
vrna_mx_pf_aux_el_t (C type), 228
vrna_mx_pf_aux_ml_t (C type), 234
vrna_mx_pf_free (C function), 583
vrna_mx_pf_s (C struct), 588
vrna_mx_pf_s.expMLbase (C var), 589
vrna_mx_pf_s.G (C var), 589
vrna_mx_pf_s.G_local (C var), 590
vrna_mx_pf_s.k_max_Q (C var), 590
vrna_mx_pf_s.k_max_Q_B (C var), 591
vrna_mx_pf_s.k_max_Q_c (C var), 591
vrna_mx_pf_s.k_max_Q_cH (C var), 592
vrna_mx_pf_s.k_max_Q_cI (C var), 592
vrna_mx_pf_s.k_max_Q_cM (C var), 592
vrna_mx_pf_s.k_max_Q_M (C var), 591
vrna_mx_pf_s.k_max_Q_M1 (C var), 591
vrna_mx_pf_s.k_max_Q_M2 (C var), 591
vrna_mx_pf_s.k_min_Q (C var), 590
vrna_mx_pf_s.k_min_Q_B (C var), 591
vrna_mx_pf_s.k_min_Q_c (C var), 591
vrna_mx_pf_s.k_min_Q_cH (C var), 592
vrna_mx_pf_s.k_min_Q_cI (C var), 592
vrna_mx_pf_s.k_min_Q_cM (C var), 592
vrna_mx_pf_s.k_min_Q_M (C var), 591
vrna_mx_pf_s.k_min_Q_M1 (C var), 591
vrna_mx_pf_s.k_min_Q_M2 (C var), 591
vrna_mx_pf_s.l_max_Q (C var), 590
vrna_mx_pf_s.l_max_Q_B (C var), 591
vrna_mx_pf_s.l_max_Q_c (C var), 591
vrna_mx_pf_s.l_max_Q_cH (C var), 592
vrna_mx_pf_s.l_max_Q_cI (C var), 592
vrna_mx_pf_s.l_max_Q_cM (C var), 592
vrna_mx_pf_s.l_max_Q_M (C var), 591
vrna_mx_pf_s.l_max_Q_M1 (C var), 591
vrna_mx_pf_s.l_max_Q_M2 (C var), 591
vrna_mx_pf_s.l_min_Q (C var), 590
vrna_mx_pf_s.l_min_Q_B (C var), 590
vrna_mx_pf_s.l_min_Q_c (C var), 591
vrna_mx_pf_s.l_min_Q_cH (C var), 592
vrna_mx_pf_s.l_min_Q_cI (C var), 592
vrna_mx_pf_s.l_min_Q_cM (C var), 592
vrna_mx_pf_s.l_min_Q_M (C var), 591
vrna_mx_pf_s.l_min_Q_M1 (C var), 591
vrna_mx_pf_s.l_min_Q_M2 (C var), 591

vrna_mx_pf_s.length (C var), 589
vrna_mx_pf_s.pR (C var), 590
vrna_mx_pf_s.probs (C var), 589
vrna_mx_pf_s.Q (C var), 590
vrna_mx_pf_s.q (C var), 589
vrna_mx_pf_s.q1k (C var), 589
vrna_mx_pf_s.q2l (C var), 590
vrna_mx_pf_s.Q_B (C var), 590
vrna_mx_pf_s.Q_B_rem (C var), 592
vrna_mx_pf_s.Q_c (C var), 591
vrna_mx_pf_s.Q_c_rem (C var), 592
vrna_mx_pf_s.Q_cH (C var), 592
vrna_mx_pf_s.Q_cH_rem (C var), 592
vrna_mx_pf_s.Q_cI (C var), 592
vrna_mx_pf_s.Q_cI_rem (C var), 592
vrna_mx_pf_s.Q_cM (C var), 592
vrna_mx_pf_s.Q_cM_rem (C var), 593
vrna_mx_pf_s.q_local (C var), 590
vrna_mx_pf_s.Q_M (C var), 591
vrna_mx_pf_s.Q_M1 (C var), 591
vrna_mx_pf_s.Q_M1_rem (C var), 592
vrna_mx_pf_s.Q_M2 (C var), 591
vrna_mx_pf_s.Q_M2_rem (C var), 592
vrna_mx_pf_s.Q_M_rem (C var), 592
vrna_mx_pf_s.Q_rem (C var), 592
vrna_mx_pf_s.qb (C var), 589
vrna_mx_pf_s.qb_local (C var), 590
vrna_mx_pf_s.qho (C var), 589
vrna_mx_pf_s.QI5 (C var), 590
vrna_mx_pf_s.qio (C var), 589
vrna_mx_pf_s.qln (C var), 589
vrna_mx_pf_s.qm (C var), 589
vrna_mx_pf_s.qm1 (C var), 589
vrna_mx_pf_s.qm2 (C var), 589
vrna_mx_pf_s.qm2_local (C var), 590
vrna_mx_pf_s.qm_local (C var), 590
vrna_mx_pf_s.qmb (C var), 590
vrna_mx_pf_s.qmo (C var), 589
vrna_mx_pf_s.qo (C var), 589
vrna_mx_pf_s.scale (C var), 589
vrna_mx_pf_s.type (C var), 589
vrna_mx_pf_s.[anonymous] (C var), 593
vrna_mx_pf_t (C type), 582
vrna_mx_prepare (C function), 583
vrna_mx_type_e (C enum), 582
vrna_mx_type_e.VRNA_MX_2DFOLD (C enumerator),

582
vrna_mx_type_e.VRNA_MX_DEFAULT (C enumera-

tor), 582
vrna_mx_type_e.VRNA_MX_WINDOW (C enumerator),

582
vrna_n_multichoose_k (C function), 567
VRNA_NEIGHBOR_CHANGE (C macro), 351
VRNA_NEIGHBOR_INVALID (C macro), 351
VRNA_NEIGHBOR_NEW (C macro), 351
vrna_neighbors (C function), 354
vrna_neighbors_successive (C function), 354
vrna_nucleotide_decode (C function), 489

Index 917

ViennaRNA, Release 2.6.4

vrna_nucleotide_encode (C function), 488
vrna_nucleotide_IUPAC_identity (C function),

488
VRNA_OBJECTIVE_FUNCTION_ABSOLUTE (C macro),

467
VRNA_OBJECTIVE_FUNCTION_QUADRATIC (C macro),

467
VRNA_OPTION_DEFAULT (C macro), 569
VRNA_OPTION_EVAL_ONLY (C macro), 569
VRNA_OPTION_F3 (C macro), 570
VRNA_OPTION_F5 (C macro), 570
VRNA_OPTION_HYBRID (C macro), 569
VRNA_OPTION_MFE (C macro), 569
VRNA_OPTION_MULTILINE (C macro), 525
VRNA_OPTION_PF (C macro), 569
VRNA_OPTION_WINDOW (C macro), 569
VRNA_OPTION_WINDOW_F3 (C macro), 570
VRNA_OPTION_WINDOW_F5 (C macro), 570
vrna_ostream_free (C function), 609
vrna_ostream_init (C function), 608
vrna_ostream_provide (C function), 609
vrna_ostream_request (C function), 609
vrna_ostream_t (C type), 605
vrna_ostream_threadsafe (C function), 609
vrna_pairing_probs (C function), 399
vrna_param_s (C struct), 272
vrna_param_s.bulge (C var), 272
vrna_param_s.dangle3 (C var), 273
vrna_param_s.dangle5 (C var), 273
vrna_param_s.DuplexInit (C var), 273
vrna_param_s.gquad (C var), 274
vrna_param_s.gquadLayerMismatch (C var), 274
vrna_param_s.gquadLayerMismatchMax (C var),

274
vrna_param_s.hairpin (C var), 272
vrna_param_s.Hexaloop_E (C var), 273
vrna_param_s.Hexaloops (C var), 274
vrna_param_s.id (C var), 272
vrna_param_s.int11 (C var), 273
vrna_param_s.int21 (C var), 273
vrna_param_s.int22 (C var), 273
vrna_param_s.internal_loop (C var), 272
vrna_param_s.lxc (C var), 273
vrna_param_s.mismatch1nI (C var), 273
vrna_param_s.mismatch23I (C var), 273
vrna_param_s.mismatchExt (C var), 273
vrna_param_s.mismatchH (C var), 273
vrna_param_s.mismatchI (C var), 273
vrna_param_s.mismatchM (C var), 273
vrna_param_s.MLbase (C var), 273
vrna_param_s.MLclosing (C var), 273
vrna_param_s.MLintern (C var), 273
vrna_param_s.model_details (C var), 274
vrna_param_s.MultipleCA (C var), 274
vrna_param_s.MultipleCB (C var), 274
vrna_param_s.ninio (C var), 273
vrna_param_s.param_file (C var), 274
vrna_param_s.SaltDPXInit (C var), 274

vrna_param_s.SaltLoop (C var), 274
vrna_param_s.SaltLoopDbl (C var), 274
vrna_param_s.SaltMLbase (C var), 274
vrna_param_s.SaltMLclosing (C var), 274
vrna_param_s.SaltMLintern (C var), 274
vrna_param_s.SaltStack (C var), 274
vrna_param_s.stack (C var), 272
vrna_param_s.temperature (C var), 274
vrna_param_s.TerminalAU (C var), 273
vrna_param_s.Tetraloop_E (C var), 273
vrna_param_s.Tetraloops (C var), 273
vrna_param_s.Triloop_E (C var), 273
vrna_param_s.Triloops (C var), 273
vrna_param_s.TripleC (C var), 274
vrna_param_t (C type), 265
VRNA_PARAMETER_FORMAT_DEFAULT (C macro), 255
vrna_params (C function), 266
vrna_params_copy (C function), 266
vrna_params_load (C function), 257
vrna_params_load_defaults (C function), 258
vrna_params_load_DNA_Mathews1999 (C function),

261
vrna_params_load_DNA_Mathews2004 (C function),

260
vrna_params_load_from_string (C function), 257
vrna_params_load_RNA_Andronescu2007 (C func-

tion), 259
vrna_params_load_RNA_Langdon2018 (C function),

259
vrna_params_load_RNA_misc_special_hairpins

(C function), 260
vrna_params_load_RNA_Turner1999 (C function),

259
vrna_params_load_RNA_Turner2004 (C function),

258
vrna_params_prepare (C function), 270
vrna_params_reset (C function), 269
vrna_params_save (C function), 257
vrna_params_subst (C function), 267
vrna_path (C function), 365
VRNA_PATH_DEFAULT (C macro), 364
vrna_path_direct (C function), 363
vrna_path_direct_ub (C function), 363
vrna_path_findpath (C function), 361
vrna_path_findpath_saddle (C function), 359
vrna_path_findpath_saddle_ub (C function), 360
vrna_path_findpath_ub (C function), 361
vrna_path_free (C function), 358
vrna_path_gradient (C function), 365
VRNA_PATH_NO_TRANSITION_OUTPUT (C macro), 364
vrna_path_options_findpath (C function), 362
vrna_path_options_free (C function), 358
vrna_path_options_t (C type), 357
vrna_path_random (C function), 366
VRNA_PATH_RANDOM (C macro), 364
vrna_path_s (C struct), 358
vrna_path_s.en (C var), 359
vrna_path_s.move (C var), 359

918 Index

ViennaRNA, Release 2.6.4

vrna_path_s.s (C var), 359
vrna_path_s.type (C var), 359
VRNA_PATH_STEEPEST_DESCENT (C macro), 364
vrna_path_t (C type), 357
VRNA_PATH_TYPE_DOT_BRACKET (C macro), 357
VRNA_PATH_TYPE_MOVES (C macro), 357
vrna_pbacktrack (C function), 431
vrna_pbacktrack5 (C function), 425
vrna_pbacktrack5_cb (C function), 427
vrna_pbacktrack5_num (C function), 426
vrna_pbacktrack5_resume (C function), 428
vrna_pbacktrack5_resume_cb (C function), 430
vrna_pbacktrack5_TwoD (C function), 462
vrna_pbacktrack_cb (C function), 433
VRNA_PBACKTRACK_DEFAULT (C macro), 424
vrna_pbacktrack_mem_free (C function), 444
vrna_pbacktrack_mem_t (C type), 425
VRNA_PBACKTRACK_NON_REDUNDANT (C macro), 424
vrna_pbacktrack_num (C function), 432
vrna_pbacktrack_resume (C function), 434
vrna_pbacktrack_resume_cb (C function), 436
vrna_pbacktrack_sub (C function), 437
vrna_pbacktrack_sub_cb (C function), 439
vrna_pbacktrack_sub_num (C function), 438
vrna_pbacktrack_sub_resume (C function), 440
vrna_pbacktrack_sub_resume_cb (C function), 442
vrna_pbacktrack_TwoD (C function), 462
vrna_pf (C function), 388
vrna_pf_add (C function), 389
vrna_pf_alifold (C function), 390
vrna_pf_circalifold (C function), 390
vrna_pf_circfold (C function), 389
vrna_pf_co_fold (C function), 391, 449
vrna_pf_dimer (C function), 388
vrna_pf_dimer_concentrations (C function), 448
vrna_pf_dimer_probs (C function), 402
vrna_pf_float_precision (C function), 420
vrna_pf_fold (C function), 389
vrna_pf_substrands (C function), 389
vrna_pf_TwoD (C function), 460
vrna_pfl_fold (C function), 394
vrna_pfl_fold_cb (C function), 394
vrna_pfl_fold_up (C function), 395
vrna_pfl_fold_up_cb (C function), 395
vrna_pinfo_s (C struct), 524
vrna_pinfo_s.bp (C var), 525
vrna_pinfo_s.comp (C var), 525
vrna_pinfo_s.ent (C var), 525
vrna_pinfo_s.i (C var), 525
vrna_pinfo_s.j (C var), 525
vrna_pinfo_s.p (C var), 525
vrna_pinfo_t (C type), 521
vrna_pk_plex (C function), 473
vrna_pk_plex_accessibility (C function), 474
vrna_pk_plex_opt (C function), 474
vrna_pk_plex_opt_defaults (C function), 474
vrna_pk_plex_opt_fun (C function), 474
vrna_pk_plex_opt_t (C type), 473

vrna_pk_plex_result_s (C struct), 475
vrna_pk_plex_result_s.dG1 (C var), 475
vrna_pk_plex_result_s.dG2 (C var), 475
vrna_pk_plex_result_s.dGint (C var), 475
vrna_pk_plex_result_s.dGpk (C var), 475
vrna_pk_plex_result_s.end_3 (C var), 476
vrna_pk_plex_result_s.end_5 (C var), 475
vrna_pk_plex_result_s.energy (C var), 475
vrna_pk_plex_result_s.start_3 (C var), 476
vrna_pk_plex_result_s.start_5 (C var), 475
vrna_pk_plex_result_s.structure (C var), 475
vrna_pk_plex_score_f (C type), 472
vrna_pk_plex_t (C type), 473
vrna_plist (C function), 506
vrna_plist_from_probs (C function), 392
vrna_plist_t (C type), 610
VRNA_PLIST_TYPE_BASEPAIR (C macro), 505
VRNA_PLIST_TYPE_GQUAD (C macro), 505
VRNA_PLIST_TYPE_H_MOTIF (C macro), 505
VRNA_PLIST_TYPE_I_MOTIF (C macro), 505
VRNA_PLIST_TYPE_STACK (C macro), 505
VRNA_PLIST_TYPE_TRIPLE (C macro), 505
VRNA_PLIST_TYPE_UD_MOTIF (C macro), 505
VRNA_PLIST_TYPE_UNPAIRED (C macro), 505
vrna_plot_coords (C function), 543
vrna_plot_coords_circular (C function), 545
vrna_plot_coords_circular_pt (C function), 546
vrna_plot_coords_pt (C function), 544
vrna_plot_coords_puzzler (C function), 547
vrna_plot_coords_puzzler_pt (C function), 547
vrna_plot_coords_simple (C function), 544
vrna_plot_coords_simple_pt (C function), 545
vrna_plot_coords_turtle (C function), 548
vrna_plot_coords_turtle_pt (C function), 549
vrna_plot_dp_EPS (C function), 553
vrna_plot_dp_PS_list (C function), 553
vrna_plot_layout (C function), 540
vrna_plot_layout_circular (C function), 541
vrna_plot_layout_free (C function), 543
vrna_plot_layout_puzzler (C function), 542
vrna_plot_layout_s (C struct), 550
vrna_plot_layout_s.arcs (C var), 550
vrna_plot_layout_s.bbox (C var), 550
vrna_plot_layout_s.length (C var), 550
vrna_plot_layout_s.x (C var), 550
vrna_plot_layout_s.y (C var), 550
vrna_plot_layout_simple (C function), 541
vrna_plot_layout_t (C type), 540
vrna_plot_layout_turtle (C function), 542
vrna_plot_options_puzzler (C function), 548
vrna_plot_options_puzzler_free (C function),

548
vrna_plot_options_puzzler_t (C struct), 550
vrna_plot_options_puzzler_t.allowFlipping

(C var), 551
vrna_plot_options_puzzler_t.checkAncestorIntersections

(C var), 550

Index 919

ViennaRNA, Release 2.6.4

vrna_plot_options_puzzler_t.checkExteriorIntersections
(C var), 550

vrna_plot_options_puzzler_t.checkSiblingIntersections
(C var), 550

vrna_plot_options_puzzler_t.config (C var),
551

vrna_plot_options_puzzler_t.drawArcs (C
var), 550

vrna_plot_options_puzzler_t.filename (C
var), 551

vrna_plot_options_puzzler_t.maximumNumberOfConfigChangesAllowed
(C var), 551

vrna_plot_options_puzzler_t.numberOfChangesAppliedToConfig
(C var), 551

vrna_plot_options_puzzler_t.optimize (C
var), 551

vrna_plot_options_puzzler_t.paired (C var),
550

vrna_plot_options_puzzler_t.psNumber (C
var), 551

vrna_plot_options_puzzler_t.unpaired (C
var), 550

VRNA_PLOT_PROBABILITIES_ACC (C macro), 552
VRNA_PLOT_PROBABILITIES_BP (C macro), 552
VRNA_PLOT_PROBABILITIES_DEFAULT (C macro),

552
VRNA_PLOT_PROBABILITIES_SC_BP (C macro), 552
VRNA_PLOT_PROBABILITIES_SC_MOTIF (C macro),

552
VRNA_PLOT_PROBABILITIES_SC_UP (C macro), 552
VRNA_PLOT_PROBABILITIES_SD (C macro), 552
VRNA_PLOT_PROBABILITIES_UD (C macro), 552
VRNA_PLOT_PROBABILITIES_UD_LIN (C macro), 552
VRNA_PLOT_TYPE_CIRCULAR (C macro), 540
VRNA_PLOT_TYPE_DEFAULT (C macro), 540
VRNA_PLOT_TYPE_NAVIEW (C macro), 539
VRNA_PLOT_TYPE_PUZZLER (C macro), 540
VRNA_PLOT_TYPE_SIMPLE (C macro), 539
VRNA_PLOT_TYPE_TURTLE (C macro), 540
vrna_positional_entropy (C function), 401
vrna_pr_energy (C function), 403
vrna_pr_structure (C function), 403
vrna_probs_window (C function), 393
VRNA_PROBS_WINDOW_BPP (C macro), 396
vrna_probs_window_f (C type), 398
VRNA_PROBS_WINDOW_PF (C macro), 397
VRNA_PROBS_WINDOW_STACKP (C macro), 396
VRNA_PROBS_WINDOW_UP (C macro), 396
VRNA_PROBS_WINDOW_UP_SPLIT (C macro), 397
vrna_pscore (C function), 521
vrna_pscore_freq (C function), 521
vrna_pt_ali_get (C function), 504
vrna_pt_pk_get (C function), 504
vrna_pt_pk_remove (C function), 504
vrna_pt_snoop_get (C function), 504
vrna_ptable (C function), 503
vrna_ptable_copy (C function), 504
vrna_ptable_from_string (C function), 503

vrna_ptypes (C function), 488
vrna_ptypes_prepare (C function), 488
vrna_random_string (C function), 495
vrna_read_line (C function), 538
vrna_realloc (C function), 625
vrna_recursion_status_f (C type), 571
vrna_refBPcnt_matrix (C function), 517
vrna_refBPdist_matrix (C function), 517
vrna_rotational_symmetry (C function), 564
vrna_rotational_symmetry_db (C function), 565
vrna_rotational_symmetry_db_pos (C function),

566
vrna_rotational_symmetry_num (C function), 563
vrna_rotational_symmetry_pos (C function), 565
vrna_rotational_symmetry_pos_num (C function),

563
vrna_salt_duplex_init (C function), 254
vrna_salt_loop (C function), 253
vrna_salt_loop_int (C function), 253
vrna_salt_ml (C function), 254
vrna_salt_stack (C function), 253
vrna_sc_add_bp (C function), 331
vrna_sc_add_bt (C function), 334
vrna_sc_add_data (C function), 333
vrna_sc_add_exp_f (C function), 334
vrna_sc_add_f (C function), 333
vrna_sc_add_hi_motif (C function), 470
vrna_sc_add_SHAPE_deigan (C function), 464
vrna_sc_add_SHAPE_deigan_ali (C function), 465
vrna_sc_add_SHAPE_zarringhalam (C function),

466
vrna_sc_add_up (C function), 332
vrna_sc_bt_f (C type), 329
vrna_sc_exp_f (C type), 329
vrna_sc_f (C type), 328
vrna_sc_free (C function), 333
vrna_sc_init (C function), 330
vrna_sc_ligand_detect_motifs (C function), 471
vrna_sc_ligand_get_all_motifs (C function), 471
vrna_sc_minimize_pertubation (C function), 468
vrna_sc_mod (C function), 483
vrna_sc_mod_7DA (C function), 485
VRNA_SC_MOD_CHECK_FALLBACK (C macro), 480
VRNA_SC_MOD_CHECK_UNMOD (C macro), 480
VRNA_SC_MOD_DEFAULT (C macro), 480
vrna_sc_mod_dihydrouridine (C function), 486
vrna_sc_mod_inosine (C function), 484
vrna_sc_mod_json (C function), 482
vrna_sc_mod_jsonfile (C function), 482
vrna_sc_mod_m6A (C function), 483
vrna_sc_mod_param_t (C type), 481
vrna_sc_mod_parameters_free (C function), 481
vrna_sc_mod_pseudouridine (C function), 484
vrna_sc_mod_purine (C function), 486
vrna_sc_mod_read_from_json (C function), 481
vrna_sc_mod_read_from_jsonfile (C function),

481
VRNA_SC_MOD_SILENT (C macro), 480

920 Index

ViennaRNA, Release 2.6.4

vrna_sc_motif_s (C struct), 471
vrna_sc_motif_s.i (C var), 472
vrna_sc_motif_s.j (C var), 472
vrna_sc_motif_s.k (C var), 472
vrna_sc_motif_s.l (C var), 472
vrna_sc_motif_s.number (C var), 472
vrna_sc_motif_t (C type), 470
vrna_sc_remove (C function), 332
vrna_sc_s (C struct), 335
vrna_sc_s.bp_storage (C var), 335
vrna_sc_s.bt (C var), 336
vrna_sc_s.data (C var), 336
vrna_sc_s.energy_bp (C var), 335
vrna_sc_s.energy_bp_local (C var), 335
vrna_sc_s.energy_stack (C var), 335
vrna_sc_s.energy_up (C var), 335
vrna_sc_s.exp_energy_bp (C var), 335
vrna_sc_s.exp_energy_bp_local (C var), 335
vrna_sc_s.exp_energy_stack (C var), 335
vrna_sc_s.exp_energy_up (C var), 335
vrna_sc_s.exp_f (C var), 336
vrna_sc_s.f (C var), 335
vrna_sc_s.free_data (C var), 336
vrna_sc_s.n (C var), 335
vrna_sc_s.prepare_data (C var), 336
vrna_sc_s.state (C var), 335
vrna_sc_s.type (C var), 335
vrna_sc_s.up_storage (C var), 335
vrna_sc_s.[anonymous] (C var), 335
vrna_sc_set_bp (C function), 330
vrna_sc_set_up (C function), 332
vrna_sc_SHAPE_to_pr (C function), 466
vrna_sc_t (C type), 328
vrna_search_BM_BCT (C function), 562
vrna_search_BM_BCT_num (C function), 562
vrna_search_BMH (C function), 561
vrna_search_BMH_num (C function), 561
vrna_sect_s (C struct), 613
vrna_sect_s.i (C var), 613
vrna_sect_s.j (C var), 613
vrna_sect_s.ml (C var), 613
vrna_sect_t (C type), 610
vrna_seq_encode (C function), 488
vrna_seq_encode_simple (C function), 488
vrna_seq_reverse (C function), 496
vrna_seq_t (C type), 487
vrna_seq_toRNA (C function), 496
vrna_seq_toupper (C function), 496
vrna_seq_type_e (C enum), 487
vrna_seq_type_e.VRNA_SEQ_DNA (C enumerator),

487
vrna_seq_type_e.VRNA_SEQ_RNA (C enumerator),

487
vrna_seq_type_e.VRNA_SEQ_UNKNOWN (C enumera-

tor), 487
vrna_seq_ungapped (C function), 497
vrna_sequence (C function), 489
vrna_sequence_add (C function), 489

VRNA_SEQUENCE_DNA (C macro), 487
vrna_sequence_length_max (C function), 488
vrna_sequence_order_update (C function), 489
vrna_sequence_prepare (C function), 489
vrna_sequence_remove (C function), 489
vrna_sequence_remove_all (C function), 489
VRNA_SEQUENCE_RNA (C macro), 487
vrna_sequence_s (C struct), 489
vrna_sequence_s.encoding (C var), 490
vrna_sequence_s.encoding3 (C var), 490
vrna_sequence_s.encoding5 (C var), 490
vrna_sequence_s.length (C var), 490
vrna_sequence_s.name (C var), 490
vrna_sequence_s.string (C var), 490
vrna_sequence_s.type (C var), 490
vrna_sol_TwoD_pf_t (C struct), 461
vrna_sol_TwoD_pf_t.k (C var), 461
vrna_sol_TwoD_pf_t.l (C var), 461
vrna_sol_TwoD_pf_t.q (C var), 461
vrna_sol_TwoD_t (C struct), 456
vrna_sol_TwoD_t.en (C var), 456
vrna_sol_TwoD_t.k (C var), 456
vrna_sol_TwoD_t.l (C var), 456
vrna_sol_TwoD_t.s (C var), 456
vrna_stack_prob (C function), 402
VRNA_STATUS_MFE_POST (C macro), 568
VRNA_STATUS_MFE_PRE (C macro), 568
VRNA_STATUS_PF_POST (C macro), 569
VRNA_STATUS_PF_PRE (C macro), 568
vrna_strcat_printf (C function), 493
vrna_strcat_vprintf (C function), 493
vrna_strchr (C function), 497
vrna_strdup_printf (C function), 492
vrna_strdup_vprintf (C function), 492
vrna_stream_output_f (C type), 605
vrna_string_append (C function), 605
vrna_string_append_cstring (C function), 605
vrna_string_free (C function), 605
VRNA_STRING_HEADER (C macro), 604
vrna_string_header_s (C struct), 605
vrna_string_header_s.backup (C var), 605
vrna_string_header_s.len (C var), 605
vrna_string_header_s.shift_post (C var), 605
vrna_string_header_s.size (C var), 605
vrna_string_header_t (C type), 604
vrna_string_make (C function), 605
vrna_string_t (C type), 604
vrna_strjoin (C function), 495
vrna_strsplit (C function), 494
vrna_strtrim (C function), 493
VRNA_STRUCTURE_TREE_EXPANDED (C macro), 509
VRNA_STRUCTURE_TREE_HIT (C macro), 508
VRNA_STRUCTURE_TREE_SHAPIRO (C macro), 509
VRNA_STRUCTURE_TREE_SHAPIRO_EXT (C macro),

509
VRNA_STRUCTURE_TREE_SHAPIRO_SHORT (C macro),

508

Index 921

ViennaRNA, Release 2.6.4

VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT (C
macro), 509

vrna_subopt (C function), 422
vrna_subopt_cb (C function), 422
vrna_subopt_result_f (C type), 421
vrna_subopt_zuker (C function), 420
vrna_time_stamp (C function), 626
vrna_tree_string_to_db (C function), 510
vrna_tree_string_unweight (C function), 510
VRNA_TRIM_ALL (C macro), 492
VRNA_TRIM_DEFAULT (C macro), 492
VRNA_TRIM_IN_BETWEEN (C macro), 491
VRNA_TRIM_LEADING (C macro), 491
VRNA_TRIM_SUBST_BY_FIRST (C macro), 491
VRNA_TRIM_TRAILING (C macro), 491
vrna_ud_add_motif (C function), 315
vrna_ud_add_probs_f (C type), 313
vrna_ud_exp_f (C type), 313
vrna_ud_exp_production_f (C type), 313
vrna_ud_f (C type), 312
vrna_ud_get_probs_f (C type), 314
vrna_ud_motifs_centroid (C function), 314
vrna_ud_motifs_MEA (C function), 314
vrna_ud_motifs_MFE (C function), 315
vrna_ud_production_f (C type), 313
vrna_ud_remove (C function), 315
vrna_ud_set_data (C function), 316
vrna_ud_set_exp_prod_rule_cb (C function), 317
vrna_ud_set_prod_rule_cb (C function), 316
vrna_ud_t (C type), 312
vrna_unit_energy_e (C enum), 620
vrna_unit_energy_e.VRNA_UNIT_CAL (C enumera-

tor), 621
vrna_unit_energy_e.VRNA_UNIT_CAL_IT (C enu-

merator), 620
vrna_unit_energy_e.VRNA_UNIT_DACAL (C enu-

merator), 621
vrna_unit_energy_e.VRNA_UNIT_DACAL_IT (C

enumerator), 621
vrna_unit_energy_e.VRNA_UNIT_EV (C enumera-

tor), 621
vrna_unit_energy_e.VRNA_UNIT_G_TNT (C enu-

merator), 621
vrna_unit_energy_e.VRNA_UNIT_J (C enumera-

tor), 620
vrna_unit_energy_e.VRNA_UNIT_KCAL (C enumer-

ator), 621
vrna_unit_energy_e.VRNA_UNIT_KCAL_IT (C enu-

merator), 621
vrna_unit_energy_e.VRNA_UNIT_KG_TNT (C enu-

merator), 621
vrna_unit_energy_e.VRNA_UNIT_KJ (C enumera-

tor), 620
vrna_unit_energy_e.VRNA_UNIT_KWH (C enumera-

tor), 621
vrna_unit_energy_e.VRNA_UNIT_T_TNT (C enu-

merator), 621

vrna_unit_energy_e.VRNA_UNIT_WH (C enumera-
tor), 621

vrna_unit_temperature_e (C enum), 621
vrna_unit_temperature_e.VRNA_UNIT_DEG_C (C

enumerator), 621
vrna_unit_temperature_e.VRNA_UNIT_DEG_DE

(C enumerator), 622
vrna_unit_temperature_e.VRNA_UNIT_DEG_F (C

enumerator), 621
vrna_unit_temperature_e.VRNA_UNIT_DEG_N (C

enumerator), 622
vrna_unit_temperature_e.VRNA_UNIT_DEG_R (C

enumerator), 622
vrna_unit_temperature_e.VRNA_UNIT_DEG_RE

(C enumerator), 622
vrna_unit_temperature_e.VRNA_UNIT_DEG_RO

(C enumerator), 622
vrna_unit_temperature_e.VRNA_UNIT_K (C enu-

merator), 621
VRNA_UNSTRUCTURED_DOMAIN_ALL_LOOPS (C

macro), 312
VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP (C macro),

312
VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP (C macro),

312
VRNA_UNSTRUCTURED_DOMAIN_INT_LOOP (C macro),

312
VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP (C macro),

312
VRNA_UNSTRUCTURED_DOMAIN_MOTIF (C macro), 312
vrna_unstructured_domain_s (C struct), 317
vrna_unstructured_domain_s.data (C var), 318
vrna_unstructured_domain_s.energy_cb (C

var), 318
vrna_unstructured_domain_s.exp_energy_cb

(C var), 318
vrna_unstructured_domain_s.exp_prod_cb (C

var), 318
vrna_unstructured_domain_s.free_data (C

var), 318
vrna_unstructured_domain_s.motif (C var), 318
vrna_unstructured_domain_s.motif_count (C

var), 318
vrna_unstructured_domain_s.motif_en (C var),

318
vrna_unstructured_domain_s.motif_name (C

var), 318
vrna_unstructured_domain_s.motif_size (C

var), 318
vrna_unstructured_domain_s.motif_type (C

var), 318
vrna_unstructured_domain_s.probs_add (C

var), 319
vrna_unstructured_domain_s.probs_get (C

var), 319
vrna_unstructured_domain_s.prod_cb (C var),

318
vrna_unstructured_domain_s.uniq_motif_count

922 Index

ViennaRNA, Release 2.6.4

(C var), 318
vrna_unstructured_domain_s.uniq_motif_size

(C var), 318
vrna_urn (C function), 625
VRNA_VERBOSITY_DEFAULT (C macro), 252
VRNA_VERBOSITY_QUIET (C macro), 252

W
window_size (RNA.fold_compound attribute), 728
window_size (RNA.md attribute), 784
window_size (RNA.md property), 787
write_parameter_file (C function), 261
write_parameter_file() (in module RNA), 816

X
X (RNA.COORDINATE attribute), 668
X (RNA.COORDINATE property), 668
xrna_plot (C function), 560
xrna_plot() (in module RNA), 817
XSTR (C macro), 491
xsubi (C var), 627

Y
Y (RNA.COORDINATE attribute), 668
Y (RNA.COORDINATE property), 668

Z
zsc_compute() (RNA.fold_compound method), 770
zsc_compute_raw() (RNA.fold_compound method),

770
zsc_filter_free() (RNA.fold_compound method),

770
zsc_filter_init() (RNA.fold_compound method),

771
zsc_filter_on() (RNA.fold_compound method), 771
zsc_filter_threshold() (RNA.fold_compound

method), 771
zsc_filter_update() (RNA.fold_compound

method), 771
zscore_data (RNA.fold_compound attribute), 728
zukersubopt (C function), 420
zukersubopt() (in module RNA), 817
zukersubopt_par (C function), 420

Index 923

	Installation
	Installing from Source
	Quick-start
	Installing from git repository
	Building the reference manual
	Installation without root privileges
	MacOS X users

	Using conda
	Binary packages
	Python interface only
	Building the Python package

	Unofficial Julia Interface

	Configuration
	Streaming SIMD Extension
	Scripting Language Interfaces
	Cluster Analysis
	Kinfold
	RNAforester
	Kinwalker
	RNAlocmin
	RNAxplorer
	Link Time Optimization
	OpenMP
	POSIX threads
	SVM Z-score filter
	GNU Scientific Library
	Multiple-precision Floating-Point Computations
	Universal binaries
	Disable C11/C++11 features
	Deprecated symbols
	Single precision
	Help

	Getting Started
	Global RNA Secondary Structure Prediction
	The Program RNAfold
	Introduction
	MFE structure of a single sequence
	Equilibrium ensemble properties
	Rotate the structure plot
	The base pair probability dot plot
	Mountain and Reliability plot
	Batch job processing
	Add constraints to the structure prediction
	SHAPE directed RNA folding
	Adding ligand interactions
	G-quadruplexes
	SSB protein interaction
	Change other model settings

	The Program RNApvmin
	Introduction

	The Program RNAsubopt
	Introduction
	Suboptimal folding
	Sampling the Boltzmann Ensemble

	Consensus Structure Prediction
	The Program RNAalifold
	Introduction
	Consensus Structure from related Sequences
	RNAalifold Output Files
	Structure predictions for the individual sequences

	RNA-RNA interaction
	The Program RNAcofold
	Introduction
	Two Sequences one Structure
	Concentration Dependency
	Concentration Dependency Plot

	The Program RNAduplex
	Introduction
	Binding site prediction with RNAduplex
	Binding site prediction with RNAup

	Plotting Structures
	The Program RNAplot
	Introduction
	PostScript macros

	RNA Design
	The Program RNAinverse
	Introduction
	Sequence Design
	Other RNA design tools

	The Program switch.pl
	Introduction
	Designing a Switch

	RNA folding kinetics
	The Program RNA2Dfold
	The Programs barriers and treekin
	Introduction
	A short recall on howto install/compile a program
	Calculate the Barrier Tree
	Simulating the Folding Kinetics

	Other Utilities
	Utilities
	Available Tools

	Manpages
	RNA2Dfold
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAaliduplex
	Synopsis
	DESCRIPTION
	Algorithms:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS
	SEE ALSO

	RNAalifold
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:
	Plotting:

	REFERENCES
	EXAMPLES
	THE ALIOUT FILE
	AUTHOR
	REPORTING BUGS
	SEE ALSO

	RNAcofold
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:
	Plotting:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAdistance
	Synopsis
	DESCRIPTION
	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAdos
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS
	SEE ALSO

	RNAduplex
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS
	SEE ALSO

	RNAeval
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAfold
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:
	Plotting:

	REFERENCES
	EXAMPLES
	CONSTRAINT EXAMPLES
	POST-TRANSCRIPTIONAL MODIFICATION EXAMPLES
	AUTHOR
	REPORTING BUGS

	RNAheat
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS
	SEE ALSO

	RNAinverse
	Synopsis
	DESCRIPTION
	Algorithms:
	Energy Parameters:
	Model Details:

	REFERENCES
	EXAMPLES
	AUTHOR
	REPORTING BUGS

	RNALalifold
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:
	Plotting:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNALfold
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS
	SEE ALSO

	RNAmultifold
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:

	REFERENCES
	REPORTING BUGS

	RNApaln
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAparconv
	Synopsis
	DESCRIPTION
	I/O Options:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNApdist
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAPKplex
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAplex
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:
	Plotting:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAplfold
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS
	SEE ALSO

	RNAplot
	Synopsis
	DESCRIPTION
	I/O Options:
	Plotting:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNApvmin
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:

	REFERENCES
	EXAMPLES
	AUTHOR
	REPORTING BUGS

	RNAsnoop
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Plotting:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAsubopt
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Structure Constraints:
	Energy Parameters:
	Model Details:

	REFERENCES
	AUTHOR
	REPORTING BUGS

	RNAup
	Synopsis
	DESCRIPTION
	I/O Options:
	Algorithms:
	Calculations of RNA-RNA interactions:
	Structure Constraints:
	Energy Parameters:
	Model Details:

	REFERENCES
	EXAMPLES
	AUTHOR
	REPORTING BUGS

	Using RNAlib
	Linking against RNAlib
	Compiler and Linker flags
	The pkg-config tool

	C Examples
	MFE Prediction (simple interface)
	MFE Prediction (VRNA 3.0 interface)
	MFE and Centroid structure Prediction
	Suboptimal Structure Prediction
	Base Pair Probabilities
	MFE Consensus Structure Prediction
	MFE Prediction (deviating from default settings)
	Soft Constraints
	A more elaborate (old) example

	Python Examples
	MFE Prediction (flat interface)
	MFE Prediction (object oriented interface)
	Suboptimal Structure Prediction
	Boltzmann Sampling
	RNAfold -p MEA equivalent
	MFE Consensus Structure Prediction
	MFE Prediction (deviating from default settings)
	Fun with Soft Constraints
	Parsing Alignments

	Perl 5 Examples
	MFE Prediction (flat interface)
	MFE Prediction (object oriented interface)
	MFE Consensus Structure Prediction
	MFE Prediction (deviating from default settings)
	Fun with Soft Constraints

	I/O Formats
	RNA Structures
	Dot-Bracket Notation
	Pseudo Dot-Bracket Notation
	Extended Dot-Bracket Notation

	WUSS notation
	Abstract Shapes
	Tree Representations

	Multiple Sequence Alignments (MSA)
	ClustalW format
	Stockholm 1.0 format
	FASTA (Pearson) format
	MAF format

	Command Files
	Constraint commands
	RNA folding grammar exensions
	Specification of the loop type context
	Controlling the orientation of base pairing
	Sequence coordinates
	Valid constraint commands
	Valid domain extensions commands

	Energy Parameters
	Modified Bases

	Concepts and Algorithms
	Free Energy Evaluation
	Energy Evaluation for Individual Loops
	General
	Exterior Loops
	Hairpin Loops
	Internal Loops
	Multibranch Loops

	Energy Evaluation for Atomic Moves
	Evaluation of Structures
	Energy Parameters
	Salt Corrections
	Loading / Saving Energy Parameter Sets
	Converting Energy Parameter Files
	Available Parameter Sets
	Energy Parameter API

	Deprecated Interface for Free Energy Evaluation
	Loop Decomposition
	Fine-tuning of the Evaluation Model

	The RNA Folding Grammar
	Fine-tuning of the Implemented Models
	Unstructured Domains
	Structured Domains
	Secondary Structure Constraints
	Hard Constraints
	Soft Constraints
	Introduction
	General API symbols
	High Level Constraints Interfaces

	Secondary Structure Folding Recurrences
	Additional Structural Domains
	Structured Domains
	Unstructured Domains
	Domain Extension API
	Constraints on the Folding Grammar
	Hard Constraints API
	Soft Constraints API

	The RNA Secondary Structure Landscape
	Neighborhood Relation and Move Sets for Secondary Structures
	(Re-)folding Paths, Saddle Points, Energy Barriers, and Local Minima
	Direct Refolding Paths between two Secondary Structures
	Folding Paths that start at a single Secondary Structure
	Deprecated Interface for (Re-)folding Paths, Saddle Points, and Energy Barriers

	Minimum Free Energy (MFE) Algorithms
	Global MFE Prediction
	API Symbols

	Deprecated Interface for Global MFE Prediction
	Local (sliding window) MFE Prediction
	Deprecated Interface for Local (sliding window) MFE Prediction
	Backtracking MFE structures
	Zuker’s Algorithm
	MFE for circular RNAs
	MFE Algorithm API

	Partition Function and Equilibrium Properties
	Global Partition Function and Equilibrium Probabilities
	Local (sliding window) Partition Function and Equilibrium Probabilities
	Predicting various Thermodynamic Properties
	Thermodynamic Properties API

	Deprecated Interface for Global Partition Function Computation
	Deprecated Interface for Local (Sliding Window) Partition Function Computation
	Partition Function API
	General Partition Function API

	Suboptimals and Representative Structures
	Suboptimal Structures sensu Zuker
	Suboptimal Structures within an Energy Band around the MFE
	Random Structure Samples from the Ensemble
	Deprecated API

	Compute the Structure with Maximum Expected Accuracy (MEA)
	Compute the Centroid Structure

	RNA-RNA Interaction
	Partition Function for Two Hybridized Sequences
	RNA-RNA interaction as a stepwise process
	Concatenating RNA sequences
	RNA-RNA interaction as a Stepwise Process
	RNA-RNA Interaction API

	Classified Dynamic Programming Variants
	Distance Based Partitioning of the Secondary Structure Space
	General
	MFE Variants
	Partition Function Variants
	Stochastic Backtracking

	Density of States

	Inverse Folding (Design)
	Experimental Structure Probing Data
	SHAPE Reactivity Data
	Generate Soft Constraints from Data

	Ligands Binding to RNA Structures
	Ligands Binding to Unstructured Domains
	Incorporating Ligands Binding to Specific Sequence/Structure Motifs

	Structure Modules and Pseudoknots
	Pseudoknots
	G-Quadruplexes

	Post-transcriptional Base Modifications
	Utilities
	Utilities to deal with Nucleotide Alphabets
	(Nucleic Acid Sequence) String Utilitites
	Secondary Structure Utilities
	Dot-Bracket Notation of Secondary Structures
	Washington University Secondary Structure (WUSS) notation
	Pair Table Representation of Secondary Structures
	Pair List Representation of Secondary Structures
	Abstract Shapes Representation of Secondary Structures
	Helix List Representation of Secondary Structures
	Tree Representation of Secondary Structures
	Distance measures between Secondary Structures
	Deprecated Interface for Secondary Structure Utilities

	Multiple Sequence Alignment Utilities
	Deprecated Interface for Multiple Sequence Alignment Utilities

	Files and I/O
	Nucleic Acid Sequences and Structures
	Multiple Sequence Alignments
	Command Files

	Plotting
	Layouts and Coordinates
	Annotation
	Pair Probability Plots
	Alignment Plots
	Deprecated Interface for Plotting Utilities

	Search Algorithms
	Combinatorics Algorithms
	(Abstract) Data Structures
	The Fold Compound
	The Dynamic Programming Matrices
	Hash Tables
	Heaps
	Arrays
	Strings
	Buffers

	Messages
	Unit Conversion

	RNAlib API v3.0
	Introduction
	Major changes
	Porting to the new API
	Examples

	Callback Functions
	Why Callbacks?
	Scripting Language Support
	Available Callbacks

	Deprecated List

	SWIG Wrappers
	Introduction
	Function Renaming
	Global Variables

	Object Oriented Interface
	Examples
	SWIG Wrapper notes

	Python API
	Installation
	Usage
	Global Variables
	Pythonic interface
	Object orientation
	Lists and Tuples

	Energy Parameters
	Examples
	The RNA Python module

	News
	Version 2.6.0
	Version 2.5.0
	Version 2.4.0
	Version 2.3.0
	Version 2.2.0
	Version 2.1.9
	Version 2.1.7
	Version 2.1.0
	Older news
	Version 2.0
	Version 1.8
	Version 1.7
	Version 1.6
	Version 1.5pre
	Version 1.4
	Version 1.3.1
	Version 1.3
	Version 1.2.1
	Version 1.2

	Changelog
	Version 2.6.x
	Unreleased
	Version 2.6.4
	Programs
	Library
	Package

	Version 2.6.3
	Library
	Package

	Version 2.6.2 (Release date: 2023-06-21)
	Programs
	Library
	Package

	Version 2.6.1 (Release date: 2023-06-12)
	Programs
	Package

	Version 2.6.0 (Release date: 2023-06-09)
	Programs
	Library
	Package

	Version 2.5.x
	Version 2.5.1 (Release date: 2022-06-02)
	Programs
	Library
	Package

	Version 2.5.0 (Release date: 2021-11-08)
	Programs
	Library
	Package

	Version 2.4.x
	Version 2.4.18 (Release date: 2021-04-22)
	Programs
	Library
	Package

	Version 2.4.17 (Release date: 2020-11-25)
	Programs
	Library
	Package

	Version 2.4.16 (Release date: 2020-10-09)
	Programs
	Library
	Package

	Version 2.4.15 (Release date: 2020-08-18)
	Programs
	Library
	Package

	Version 2.4.14 (Release date: 2019-08-13)
	Programs
	Library
	Package

	Version 2.4.13 (Release date: 2019-05-30)
	Programs
	Library
	Package

	Version 2.4.12 (Release date: 2019-04-16)
	Programs
	Library
	Package

	Version 2.4.11 (Release date: 2018-12-17)
	Programs
	Library
	Package

	Version 2.4.10 (Release date: 2018-09-26)
	Programs
	Library
	Package

	Version 2.4.9 (Release date: 2018-07-11)
	Programs
	Library

	Version 2.4.8 (Release date: 2018-06-23)
	Programs
	Library
	Package

	Version 2.4.7 (Release date: 2018-06-13)
	Version 2.4.6 (Release date: 2018-04-19)
	Version 2.4.5 (Release date: 2018-04-17)
	Version 2.4.4 (Release date: 2018-03-06)
	Version 2.4.3 (Release date: 2017-11-14)
	Version 2.4.2 (Release date: 2017-10-13)
	Version 2.4.1 (Release date: 2017-08-23)
	Version 2.4.0 (Release date: 2017-08-01)

	Version 2.3.x
	Version 2.3.5 (Release date: 2017-04-14)
	Version 2.3.4 (Release date: 2017-03-10)
	Version 2.3.3 (Release date: 2017-01-24)
	Version 2.3.2 (Release date: 2017-01-18)
	Version 2.3.1 (Release date: 2016-11-15)
	Version 2.3.0 (Release date: 2016-11-01)

	Version 2.2.x
	Version 2.2.10 (Release date: 2016-09-06)
	Version 2.2.9 (Release date: 2016-09-01)
	Version 2.2.8 (Release date: 2016-08-01)
	Version 2.2.7 (Release date: 2016-06-30)
	Version 2.2.6 (Release date: 2016-06-19)
	Version 2.2.5 (Release date: 2016-04-09)
	Version 2.2.4 (Release date: 2016-02-19)
	Version 2.2.3 (Release date: 2016-02-13)
	Version 2.2.2 (Release date: 2016-02-08)
	Version 2.2.1 (Release date: 2016-02-06)
	Version 2.2.0 (Release date: 2016-01-25)

	Version 2.1.x
	Version 2.1.9
	Version 2.1.8
	Version 2.1.7
	Version 2.1.6
	Version 2.1.5
	Version 2.1.4
	Version 2.1.3
	Version 2.1.2
	Version 2.1.1
	Version 2.1.0

	Version 2.0.x
	Version 2.0.7
	Version 2.0.6
	Version 2.0.5
	Version 2.0.4
	Version 2.0.3
	Version 2.0.2
	Version 2.0.1

	History

	Bibliography
	How to cite the ViennaRNA Package
	Main References
	Particular Algorithms and Features
	Consensus structure prediction
	Local pair probabilitiy and accessibility
	Suboptimal secondary structures
	k,l - Neighborhood
	Experimental RNA structure probing
	Structure Constraints
	Non-redundant Boltzmann sampling

	Frequently Asked Questions
	Missing EXTERN.h
	Linking fails with LTO error

	Contributing to the ViennaRNA Package
	Contents
	General Remarks
	Reporting Bugs
	Pull Request Process
	Contributors License Agreement

	License
	Indices and tables
	Contributors
	Bibliography
	Python Module Index
	Index

