Visualization of pinfold simulations

Sebastian Pötzsch

Faculty of Mathematics and Computer Science University of Leipzig

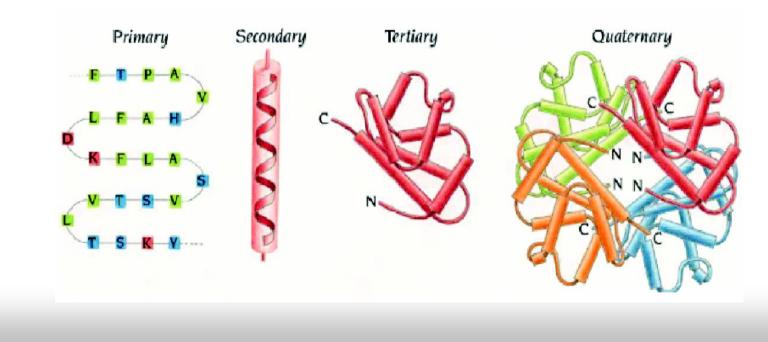
Overview

1. Introduction

- 1.1 Protein folding problem
- 1.2 HP-model
- 1.3 Pinfold simulation

2. Information Visualization

- 2.1 Shneiderman's mantra
- 2.2 Overview
- 2.3 Zoom and filter
- 2.4 Detail views
- 3. Pinfoldvis Demo

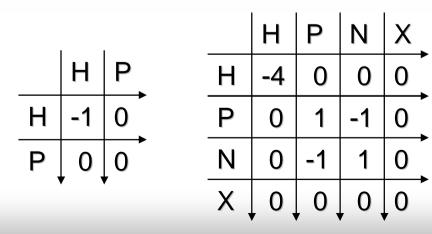

1. Introduction

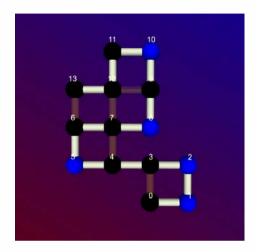
Proteins:

- Complex macromolecules
- Chains of amino acids linked by peptide bonds
- Typical a few hundred amino acids
- Essential functions in organisms
- Function depends on the structure
- Complex structures

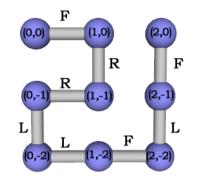
1. Introduction

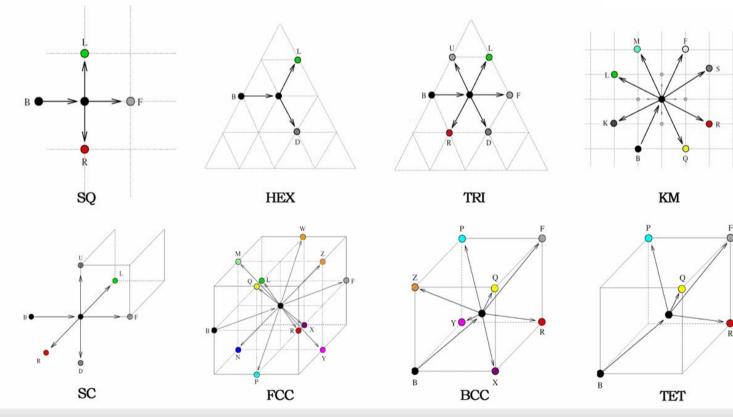
- Protein structure:
 - Primary: amino acid sequence
 - Secondary: local conformations (α helices, β sheets, β turns)
 - Tertiary: real three dimensional structure
 - Quaternary: connection of polypeptide chains

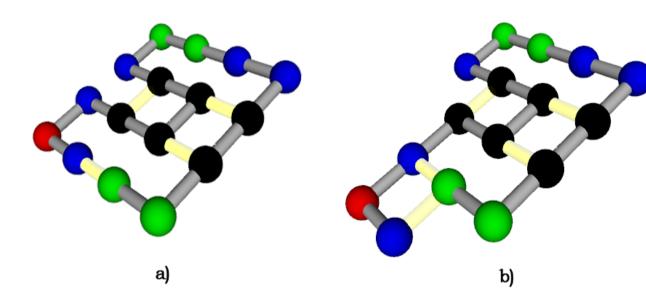

1.1 Protein folding problem


- Protein folding:
 - Problem: Given amino acid sequence → native structure
 - Not completely understood
 - Important to understand
 - Known forces (hydrogen bonds, hydrophobic interactions, Van der Waals force, disulfide bonds)

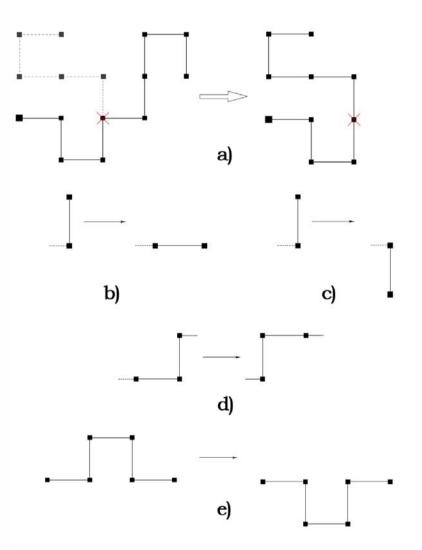
Sta or


1.2 HP-Model

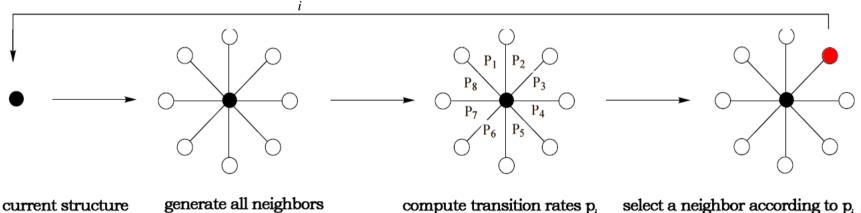

- By Dill and Lau, 1989
 - Amino acids \rightarrow beads, unit size
 - Bonds \rightarrow straight sticks, unit length
 - Positions fixed to lattice points
 - Two classes H = {A,C,I,L,M,F,W,Y,V} and
 P = {R,N,D,E,Q,G,H,K,P,S,T}
 - Simple energy function
- HPNX-Model
 - H (hydrophobic), P (positive), N (negative), X (uncharged)



- Based on HP/HPNX-Model
- Simulates folding on lattices
- Structure description with self-avoiding walks (SAW)



- Example
 - Model: HPNX
 - Lattice: SQ
 - Sequence: NNHHPPNNPHHHHPXP



- a) Structure: FLFFLFFLLFRRFLL Energy: -13
- b) Structure: FLFFLFFLLFRRLFL Energy: -14

- Move set
 - Set of rules
 - Moves have to be reversible
 - Results have to be in conformation space
 - Ergodicity
- describes topology of conformation space
- a) pivot move
 - b) c) end move
 - d) corner move
 - e) crankshaft-move

- Algorithm:
 - 1. Begin with start structure.
 - Check terminating conditions (max. time reached, stop structure found).
 - 3. Generate all valid neighbor structures with their energy.
 - **4.** Compute transition rates. $p_i = \min\{1, \exp(-\frac{\Delta E}{kT})\}$
 - 5. Choose neighbor structure with probability proportional to p.
 - 6. Advance clock $\frac{1}{\sum p_i} \rightarrow$ Step 2

- Output:
 - Sequence
 - Start structure
 - Chosen structure, Energy, Elapsed time

Our task:

- Visualize pinfold output
- Support data analysis
- Emphasize possible relationships
- Provide simulation comparison

ННРНРНРРНРНРН		
FFLRLRFLLFFLRL		
FFFRLRFLLFFLRL	-4.00	0.056
FFFRLRFLLFFLRF	-3.00	0.735
FFFFRRFLLFFLRF	-2.00	2.520
FRFFLRFLLFFLRF	-4.00	2.849
FRFFLRFLLFFLRF	-4.00	3.521
FRFRLRFLLFFLRF	-3.00	3.689
FLFRLRFLLFFLRL	-4.00	4.444
FRFRLRFLLFFLRR	-3.00	4.587
FRFRLRFRLFFLRR	0.00	5.556
FRFRLRFLLFFLRR	-3.00	5.908
FLFRLRFLLFFLRL	-4.00	8.026
FFFRLRFLLFFLRL	-4.00	8.624
FFLRLRFLLFFLRF	-3.00	9.211
FFRRLRFLLFFLRL	-4.00	9.381
FFLRLRFLLFRLRL	-1.00	9.786
FFLRLRFLLRFLRL	0.00	11.068
FFLRFRFLLFFLRL	-2.00	12.552

2. Information Visualization

 "to visualize": form a mental vision, image, or picture of something not visible or present to sight, or an abstraction; to make visible to the mind or imagination. (The Oxford English Dictionary; 1989)

Task:

- Provide data analysis and exploration
- Emphasize relationships
- Uncover regularities
- Expose the unseen (abstract)
- Speedup cognition

2.1 Shneiderman's mantra

"Overview first, zoom and filter, details on demand."

Idea:

- Start with an overview for a better orientation
- Let user decide to filter interesting data
- Show different details only on demand for selected data

ergy model:	01	erview table					_ _ _ _ _	Energy ma	p								- 02
ergy model:		Simulation Index Time	Steps /	Found	Energy Max	Energy Min	<u> </u>	Steps									
del HPNX ngle 2	1	591 0.23	0 3	true	-11	-14		15	47	78	109	140	171	203	234	265 2	296
mp 37.0	2	856 0.08	8 3	true	-11	-14		scorted by steps 5129 92 55 18									
gml logarithmic r VRNA-1.4	3	174 0.22			-11			-34 E									
ve set:	4	977 0.30			-11			9 92 92									
ttice SQ L	5	415 0.41	-		-11			6120									
Shift off	6	450 0.16			-11	-14		3 161									
LP off	7	878 0.56			-11			Simulations s 240 203 166 1									
R	8	350 0.44			-11												
	9	139 0.50			-11			314.27									
nulation:	10	471 0.86			-3			131									
m 1000 ne 10000.00	11	455 0.26			-11			388 351									
ed clock	12	444 0.82			-11			238									
Metropolis on	13	876 1.22			-11	-14		2 425									
on	14	940 0.61			-11			9462									
ut: kh68_21to	15	686 2.95			-3			536 499									
ent on R	16	751 0.44		true	-11			353									
in off LD	17	743 0.76		2 - 10 A 10 10 10	-11	-14		957									
t 20.00	18	490 1.91			-11	-14		20 683 646 609 573									
×		702 1.33			-3			364									
oulation chart	20	149 0.42	-		-3			00.68									
	21	489 1.15			-3			22.72									
1.00	22	469 1.09		2.25.555.0	-3			794 75									
0.80	23	359 1.08			-3			831 7									
0.60	24	209 0.70			-3			888									
0.40-	25	230 0.58			-11	-14		305.8(
0.20-	26	28 0.73			-11			942.90									
	27	23 1.83	<u> </u>		-11			879.94									
1e+00 9e+00	28 29	673 1.36 498 1.73	-		-10 -3		- モビノー	0									(`
3e+00 3e+01	30	498 1.73		true	-3												
	1100	132 0.35		uue	- 30		<u> </u>										

Sequence N Start structure F	3 4 5 6 7 8 9 10 1 2 3 4 5 H P P N N P H H H H P X P F L F F L L F R R F L L F L F L L F R R L L	Date: Wed Sep 14 11:07:26 2005
Energy model: Model HPNX dangle 2	X Overview table Simulation Index Time Steps Found Energy Max Energy Max 1 591 0.230 3 true -11	Image: Min Image:
Par Nam	e, date, sequence	e, start structure, stop structure
NoLP off	7 878 0.560 3 true -11 8 350 0.446 3 true -11 9 139 0.502 3 true -11 10 471 0.864 5 true -3 11 455 0.264 5 true -11	-14 -14 -14 -14 -14 -14
Time 10000.00 Seed clock Mc Metropolis Fpt on Output: Log kh68_21to	12 444 0.823 5 tue -11 13 876 1.227 5 true -11 14 940 0.613 5 true -11 15 686 2.957 5 true -3 16 751 0.448 5 true -11	-14 -14 -14 -14 -14
Silent on Lmin off Cut 20.00 Population chart	17 743 0.766 5 true 411 18 490 1.911 5 true 411 19 702 1.336 5 true -3 20 149 0.422 5 true -3 21 489 1.159 5 true -3	-14 -14 -14 -14
	22 463 1.091 5 true .3 23 359 1.087 5 true .3 24 209 0.704 5 true .3 25 230 0.582 5 true .11	-14 -14 -14 -14
0.20 10:00 3e+00 5e+00 3e+00 3e+01	26 28 0.735 5 true -11 27 23 1.830 6 true -11 28 673 1.363 7 true -10 23 438 1.735 7 true -3 30 132 0.954 7 true -11	G
X ← Energy histogram	xj - Stuchare histogram	
1 200 0 000 14 5		REFERENCE FERELFELLFRAFFE. FREELFELLFRAFE. FREELFELLFRAFE.

inergy model: Model HPNX Jangle 2 Femp 37.0 .ogml logarithm Par VRNA-1.4	C Overview Table	591 0.230 3 856 0.098 3	bund Energy Max Energy bue -111 true -111 true -111	4in -14 -14	Sinpt 15 47	78 109 140 171 253	214 35 OF
love set: Lattice SQ NoShift off NoLP off -	D	OID P3 450 0.167 3 876 0.560 3 350 0.446 3 138 0.502 3	true -11 true -11	ters (n	nodel, la	attice,)	
imulation: Num 1000 Time 10000.00 Seed clock Mc Metropoli: Tpt on		471 0.864 5 455 0.264 5 444 0.823 5 876 1.227 5 940 0.619 5	true 3 true 411 true 411 true 411	-74 -74 -74 -74 -74			
l utput: .og kh68_21t Silent on .min off Cut 20.00	B	686 2.957 5 751 0.449 5 743 0.766 5 490 1.911 5 702 1.336 5	true -3 true -11 true -11 true -11	-14 -14 -14 -14 -14			
1 00 0 60 0 60 0 60 0 60 0 70 0 20	20 21 22 23 24 25 26 27	143 0.422 5 483 1.153 5 463 1.091 5 353 1.087 5 209 0.704 5 230 0.582 5 28 0.735 5 23 1.830 6	true 3 true 3 true 3 true 3 true 3 true 3 true 11 true 11	-14 -14 -14 -14 -14 -14 -14			
0.00- Te+00 Se+00 Se+00 Se+00 Se+01	C 28 29 30 × Structure histogra	673 1.369 7 498 1.735 7 192 0.954 7	true -3	14 14 14			G

		Overview tabl					_ [[]] X Energy ma			
Energy mode Model							A Stepi			
		1	591 0.230	3 true		14				(234 265 296
				3 true	-11	14				
	VRNA-1.4	3	174 0.220	3 true	- +			مر جا جا ر		
ve set:		4	977 0.308	DOD :	stru	cture	DODU	latior		
ttice Shift	SQ IL		415 0.414	.op			popo		•	
	off		878 0.560	3 true	-11	14				
	- 1			3 true		14				
			139 0.502	3 true		14				
mulation:			471 0.864	5 true		14				
			455 0.264	5 true	-11	14				
ime eed	10000.00 clock		444 0.823	5 true	-11	14				
			876 1.227	5 true	-11	14				
ot -		14.	940 0.619	5 true	-11	14				
itput:	-		686 2.957	5 true		14				
og ilent	kh68_21to		751 0.449	5 true	-11	14				
	off		743 0.766	5 true		14				
jut.	20.00	18	490 1.911	5 true		14				
			702 1,336	5 true		14				
opulation chart-			149 0.422	5 true		14				
222			489 1.159	5 true		14				
1.00			469 1.091 359 1.087	5 true		14				
0.80-			209 0.704	5 true		14				
0.60		25	230 0.582	5 true		14				
0.40-	/		28 0.735	5 true		14				
0.20	-		23 1.830	6 true		14				
0.00		28	673 1.369	7 true		14 (E				6
1e+00 3e+0	9e+00 00 3e+01	23	498 1.735	7 true		14				G
			192 0.954	7 true	-11	14	-			C

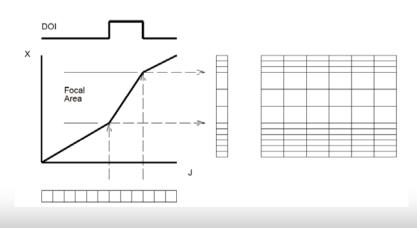
and the second	Overview table			Energy map	_ 0
e rgy model: del HPNX note 2	Simulation Index Time	Steps Found Energy Max E 3 true -11	nergy Min		
		3 true	-14		
ml logarithmic VRNA-1.4	3 174 0.220	3 true -11	atw at	bioto area	_
ve set:	Ene	rdv and	structure	histograms	5
tice SQ L	6 450 0.167	a tue -11	-14	3	
P off +++++		3 true -11	-14		
8	8 350 0,446 9 139 0,502	3 true -11	-14		
1.10	10 471 0.864	3 true -11 5 true -3	-14		
ilation: 1000	11 455 0.264	5 liue -11	-14		
10000.00 i clock	12 444 0.823	5 true -11	14		
	13 876 1.227	5 true -11	14		
ut:	14 940 0.619 15 686 2.957	5 true -11	-14		
kh68_21to	16 751 0.449	5 true -11	-14		
nt on B	17 743 0.766	5 true -11	-14		
20.00	18 490 1.911	5 true -11	-14		
×	19 702 1,336	5 true -3	-14		
lation chart	20 149 0.422 21 489 1.159	5 true -3	-14		
10-	22 469 1.091	5 true -3	-14		
0	23 359 1.087	5 true -3	-14		
o/	24 209 0.704	5 tue -3	-14		
	25 230 0.582 26 28 0.735	5 true -11 5 true -11	-14		
	27 23 1.830	6 true -11	-14		
18-00 96+00	28 673 1.369	7 true -10	-14 E		
Sec. 201-82	29 498 1.735	7 true -3	-14		G
	30 192 0.954	7 true -11	-14		

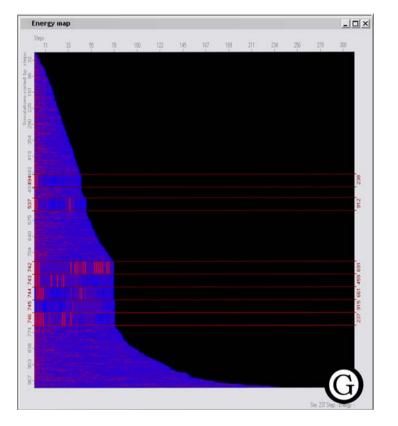
2.3 Zoom and filter

among mandals		× 01	rerview table						_ _ _ _ _	Energy map								_ 0
ergy model: del			Simulation Index	Time	Steps 🖉	Found	Energy Max		-	Steps 15	47	70	100	40 17	200	224	205 2	296
		1	591			true	-11		_	2 1	97	78	109 1	40 17	1 203	234	265 2	230
		2	856	-		8 true	-11			steps 5 18								
	VRNA-1.4	3	174			true	-11			ed by st								
set:		4	977			true	-11			sortec								
	sq L	5	415			true	-11			ns st.								
ift	off	6	450	-	-	true	-11			ulations : 203 166								
	1.4	8	878	-		true true	-11			Simul 240.20								
	8	9	139			true true	-11											
		10	471	-		true	-11			314 277								
ation:		11	455			true	-11			3213								
	10000.00	12	444	-		true	-11			8-11								
		13	876			true	-11			425								
	on	14	940			true	-11			482								
t:	-	15	686	-	5	true	-3			133								
	kh68_21to	16	751	1 0.449	Ę	true	-11	-14		238								
	on B	17	743	3 0.766	Ę	true	-11	-14		573536								
	20.00	18	490	0 1.911	5	true	-11	-14		809-								
	2	19	702	2 1.336	5	i true	-3	-14		646								
tion chart		20	149	9 0.422		i true	-3	-14		1683								
		21	489	9 1.159	5	i true	-3	-14		720								
		22	469			i true	-3			4 757								
	- /	23	359			true	-3			1 794								
	/	24	209			true	-3			8831								
		25	230	-		true	-11											
		26	28			i true	-11			942 90								
		27	23			true	-11			62								
	19e+00	28	673	-		true true	-10		(F)	0								(÷
		23	430	1.735		true	.3	-14										5

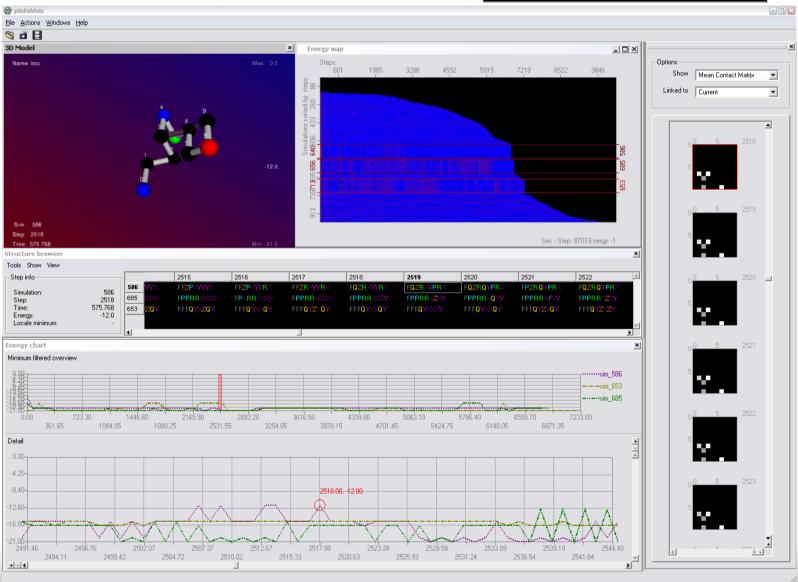
2.3 Zoom and filter

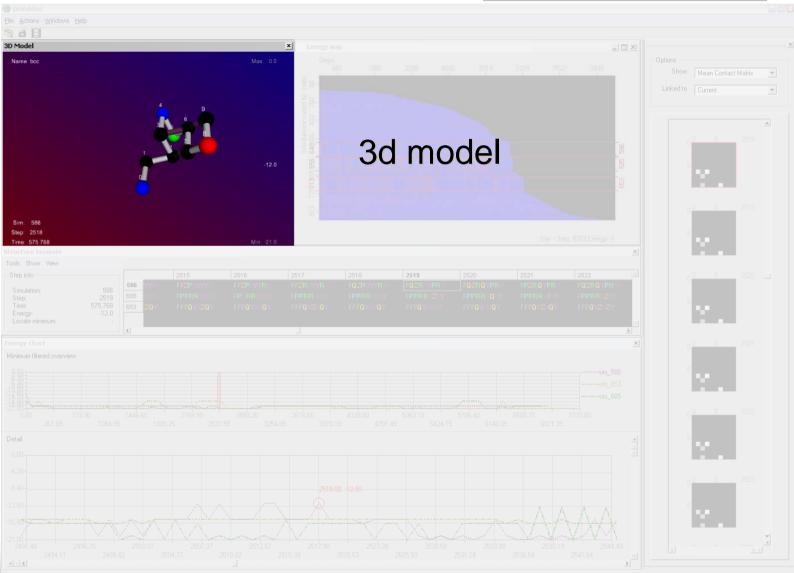
"Overview first, zoom and filter, details on demand."

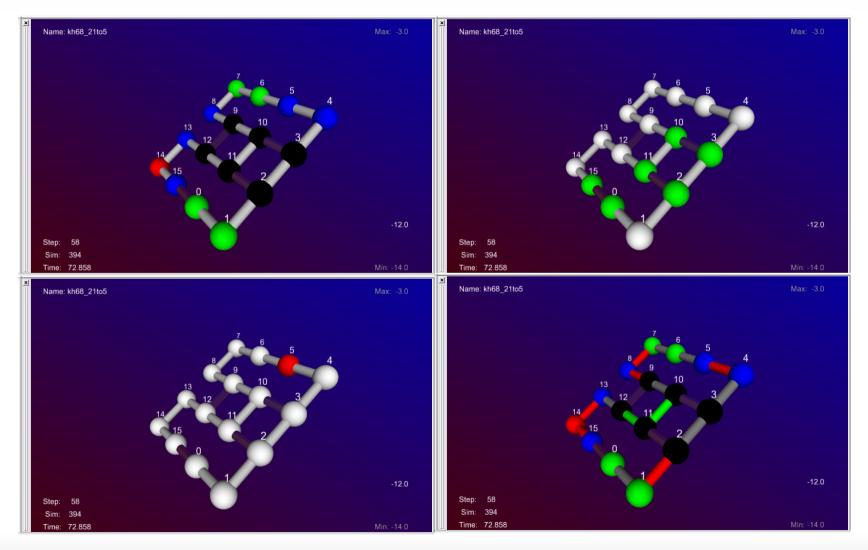

Energy map

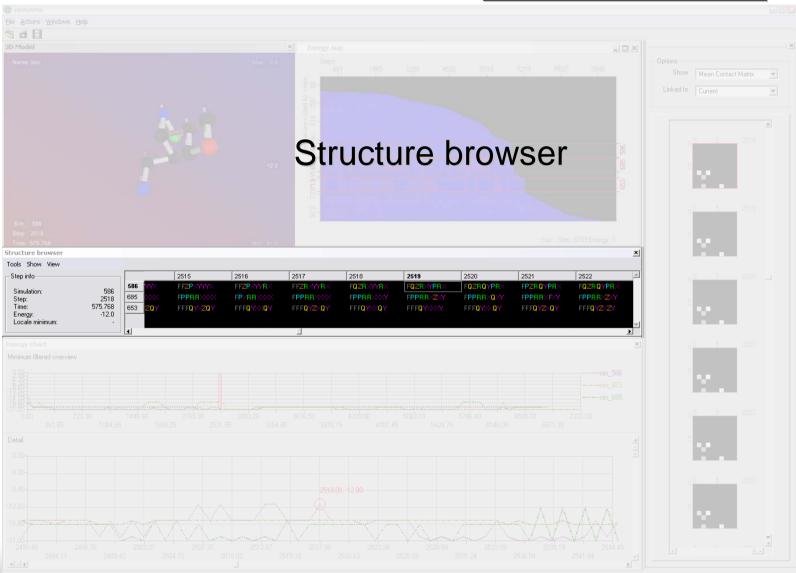

Focus+context technique

■Huge data sets ↔ limited screen size


Details and overview in one view

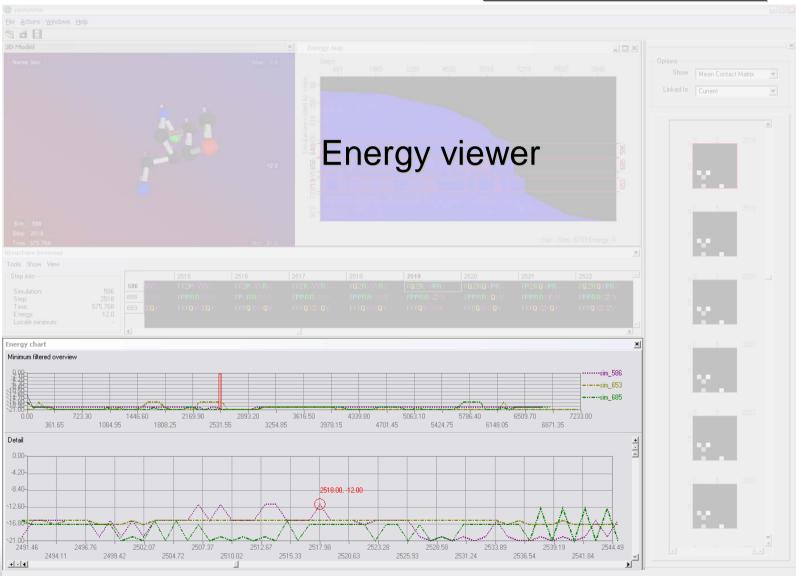

 Hold up users attention as long as possible



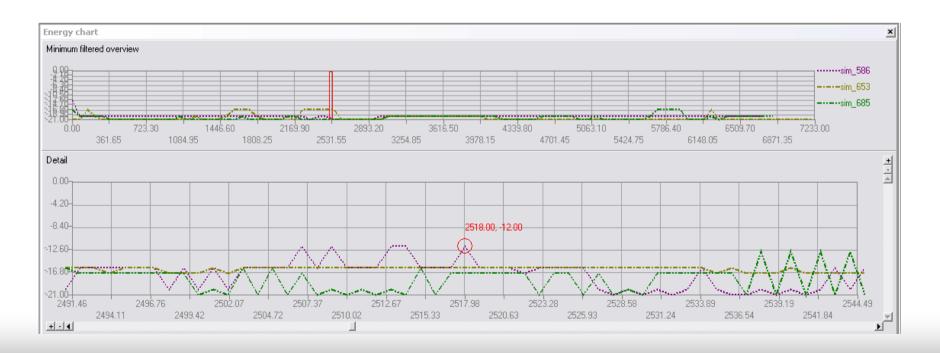

- Multiple Views
 - Two or more distinct views
 - Support the investigation of a single conceptual entity
 - Views can differ in data or visual representation
 - Different perspectives
 - Allows direct comparison in real-time
 - Linking several views emphasizes relationships

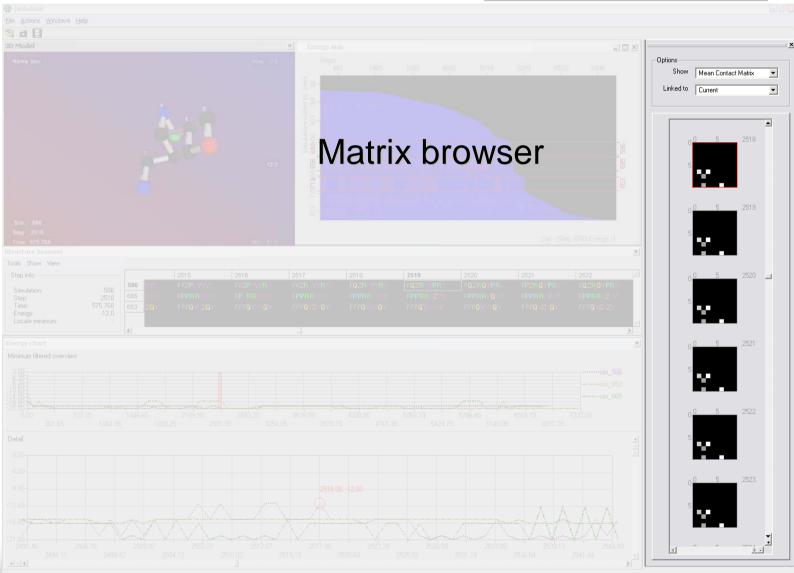
3D structure viewer

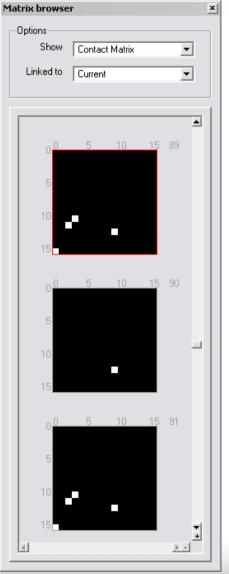
Structure browser

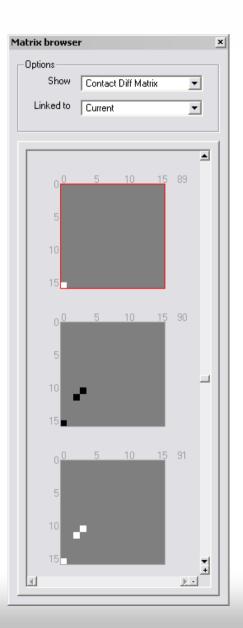

Structure browser									×
Tools Show View									
_Step info			144	145	146	147	148	149	
Simulation:	920	712	FRRFLFFLLFRRLFL	FRRFLFFLLFRRLFR	FRRFLFFLLFRRLLR	FFRFLFFLLFRRLLR	FFFFLFFLLFRRLLR	FFFFLFFLLFRRLFR	
Step:	146	145	FLFFLFFLLFRRFFF	FLRFLFFLLFRRFFF	FLRFLFFLLFRRLFF	FLR FLFFLLFRR LLF	FLRFLFFLLFRRLLR	FLRFLFFLLFRRLFR	
Time:	43.769	920	FLFFLFFLLFRRFLL	FLFRLFFLLFRRFLL	FLFFLFFLLFRRFLL	FLFFRFFLLFRRFLL	FLFFLFFLLFRRFLL	FLFRLFFLLFRRFLL	
Energy: Locale minimum:	-3.0	394	FLRFLFFLLFRRFLR	FFRFLFFLLFRRFLR	FFFFLFFLLFRRFLR	FFFFLFFLLFRRFLL	FFFFLFFLLFRRFLR	FFFFLFFLLFRR FLL	
		•						J	

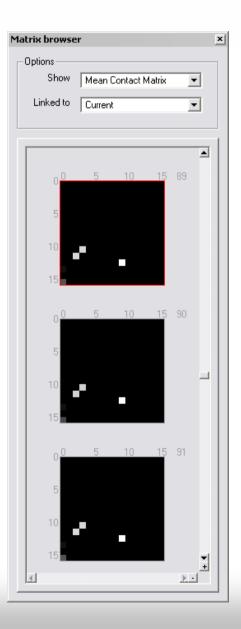
Structure browser											x
Tools Show View											
Step info	——— [142	143	144	145	146	147	148	149	150	151 🛋
Simulation: Step: Time: 4 Energy: Locale minimum:	920 - 146 - 43.769 -	712 712 714 714 714 714 714 714 714 714 714 714									

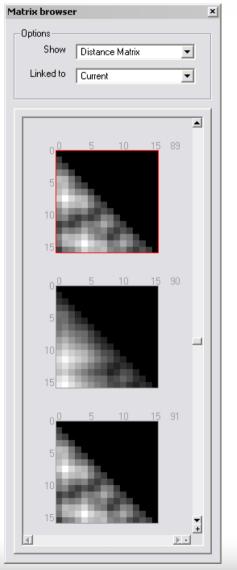

Structure browser

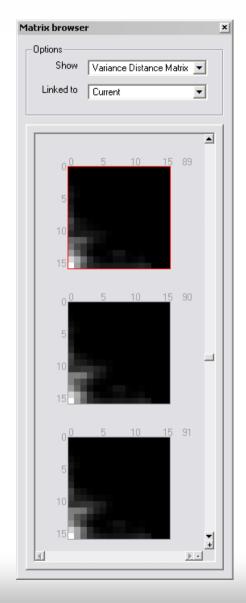

Structure browser																		×
Tools Show View																		
_Step info			141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	15
Simulation:	394	712								10		10				21		
Step:	154	145		21					16				16		16		16	
Time:	44.477	920		21		21		21		21		21		21		21		
Energy: Locale minimum:	-11.0	394	· ·	21								21		21		21		
		•																▶




- Energy viewer
- Overview+detail technique
 - Preserve the overview while exploring details
 - Space multiplexing or time multiplexing
 - Geometric zoom or semantic zoom




Matrix browser



Matrix browser

3. Pinfoldvis Demo

Tool demonstration

4. Bibliography

- Baldonado, M. Q. W., Woodruff, A., and Kuchinsky, A. Guidelines for using multiple views in information visualization. In Advanced Visual Interfaces (2000), pp. 110–119.
- Dill, K. A. Polymer principles and protein folding. Protein Science 8 (1999), 1166–1180.
- Card, S. K., Mackinlay, J. D., and Shneiderman, B., Eds. Readings in Information Visualization — Using Vision to Think. Morgan Kaufmann, 1999.
- Will, S. Exact, constraint-based structure prediction in simple protein models. PhD thesis, Universität Jena, 2005.
- Wolfinger, M. Energy Landscapes of Biopolymers. PhD thesis, Fakultät für Chemie, Universität Wien, 2004.