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Definition (from http://mathworld.wolfram.com):

“An embedding is a representation of a topological object, man-
ifold, graph, field, etc. in a certain space in such a way that its
connectivity or algebraic properties are preserved.”



In the following, we will be concerned with a special instance
of embedding, i.e. embedding a set of distances in Euclidean
space RV,



Why would would one do that 7

Graph embedding (with edge weigts interpreted as distances).

Determination of molecular structure from distance informa-
tion obtained from NMR measurements.

Fun.



How could one do that,
given ‘“enough’” distances are available 7

(a) By ‘“direct construction”.
(b) From the metric matrix.
(c) By Stochastic Proximity Embedding.

(d)-(z) ...various other embedding schemes exist.



Direct Construction...

14

...shown here for 2 dimensions, is trivial and could be done using
a pencil, a ruler and compasses. On a computer it is an O(N)-
type procedure.



Direct construction is also quite trivial in three dimensions, but
I mention it since this method was recently “advertised” :

Q. Deng, Z. Wu. A linear-time algorithm for solving for solv-
ing the molecular distance geometry problem with exact inter-
atomic distances. J. Global Optim. 22, 365-375, 2002 (!)



Metric Matrix embedding:

Some semi-straightforward math allows to calculate distance d;g
of each point 7; to the centroid ry of all points:
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Then the so called metric matrix G;; = r;-r; can be obtained by
applying the law of cosines.



Obviously , G;; could also be written as
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So the “square root” of the metric matrix G (obtained by diag-
onalization) contains the coordinates. The associated compu-
tational cost is O(N3).



Stochastic proximity embedding
D. K. Agrafiotis J. Comp. Chem. 24, 10, 1215-1221,2003.



Procedure: Let z; be the coordinates, d;; the current distance
between points : and 5 and T their target distance. Besides, let
e have its usual meaning.

1 Initialize the coordinates (e.g. randomly).
2 Randomly select a pair of points < and 53 and update their coordinates by:
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3 Repeat step 2 for a prescribed number of steps S.
4 Decrease the “learning rate” X\ by a prescribed decrement 6.
5 Repeat steps 2 to 4 for a prescribed number of cycles C.



Another ook at the correction term:

(& — )

With A = 1, the correction corresponds to the gradient of the
penalty z’jth contribution to the penalty function.

N
S = (di —ri)°
J>i
Furthermore A = 1 implies that each chosen pair of points is
immediately set to the desired distance.

Technical sidenote: ¢ can be left out, e.g. by ¢‘if (dij ==0.0) continue;’’



Obvious (?) features of the algorithm:

It is very simple to implement for arbitrary dimension.

For a “sufficient” set of distances, A = 1 leads to convergence.
Overall chirality is truly random, in contrast to the metric matrix
approach, where it is arbitrary, but not random.

When embedding a set of distances in an Euclidean space of
“too low” dimensionality, decreasing A\ as given by Agrafiotis is
advisable.



Computational experiments....
a) Behavior of the penalty function S(#steps))
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b) A graphical impression of the progress:

Spiral consisting of 2000 points, after 10° (red), 10° (blue) and
107 (green) iterations.



C) Some nice graph representations...

Completely connected graphs with 4 and 5 vertices
(embeddable in 3 and 4 dimensions, respectively).
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Conclusions (pro)

T he stochastic proximity embedding algorithm is easy to imple-
ment and reasonably fast.
Without any mathematical rigor one might state that it allows

“nice” representations of *some* graphs, especially if they are
highly connected.



Conclusions (con)

Choosing the number of iterations is based on educated guess

and/or numerical experiment.

Once one is reasonably close to the target configuration, conju-
gate gradient minimization of the applied penalty function should
lead to faster convergence.

The chirality of embedded three-dimensional structures is ran-

dom.



Thank you for your attention !

...Any contributions, especially to the chirality problem, are welcome |



