‘ Matching and Significance Evaluation of combined I
Sequence/Structure Motifs in RNA I
using Algebraic Dynamic Programming I

‘ Overview '

. What is a sequence/structure motif? Relevant problems

. Two examples: The Iron Responsive Element (IRE) and
the Selenocysteine Insertion Sequence (SECIS)

. Our approach - a short introduction to Algebraic Dynamic
Programming (ADP)

. Pattern matchers (grammars) for the IRE and the SECIS element
. re-usable algebras for matching and significance evaluation

. significance calibration and conclusion

J

-

‘What IS a sequence/structure motif? I

a) specific secondary structure (specific base pairs)

e Structure

b) specific sequence parts (regions with fixed nucleotides)
—> for example a hairpin loop with a specific sequence

e Function
— Important regulatory functions in the cell

— post-transcriptional processing of RNA (mRNA-localization,
MRNA-degradation, efficiency of translation)

N

-

Interesting Problems I

a) Can we find the motif in a sequence? (Matching)

b) How often?

c) How meaningful is the search result? (Significance evaluation)
How many hits would we expect in a random sequence with the sam

length and base composition as the "search"” sequence?
Example:

— counting: 1 hit

— expectation: 0.6 hits

—> Not very meaningful!! Motif description too unspecific!!

J

~

‘The lIron Responsive Element (IRE) I

specific stemloop structure; found in the UTRs of different mRNAs

RNA dependend regulatory functions mediated by binding of
Iron-regulatory proteins

e.g. in the 5’UTR of the ferritin mRNA: Depending on the amount of
iron in the cell the IRE effects the translation efficiency of the
ferritin-mRNA

the structure of IREs can differ —> we need a flexible motif descriptia

J

ire_hairpin:

the concrete loop sequence:hlseq

ire_stack2:

the minimal number of stacked base pairs: smin

the maximal number of stacked base pairssmax

ire_loop:

the minimal length of the left region: Imin
the maximal length of the left region: Imax
the minmal length of the right region: rmin
the maximal length of the right region: rmax

ire_stackl

often: cagugh

often: 4-6 base pairs

either a bulge left consisting just of a 'c’
or
an internal loop: right region length 1
left region length 3 (last nucleotide 'c’)

at least 2 basepairs

J

‘The Selenocysteine Insertion Sequence (SECIS) I

specific stemloop structure

found in 3'UTR of mMRNAs which encode for proteins containing the

aminoacid selenocysteine

selenocysteine is encoded by UGA (normally functions as stop codg

SECIS-element necessary for incorporation of selenocysteine at an

UGA codon

J

The Selenocysteine Insertion Sequence (SECIS)

left
A
uG A
A G
L || [[
secis_stackl secis_loop secis_Quartet secis_stack2 secis_hairpin

size: 9 base pairs
parameters:
- mis_stack2 (the number of
allowed mismatches)
- del_stack2 (the number of
allowed deletions)
- ins_stack2 (the number of
allowed insertions)

size: 4 base pairs = size left: 3-7 bases gjze: 4 pase pairs

size-right: 4-9 bases (all non -Watson-
Cick base pairs)

size: 10-20bases
parameter: loop_seq (the concrete
sequence of the first 7 nucleotides)

our solution '

unambiguous pattern description

no semantically equivalent solutions are computed

we can use the same program to calculate the statistical significanct

the search pattern and the pattern matcher itself

we can compute the expected number of hits on a sequence of give
length and basecomposition a priori —> systematic way to calibrate t

specificity of a pattern matching algorithm

~

)

5
he

J

- p

e the smallest RNA motifs are sequence patterns and basepairs
—> the significance can be computed from the basecomposition

e larger motifs are build from smaller motifs in an unambiguous fashiop

—> significance of larger motifs can be computed using the significarnce
of smaller motifs

—> Dynamic Programming can be used to solve this problem

—> we useAlgebraic Dynamic Programming (ADP). This technique
allows us an unambiguous description.

N J

10

~

Dynamic Programming (DP) I

classical programming technique; very important in computational
biology

applicable if the optimal solution can be computed recursively using
the optimal solutions of subproblems

by using DP a search space of exponential size can be evaluated In
polynomial time and space

example edit distance of two strings

DP = recursion + tabulation (Re-use of previously computed results for

subproblems)

11

-

‘Algebraic Dynamic Programming (ADP) I

programming method to generate systematically DP programs

DP approach is splitted into a structure recognition phase (grammar

and an evaluation phase (algebra)

to achieve an ADP program it is necessary to describe the relevant

structure with a grammar

here: we need ADP grammars for the sequence/structure motifs

the grammars are evaluated by different evaluation algebras

grammar + evaluation algebra = executable prototype

~

N

J

12

a more efficient version i€ can be derived systematically

at the moment a compiler is developed that genelGiaxde

automatically
‘ advantages I

Implementation is easy since the ADP framework can be used

not necessary to know the implementation of the used ADP framew

ADP programs are not so error-prone
ADP programs are readable

re-usable structures

rk

J

13

/ ADP-example: RNA structures —> hairpin structures I \

e hairpin structure: any number of basepairs (here: at least 1) followec
a singlestranded region (here: at least 3 bases)

by

e example sequence: gauccccauc

e We use an algebraic representation: a RNA structure consists of a ligt of
structural components

e components: stacking region (SR), singlestranded region (SS), hairpin
loop (HL), internal loop (IL), bulge left (BL), bulge right (BR),

k multiloop (ML) J

14

4 N

e term representation of example hairpin:
SR 1g1 (SR 1a1 (HL 1u1 llCCCCH 1a1) 1u1) 101

e the tree grammar for hairpin structures:

hairpin %/SR\ ‘ /H L\
with: ‘ with:
base base basepairing base base basepairing
hairpin region

with: minsize 3

N J

15

An executable notation for tree grammars I

e We use 3 combinators:

— <<< :denotes application of a tree constructor (e.g. SR) to its
arguments

— ~~~ . Separates the arguments

— ||| : separates alternative righthand sides
e syntactic restrictions can be associated by a with-clause

e the grammar in the new notation:
hairpin_structure =
(sr <<< base ~~~ hairpin_structure ~~~ base) with basepairing |||
(hl <<< base ~~~ (region with minsize 3) ~~~ base) with basepairing

N J

16

In the Haskell ADP framework the combinators are defined as p%
combinators —> we get an executable prototype

we need an objective functidnto evaluate the results
notation... h means: apply functioh to the results

tabulation: just add the clausabulated to a production

the grammar now looks like this:

hairpin_structure = ((

(sr <<< base ~~~ hairpin_structure ~~~ base) with basepairing |||
(hl <<< base ~~~ (region with minsize 3) ~~~ base) with base-
pairing))

we need an algebra which gives meaning to sr, hl and the objective
functionh

example energy minimization: objective function —> minimum

algebra functions —> energy functions J

17

r

‘ basepair algebra —> counting the maximal number of basepairs I

srlbxrb=x+1 (x: maximal number of basepairs
hlIb b =1 in the included substructure)
h = maximum

e example sequence: gauccccauc —> result : 3 (maximal number of
basepairs)

e 3 different hairpin structures:
— basepair gc and a loop of length 8 —> score 1
— basepairs gc and au and a loop of length 6 —> score 2

— basepairs gc, au and ua and a loop of length 4 —> score 3

N J

18

Sr
hl
h

N

counting algebra —> counting the number I
‘ of different hairpin structures I

X (x: number of hairpin structures
1 in the included substructure)
= sum Xs

Ib x rb
b _rb
XS

e example sequence: gauccccauc —> result : 3 (number of possible
hairpin structures)

J

19

(r I

patterns meaning
m Ib x rb required pair of specific baséds andrb
unp Ib t rb (unpaired) The basdb andrb cannot form a

feasible base pair.

loop us x _ Internal loop: left singlestranded region is a set
guence motif. right region is arbitrary.

Ir _ us (left region) arbitrary region at th& end and a
specific sequence motif at tBeéend @s).

r us _ (right region) a specific sequence motif at thie
end (s) and arbitrary region at th# end.

skip_left _ x skips one base at tHe side

kskip_right X skips one base at tt# side J

20

-

N

IRE alg Imin Imax rmin rmax smin smax hlseq inp = axiom (p lcomps) where

‘The unambiguous IRE grammar I

(str,ss,hl,sr,Ir,skip_left,skip_right,loop,h) = alg

lcomps = tabulated (

str <<< (skip_left <<< Dbase -~~ p lcomps ||| p rcomps .. h)
rcomps = tabulated (

skip_right <<< p rcomps ~~- base ||| p ire_stackl ... h)
ire_stackl = tabulated (

(sr <<< base -~~ ire_stacklb ~~- base) with' basepairing)
ire_stacklb = (sr <<< base -~~ p ire_loop ~~- base) ‘with* basepairin
usinglestrand = ss <<< uregion
ire_loop = tabulated ((loop <<< (Ir <<< usinglestrand ~~-

(fbase "C")) ~!+~ p ire_stack ~!'+~ usinglestrand) ... h)
stackscheme r = (sr <<< base -~~ r ~~- base) ‘with’ basepairing
iIre_stack = tabulated ((upto (smax-smin) stackscheme

(rep (smin-1) stackscheme ire_hairpin)) .. h)
ire_hairpin = (hl <<< base -~~ (iupac hlseq) ~~- base) ‘with' basepair

21

/ The SECIS grammar I \

SECIS alg mis_stack2 del stack2 ins_stack2 loop seq inp = axiom (p lcomps)
where
(str,ss,hl,sr,st,unp,Ir,rr,skip_left,skip_right,loop,h) = alg
lcomps = tabulated (

str <<< ((skip_left <<< base -~~ p Ilcomps ||| p rcomps) ... h))
rcomps = tabulated (

(skip_right <<< p rcomps ~~- base ||| secis_stackl) ... h)
stackscheme r = (sr <<< base -~~ r ~~- base) ‘with' basepairing
mismatch r = (unp <<< base -~~ r ~~- base) ‘with mispairing
deletion r = skip_left <<< base -~~ r
insertion r = skip_right <<< r ~~- base
secis_stackl = tabulated (

(rep 4 stackscheme O mismatch O deletion O insertion (p secis_loop)) ..
usinglestrand = SS <<< uregion
secis_loop = tabulated (

(loop <<< (Ir <<< usinglestrand ~~- (fbase "A")) ~I+~

k (secis_quartet) ~!+~ usinglestrand) h)J

22

/ secis_quartet =

(rp <<< fbase "U" -~~ secis_quartet2 ~~- fbase "U" |||
rp <<< fbase "U" -~~ secis_quartet2 ~~- fbase "C")
secis_quartet2 = st <<< fbase "G" -~~ secis_guartet3 ~~- fba-
se "A"
secis_quartet3 = st <<< fbase "A" -~~ secis_quartet4 ~~- fba-
se "G"
secis_quartet4 = (unp <<< base -~~ secis_stack2 ~~- base)
‘with* mispairing
secis_stack2 = tabulated (

(rep 8 stackscheme mis_stack2 mismatch del stack2 deletion
Ins_stack2 insertion secis_stack2end)
secis_stack2end = (sr <<< base -~~ secis_hairpin ~~- base)
‘with* basepairing
secis_hairpin =
(((hl <<< base -~~ (hairpin ‘with minloopsize 10 ‘with‘ max-
loopsize 20)
~~- base) ‘with* basepairing)

~

. h)

. h)

J

where
rpin = 1r <<< (| _seq) ~!++~ usinglestrand

23

-

N

‘ Efficiency of the grammars I

e Space efficiency (size of the tablesjxn?)

e Time complexity:
— efficiency of ADP grammars ©(n?+v)
— w = width of the grammar

— width = maximum number of ~~~-combinators in a single parser
the grammar

— no ~~~-combinators in the IRE and in the SECIS grammar
—> time efficiency:O(n?)

Df

J

24

-

‘ Counting Algebra I

The counting algebra computes how often the motif occures in the
seqguence.

The objective function sums over the structure counts:

h [] =] h xs = [sum xs]

The evaluation functions count the substructures.

skip left —t =1t skip right t =1t

Ir _ us = us rr us _ = us
Ss =1 m lb t rb =t
loop us t _ =t srlbtrb =t
unp b t rb =t hl Ib us rb =1
nwc Ib t rb =t

~

25

‘ Expectation Algebra I

Given the base composition and the length of a sequence the algebra
computes the expected number of appearances of the motif based on
probabilities!

The algebra does not look inside the concrete sequence !!!!

—> this enables us to calculate the significance a priori

The objective function sums over the probabilities of the structure
constituents:

h]

N J

26

(] h xs = [sum xs]

‘ Expectation Algebra (2) I

The evaluation functions calculate the probabilities of the substructures:

The probabilities of a string is computed based on the base composition
the sequence.

skip left —t =1t skip right t =1t

Ir _ us = us rr us _ = us

SS =1

rp b trb = t * ubasecompl!lb * ubasecomp!rb

loop us t _ = t * product[ubasecomp!u | u <- us]

sr Ibtrb = t * pair_prob

unp b t rb =t * (1-pair_prob)

hl Ib us rb = pair_prob * product [ubasecomplu | u <- us]
nwc Ib t rb =t * (1-watcr_pair_prob)

N J

27

‘ Significance calibration I \

the number of hits (computed using the counting algebra) is only
meaningful, if it lies significantly above the expected number of hits
(computed using the expectation algebra)

calibration of the specificity of the search pattern is possible by choi¢

of the parameters

e.g. decreasing of the allowed loop sizes or increasing of the desire(
number of base pairs result in a higher specificity

e.g. increasing of the allowed number of mismatches or bulges in
stacking region leads to a lower specificity

If the motif description is too unspecific, we get some hits in random

"

sequences J

28

Using the ADP approach a new non-ambiguous pattern matching\
algorithm can be designed and tested within a few hours.

Its efficiency is high enough for systematic testing of hypotheses.

For screening large data sets, a more efficient versi@hcan be
derived systematically. —> soon: just use the Compiler to gen€rate
Code

Grammars for other motifs can be formulated in a similar way
The same algebras can be used
new algebras can be implemented (e.g. energy minimization)

For more details —> paper: Zeitschrift fur Physikalische Chemie; C.
Meyer and R. Giegerich; Matching and Significance Evaluation of
combined Sequence/Structure Motifs in RNA (to appear) J

29

