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Discrete Tomography

Let F ⊆ Z2 be a finite set.
Let 1, . . . , k be rational x-rays.
bi(F ) = |F ∩ i| ∈ N, i = 1, . . . , k
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Discrete Tomography

Let F ⊆ Z2 be a finite set.
Let 1, . . . , k be rational x-rays.
bi(F ) = |F ∩ i| ∈ N, i = 1, . . . , k

1

1

1

2

2

1 2

3 4

Goal: Reconstruct F from given values bi!
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Reformulation

The following bipartite graph represents the incidence
structure of the problem.
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Formulation as a packing problem

Let C = {{1, 3}, {2, 3, 5}, {1, 4, 5}, {2, 4}} and
b> = (2, 1, 1, 2, 1).

Bled – p.4/33



Formulation as a packing problem

Let C = {{1, 3}, {2, 3, 5}, {1, 4, 5}, {2, 4}} and
b> = (2, 1, 1, 2, 1).

Then the reconstruction problem is to find a subset of
C of maximum cardinality such that each element j is
contained in at most bj sets.
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The LP formulation

The incidence matrix:

A =


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The LP formulation

The incidence matrix:

A =




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
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1 0 1 0

0 1 0 1
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The generalized packing problem:

max
N

∑

i=1

xi s.t.

Ax ≤ b, and x ∈ {0, 1}N . Bled – p.5/33



The generalized set multipacking
problem

G ⊆ N a finite ground set of p elements.
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The generalized set multipacking
problem

G ⊆ N a finite ground set of p elements.
Choose from a collection C of weighted k-sets formed
of elements in G a subset of maximum weight such
that each element is contained in only a prescribed
number of sets.
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The generalized set multipacking
problem

G ⊆ N a finite ground set of p elements.
Choose from a collection C of weighted k-sets formed
of elements in G a subset of maximum weight such
that each element is contained in only a prescribed
number of sets.

maxw>x s.t.

Ax ≤ b, and x ∈ {0, 1}N ,

where N := |C| and w ∈ R
N
+ positive weights, b ∈ N

p

capacities.
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The generalized set multicovering
problem

Choose from a given collection of weighted sets a
subset of minimum weight which covers all elements
in the union of the sets at least a prescribed number of
times.
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The generalized set multicovering
problem

Choose from a given collection of weighted sets a
subset of minimum weight which covers all elements
in the union of the sets at least a prescribed number of
times.

minw>x s.t.

Ax ≥ b, and x ∈ {0, 1}N .
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An example

Let C = {{1, 3}, {2, 3, 5}, {1, 4, 5}, {2, 4}} with weights
w> = (2, 3, 3, 2) and capacities b> = (2, 1, 1, 2, 1).

A =


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Questions

How well does a local search algorithm work?

Idea: Reduce weighted problems to simple
problems, for which estimations are known

Result: For the generalized set multipacking
problem, we obtain the same ratio as in the simple
case
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The transformation idea
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{1, 4, 5} is transformed to

{1, 4, 5, v2}, {1
′, 4, 5, v2}, {1, 4

′, 5, v2}, {1
′, 4′, 5, v2}.
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The transformation

We assign to Cj all those sets that can be formed by
all combinations of the copies of each element.
Finally, to every set, we add the element vj.

G = (g1, . . . , gp). Let q :=
∑p

i=1 bi

d := number of sets Cj ∈ C that contain an element gi

with capacity bi > 1

y 7→ y′ ∈ N
q+d =

(y1, y
′

1, . . . , y
(b1−1), . . . , yp, y

′
p, . . . , y

(bp−1), v1, . . . , vd)
>.

b 7→ b′ = 1q+d.
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LP Formulation of the transformed
problem

maxw
′
>x s.t.

A′x ≤ b′, and x ∈ {0, 1}N ′

.

minw
′
>x s.t.

A′x ≥ b′, and x ∈ {0, 1}N ′

.
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Example

q = 10 and N ′ = 9. w
′
> = (2, 2, 3, 3, 3, 3, 3, 2, 2) and

A′ =


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0 1 0 0 0 1 1 0 0

0 0 1 0 0 0 0 1 0
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Example

C
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Size and Solution

Lemma: Let b∗ = maxi bi. Then the transformed
problem has at most b∗ · p + N elements and at most
N · kb∗ sets.
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Size and Solution

Lemma: Let b∗ = maxi bi. Then the transformed
problem has at most b∗ · p + N elements and at most
N · kb∗ sets.

It follows from the construction that the new sets
contain at most k + 1 elements, since each changed
set Cj contains one additional element vj.
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Size and Solution

Lemma: Let b∗ = maxi bi. Then the transformed
problem has at most b∗ · p + N elements and at most
N · kb∗ sets.

It follows from the construction that the new sets
contain at most k + 1 elements, since each changed
set Cj contains one additional element vj.

The weights of the solutions of the original and the
transformed problem coincide because each copied
set can belong at most once to a solution.
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t-optimality

Let U be an optimal solution of the generalized set
multipacking problem. A solution V is t-optimal for
t > 0 if no subset of r ≤ t sets in U can replace sets in
V such that the solution is feasible and has strictly
greater weight.

V t-optimal for the original problem. Then all
solutions V ′ of the transformed problem which
correspond to V are t-optimal.

Every set in V ′ may have k + 1 elements.

Bled – p.16/33



t-optimality

Let U be an optimal solution of the generalized set
multipacking problem. A solution V is t-optimal for
t > 0 if no subset of r ≤ t sets in U can replace sets in
V such that the solution is feasible and has strictly
greater weight.

V t-optimal for the original problem. Then all
solutions V ′ of the transformed problem which
correspond to V are t-optimal.

Every set in V ′ may have k + 1 elements.

Bled – p.16/33



First estimations

[Gritzmann-de Vries-Wiegelmann-99],
[Arkin-Hassin-98], [Hurkens-Schrijver-89]:
Corollary: The ratio of a weighted t-optimal solution V

and an optimal solution U of the weighted k-set
multipacking problem is at most

w(U)

w(V )
≤ k +

1

t

Corollary: In the unweighted case, the ratio of a
t-optimal solution V and an optimal solution U are

|U |

|V |
≤

{

(k+1)ks
−k−1

2ks−k−1 : t + 1 = 2s − 1
(k+1)ks

−2
2ks−2 : t + 1 = 2s Bled – p.17/33



Improvement

We find a solution V ∗ corresponding to V in which
every set has at most k neighbors.

Lemma: Let C be a set belonging to both solutions U ′

and V ′. Then the ratio

w(U ′)

w(V ′)
≤

w(U ′) − w(C)

w(V ′) − w(C)
,

if w(U ′) ≥ w(V ′).
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Finding V ∗

Only case where Cj ∩ C ′

j = {vj}, since otherwise
both sets have less than k + 1 neighbors

Call NCj
(V ′) the solution obtained by replacing a

set C ′

j by Cj and replacing the elements of Cj if
present in V ′ by the elements of C ′

j

NCj
(V ′) is feasible and has the same weight as V ′;

both solutions correspond to V .
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V ∗ found!

The procedure is repeated. It terminates after at
most min{|V ′|, |U ′|} steps with no element having
more than k neighbors, in a solution V ∗.

Since V is assumed to be t-optimal, V ∗ is t-optimal.
Using the Lemma, we can remove equal sets.
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Results

Corollary: The ratio of a weighted t-optimal solution V

and an optimal solution U of the generalized set
multipacking problem is at most

w(U)

w(V )
≤ k − 1 +

1

t

Corollary: In the unweighted case, the ratio of a
t-optimal solution V and an optimal solution U are

|U |

|V |
≤

{

k(k−1)s
−k

2(k−1)s−k
: t + 1 = 2s − 1

k(k−1)s
−2

2(k−1)s−2 : t + 1 = 2s
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The problem with covering

It is open whether the performance ratio for the
covering problem is equal to that of the simple case.

The transformed problem is a mixed problem

In many respects, this problem is more difficult to
handle

Good algorithms are known for special cases
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Notions of Digraph Coloring

Vertex n-coloring of a digraph D = (V,A):
c : D → [n], ∀ i ∈ [n] : c−1(i) is acyclic.

Bled – p.24/33



Notions of Digraph Coloring

Vertex n-coloring of a digraph D = (V,A):
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Chromatic number:
χ(D) := min{n | ∃n-coloring of D}
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Notions of Digraph Coloring

Vertex n-coloring of a digraph D = (V,A):
c : D → [n], ∀ i ∈ [n] : c−1(i) is acyclic.

Chromatic number:
χ(D) := min{n | ∃n-coloring of D}

Basic property
Let G(D) be the underlying undirected graph of D.
Then

χ(G(D)) ≥ χ(D).

Bled – p.24/33



Planar Digraphs

Proposition: All simple planar digraphs are 3-colorable.

There are simple planar graphs with arboricity 3.
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Planar Digraphs

Proposition: All simple planar digraphs are 3-colorable.

There are simple planar graphs with arboricity 3.

Conjecture (Škrekovski): All simple planar digraphs
are 2-colorable.
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Properties of a Minimal
Counterexample

G planar graph, D orientation of G, χ(D) = 3, minimal
number of vertices, maximal number of edges.

D can be chosen to have the following properties:

G is a plane triangulation ⇒ G is 3-connected.

Each vertex v of D lies on two directed cycles
C1, C2; C1 ∩ C2 = {v} ⇒ v has in- and out-degree
≥ 2.

Dual of G has no hamiltonian cycle

G is not perfect.
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These properties are not sufficient!
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The gadget

An equivalence relation: u ∼ v iff for every coloring
c : V (D) → [n] of D the value |c(u) − c(v)| =: kuv is
independent of c.

Digraph D is a gadget for the surface Σ, if there
exists an embedding of D in Σ such that one of D’s
∼-equivalence classes contains two vertices of the
same face.

Four equivalent types of a planar gadget:
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Existence of a gadget

Proposition: A simple planar gadget exists if and only
if there exists a planar digraph D with χ(D) = 3.
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Existence of a gadget

Proposition: A simple planar gadget exists if and only
if there exists a planar digraph D with χ(D) = 3.
Proof:
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1. equivalent conjecture

Conjecture: A simple planar gadget does not exist.

Nonplanar gadget:
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Greedily colorable digraphs

Let f(v) be a linear ordering of the vertices of D.
Greedy coloring: Color vertices of D according to f

with the smallest feasible color with respect to the
already colored part of D.
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Greedily colorable digraphs

Let f(v) be a linear ordering of the vertices of D.
Greedy coloring: Color vertices of D according to f

with the smallest feasible color with respect to the
already colored part of D.

Proposition: A digraph is k-colorable if and only if it is
greedily k-colorable.
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2. equivalent conjecture

Conjecture: All simple planar digraphs are greedily
2-colorable.

Proposition: Simple D can be colored greedily with ≥ 3
colors if and only if there exists an obstruction O in D

and f(v) < f(w) for all outer vertices v and inner
vertices w of O.
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Conjecture: All simple planar digraphs are greedily
2-colorable.

An obstruction

Proposition: Simple D can be colored greedily with ≥ 3
colors if and only if there exists an obstruction O in D

and f(v) < f(w) for all outer vertices v and inner
vertices w of O.

Bled – p.32/33



2. equivalent conjecture

Conjecture: All simple planar digraphs are greedily
2-colorable.

An obstruction

Proposition: Simple D can be colored greedily with ≥ 3
colors if and only if there exists an obstruction O in D

and f(v) < f(w) for all outer vertices v and inner
vertices w of O. Bled – p.32/33



Outlook

Generalized set multipacking problem may be
approximated as well/as bad as the normal
packing problem

Generalized set multicover problem???

Planar digraphs may be acyclically colored with
three colors

Do two colors always suffice?
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Outlook

Generalized set multipacking problem may be
approximated as well/as bad as the normal
packing problem

Generalized set multicover problem???

Planar digraphs may be acyclically colored with
three colors

Do two colors always suffice?

Thank you for your attention!
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