
'
&

$
%

Matching and Significance Evaluation of combined

Sequence/Structure Motifs in RNA

using Algebraic Dynamic Programming

1

'
&

$
%

Overview

1. What is a sequence/structure motif? Relevant problems

2. Two examples: The Iron Responsive Element (IRE) and

the Selenocysteine Insertion Sequence (SECIS)

3. Our approach - a short introduction to Algebraic Dynamic

Programming (ADP)

4. Pattern matchers (grammars) for the IRE and the SECIS element

5. re-usable algebras for matching and significance evaluation

6. significance calibration and conclusion

2

'
&

$
%

What is a sequence/structure motif?
� Structure

a) specific secondary structure (specific base pairs)

b) specific sequence parts (regions with fixed nucleotides)

–> for example a hairpin loop with a specific sequence

� Function

– important regulatory functions in the cell

– post-transcriptional processing of RNA (mRNA-localization,

mRNA-degradation, efficiency of translation)

3

'
&

$
%

Interesting Problems

a) Can we find the motif in a sequence? (Matching)

b) How often?

c) How meaningful is the search result? (Significance evaluation)

How many hits would we expect in a random sequence with the same

length and base composition as the "search" sequence?

Example:

– counting: 1 hit

– expectation: 0.6 hits

–> Not very meaningful!! Motif description too unspecific!!

4

'
&

$
%

The Iron Responsive Element (IRE)

� specific stemloop structure; found in the UTRs of different mRNAs

� RNA dependend regulatory functions mediated by binding of

iron-regulatory proteins

� e.g. in the 5’UTR of the ferritin mRNA: Depending on the amount of

iron in the cell the IRE effects the translation efficiency of the

ferritin-mRNA

� the structure of IREs can differ –> we need a flexible motif description

5

'
&

$
%

an internal loop: right region length 1

often: cagugh

 often: 4-6 base pairs

either a bulge left consisting just of a ’c’

at least 2 basepairs

 left region length 3 (last nucleotide ’c’)

or

ire_stack1

ire_stack2:

hlseqthe concrete loop sequence:

smin

rmin
rmax

lmax
lmin

the maximal length of the right region:
the minmal length of the right region:
the maximal length of the left region:
the minimal length of the left region:

the maximal number of stacked base pairs:

the minimal number of stacked base pairs:

ire_loop:

ire_hairpin:

smax

c

c

g

g

u

a

h

6

'
&

$
%

The Selenocysteine Insertion Sequence (SECIS)

� specific stemloop structure

� found in 3’UTR of mRNAs which encode for proteins containing the

aminoacid selenocysteine

� selenocysteine is encoded by UGA (normally functions as stop codon)

� SECIS-element necessary for incorporation of selenocysteine at an

UGA codon

7

'
&

$
%

The Selenocysteine Insertion Sequence (SECIS)

secis_stack1

size: 4 base pairs size: 10-20bases

 sequence of the first 7 nucleotides)
parameter: loop_seq (the concrete

secis_hairpin
size: 9 base pairs

 allowed deletions)

 allowed insertions)
 - ins_stack2 (the number of

 - del_stack2 (the number of
 allowed mismatches)
 - mis_stack2 (the number of
parameters:

secis_stack2

 Cick base pairs)
 (all non -Watson-
size: 4 base pairs

secis_Quartet

size-right: 4-9 bases
size left: 3-7 bases

secis_loop

right

left

GA

AGU

A

8

'
&

$
%

our solution

� unambiguous pattern description

� unambiguous (!!!!!) pattern matcher –> no solution is found twice and

no semantically equivalent solutions are computed

� we can use the same program to calculate the statistical significance of

the search pattern and the pattern matcher itself

� we can compute the expected number of hits on a sequence of given

length and basecomposition a priori –> systematic way to calibrate the

specificity of a pattern matching algorithm

9

'
&

$
%

How?

� the smallest RNA motifs are sequence patterns and basepairs

–> the significance can be computed from the basecomposition

� larger motifs are build from smaller motifs in an unambiguous fashion

–> significance of larger motifs can be computed using the significance

of smaller motifs

–> Dynamic Programming can be used to solve this problem

–> we useAlgebraic Dynamic Programming (ADP). This technique

allows us an unambiguous description.

10

'
&

$
%

Dynamic Programming (DP)
� classical programming technique; very important in computational

biology

� applicable if the optimal solution can be computed recursively using

the optimal solutions of subproblems

� by using DP a search space of exponential size can be evaluated in

polynomial time and space

� example edit distance of two strings

� DP = recursion + tabulation (Re-use of previously computed results for

subproblems)

11

'
&

$
%

Algebraic Dynamic Programming (ADP)
� programming method to generate systematically DP programs

� DP approach is splitted into a structure recognition phase (grammar)

and an evaluation phase (algebra)

� to achieve an ADP program it is necessary to describe the relevant

structure with a grammar

� here: we need ADP grammars for the sequence/structure motifs

� the grammars are evaluated by different evaluation algebras

� grammar + evaluation algebra = executable prototype

12

'
&

$
%

� a more efficient version inCcan be derived systematically
� at the moment a compiler is developed that generatesCcode

automatically

advantages

� implementation is easy since the ADP framework can be used

� not necessary to know the implementation of the used ADP framework

� ADP programs are not so error-prone

� ADP programs are readable

� re-usable structures

13

'
&

$
%

ADP-example: RNA structures –> hairpin structures
� hairpin structure: any number of basepairs (here: at least 1) followed by

a singlestranded region (here: at least 3 bases)

� example sequence: gauccccauc

au

a ug

c

c

c

c

c

� we use an algebraic representation: a RNA structure consists of a list of
structural components

� components: stacking region (SR), singlestranded region (SS), hairpin
loop (HL), internal loop (IL), bulge left (BL), bulge right (BR),
multiloop (ML)

14

'
&

$
%

� term representation of example hairpin:

SR ’g’ (SR ’a’ (HL ’u’ "cccc" ’a’) ’u’) ’c’

� the tree grammar for hairpin structures:

SR

base

hairpin

basepairing
with:

hairpin

base base basepairing
with:

base

HL

region
with: minsize 3

15

'
&

$
%

An executable notation for tree grammars
� we use 3 combinators:

– <<< : denotes application of a tree constructor (e.g. SR) to its

arguments

– ~~~ : separates the arguments

– ||| : separates alternative righthand sides

� syntactic restrictions can be associated by a with-clause

� the grammar in the new notation:
hairpin_structure =

(sr <<< base ~~~ hairpin_structure ~~~ base) with basepairing |||

(hl <<< base ~~~ (region with minsize 3) ~~~ base) with basepairing

16

'
&

$
%

� in the Haskell ADP framework the combinators are defined as parser

combinators –> we get an executable prototype
� we need an objective functionh to evaluate the results

notation... h means: apply functionh to the results

� tabulation: just add the clausetabulated to a production

� the grammar now looks like this:
hairpin_structure = tabulated ((

(sr <<< base ~~~ hairpin_structure ~~~ base) with basepairing |||

(hl <<< base ~~~ (region with minsize 3) ~~~ base) with base-

pairing) ... h)

� we need an algebra which gives meaning to sr, hl and the objective

functionh

� example energy minimization: objective function –> minimum

algebra functions –> energy functions

17

'
&

$
%

basepair algebra –> counting the maximal number of basepairs

sr lb x rb = x + 1 (x: maximal number of basepairs

hl lb _ rb = 1 in the included substructure)

h = maximum

� example sequence: gauccccauc –> result : 3 (maximal number of

basepairs)

� 3 different hairpin structures:

– basepair gc and a loop of length 8 –> score 1

– basepairs gc and au and a loop of length 6 –> score 2

– basepairs gc, au and ua and a loop of length 4 –> score 3

18

'
&

$
%

counting algebra –> counting the number

of different hairpin structures

sr lb x rb = x (x: number of hairpin structures

hl lb _ rb = 1 in the included substructure)

h xs = sum xs

� example sequence: gauccccauc –> result : 3 (number of possible

hairpin structures)

19

'
&

$
%

patterns meaning

rp lb x rb required pair of specific baseslb andrb

unp lb t rb (unpaired) The baseslb and rb cannot form a

feasible base pair.

loop us x _ Internal loop: left singlestranded region is a se-

quence motif. right region is arbitrary.

lr _ us (left region) arbitrary region at the50 end and a

specific sequence motif at the30 end (us).

rr us _ (right region) a specific sequence motif at the50

end (us) and arbitrary region at the30 end.

skip_left _ x skips one base at the50 side

skip_right x _ skips one base at the30 side

20

'
&

$
%

The unambiguous IRE grammar

IRE alg lmin lmax rmin rmax smin smax hlseq inp = axiom (p lcomps) where

(str,ss,hl,sr,lr,skip_left,skip_right,loop,h) = alg

lcomps = tabulated (

str <<< (skip_left <<< base -~~ p lcomps ||| p rcomps ... h))

rcomps = tabulated (

skip_right <<< p rcomps ~~- base ||| p ire_stack1 ... h)

ire_stack1 = tabulated (

(sr <<< base -~~ ire_stack1b ~~- base) with‘ basepairing)

ire_stack1b = (sr <<< base -~~ p ire_loop ~~- base) ‘with‘ basepairin g

usinglestrand = ss <<< uregion

ire_loop = tabulated ((loop <<< (lr <<< usinglestrand ~~-

(fbase "C")) ~!+~ p ire_stack ~!!+~ usinglestrand) ... h)

stackscheme r = (sr <<< base -~~ r ~~- base) ‘with‘ basepairing

ire_stack = tabulated ((upto (smax-smin) stackscheme

(rep (smin-1) stackscheme ire_hairpin)) ... h)

ire_hairpin = (hl <<< base -~~ (iupac hlseq) ~~- base) ‘with‘ basepair

21

'
&

$
%

The SECIS grammar

SECIS alg mis_stack2 del_stack2 ins_stack2 loop_seq inp = axiom (p lcomps)

where

(str,ss,hl,sr,st,unp,lr,rr,skip_left,skip_right,loop,h) = alg

lcomps = tabulated (

str <<< ((skip_left <<< base -~~ p lcomps ||| p rcomps) ... h))

rcomps = tabulated (

(skip_right <<< p rcomps ~~- base ||| secis_stack1) ... h)

stackscheme r = (sr <<< base -~~ r ~~- base) ‘with‘ basepairing

mismatch r = (unp <<< base -~~ r ~~- base) ‘with‘ mispairing

deletion r = skip_left <<< base -~~ r

insertion r = skip_right <<< r ~~- base

secis_stack1 = tabulated (

(rep 4 stackscheme 0 mismatch 0 deletion 0 insertion (p secis_loop)) ..

usinglestrand = ss <<< uregion

secis_loop = tabulated (

(loop <<< (lr <<< usinglestrand ~~- (fbase "A")) ~!+~

(secis_quartet) ~!!+~ usinglestrand) ... h)

22

'
&

$
%

secis_quartet =

(rp <<< fbase "U" -~~ secis_quartet2 ~~- fbase "U" |||

rp <<< fbase "U" -~~ secis_quartet2 ~~- fbase "C") ... h

secis_quartet2 = st <<< fbase "G" -~~ secis_quartet3 ~~- fba-

se "A"

secis_quartet3 = st <<< fbase "A" -~~ secis_quartet4 ~~- fba-

se "G"

secis_quartet4 = (unp <<< base -~~ secis_stack2 ~~- base)

‘with‘ mispairing

secis_stack2 = tabulated (

(rep 8 stackscheme mis_stack2 mismatch del_stack2 deletion

ins_stack2 insertion secis_stack2end) ... h)

secis_stack2end = (sr <<< base -~~ secis_hairpin ~~- base)

‘with‘ basepairing

secis_hairpin =

(((hl <<< base -~~ (hairpin ‘with‘ minloopsize 10 ‘with‘ max-

loopsize 20)

~~- base) ‘with‘ basepairing) ... h)

where

hairpin = rr <<< (iupac loop_seq) ~!++~ usinglestrand

23

'
&

$
%

Efficiency of the grammars
� Space efficiency (size of the tables) =O(n2)

� Time complexity:

– efficiency of ADP grammars =O(n2+w)

– w = width of the grammar

– width = maximum number of ~~~-combinators in a single parser of

the grammar

– no ~~~-combinators in the IRE and in the SECIS grammar

–> time efficiency:O(n2)

24

'
&

$
%

Counting Algebra

The counting algebra computes how often the motif occures in the

sequence.

The objective function sums over the structure counts:

h [] = [] h xs = [sum xs]

The evaluation functions count the substructures.

skip_left _ t = t skip_right t _ = t

lr _ us = us rr us _ = us

ss _ = 1 rp lb t rb = t

loop us t _ = t sr lb t rb = t

unp lb t rb = t hl lb us rb = 1

nwc lb t rb = t

25

'
&

$
%

Expectation Algebra

Given the base composition and the length of a sequence the algebra

computes the expected number of appearances of the motif based on

probabilities!

The algebra does not look inside the concrete sequence !!!!

–> this enables us to calculate the significance a priori

The objective function sums over the probabilities of the structure

constituents:

h [] = [] h xs = [sum xs]

26

'
&

$
%

Expectation Algebra (2)

The evaluation functions calculate the probabilities of the substructures:

The probabilities of a string is computed based on the base composition of

the sequence.

skip_left _ t = t skip_right t _ = t

lr _ us = us rr us _ = us

ss _ = 1

rp lb t rb = t * ubasecomp!lb * ubasecomp!rb

loop us t _ = t * product[ubasecomp!u | u <- us]

sr lb t rb = t * pair_prob

unp lb t rb = t * (1-pair_prob)

hl lb us rb = pair_prob * product [ubasecomp!u | u <- us]

nwc lb t rb = t * (1-watcr_pair_prob)

27

'
&

$
%

Significance calibration
� the number of hits (computed using the counting algebra) is only

meaningful, if it lies significantly above the expected number of hits

(computed using the expectation algebra)

� calibration of the specificity of the search pattern is possible by choice

of the parameters

� e.g. decreasing of the allowed loop sizes or increasing of the desired

number of base pairs result in a higher specificity

� e.g. increasing of the allowed number of mismatches or bulges in

stacking region leads to a lower specificity

� if the motif description is too unspecific, we get some hits in random

sequences

28

'
&

$
%

� Using the ADP approach a new non-ambiguous pattern matching

algorithm can be designed and tested within a few hours.
� Its efficiency is high enough for systematic testing of hypotheses.

� For screening large data sets, a more efficient version inCcan be

derived systematically. –> soon: just use the Compiler to generateC

Code

� Grammars for other motifs can be formulated in a similar way

� The same algebras can be used

� new algebras can be implemented (e.g. energy minimization)

� For more details –> paper: Zeitschrift für Physikalische Chemie; C.

Meyer and R. Giegerich; Matching and Significance Evaluation of

combined Sequence/Structure Motifs in RNA (to appear)

29

