
Approximate Graph Products

Wilfried Imrich

TBI Winterseminar

Bled, Slovenia

February 20, 2007



The main motivation is the potential role of approximate graph prod-

ucts for the definition and recognition of characters in evolutionary

science and bioinformatics. The investigation of approximate graph

products (AGP) is a new field, essentially initiated by Peter Stadler.

Problems are still very intuitively formulated. In this talk we consider

the following version:

Given a graph G, find a product G1 × G2 × · · · × Gk such that G can

be obtained from G1 × G2 × · · · × Gk by addition or deletion of just a

few vertices and edges.

1



The problem is NP-complete in general if one asks for optimal solu-

tions, but polynomial if the number of edges and vertices involved is

bounded by an integer k.

There are similarities to canonical isometric embeddings of graphs into

Cartesian products as introduced by Ron Graham in computer science

and to H. J. Bandelt’s application of median networks (retracts of

hypercubes and Hamming graphs) in the phylogeny of mitochondrial

DNA.

2



The original problem, as formulated by Peter Stadler, pertains to

oriented graphs with respect to the direct product of graphs.

This is a very difficult problem. It is considerably easier for

the direct product of undirected graphs

the strong product of undirected graphs

and best understood for

the Cartesian product.

3



Since the graphs in question will be large, we need fast algorithms for

the recognition of AGP, almost linear if possible.

Consider the recognition complexities for products. Given a connected

graph on m edges and n vertices, the complexity of representing it as

a product of indecomposable factors is

O(m) for the Cartesian product

and at least O(n5) for the strong and the direct product. (For the

direct product additional connectivity conditions are needed to ensure

termination of the algorithm.)

For the direct product of oriented graphs large classes are known that

can be treated by polynomial algorithms, but no complete answer is

yet known.

4



It seems that the search for fast algorithms for the recognition of

AGPs leads to new algorithms that improve the recognition complex-

ities of the strong and the direct product and maybe to a new and

simpler linear algorithm for the Cartesian product.

In the case of the strong and the direct product the resulting algorithm

method is could be called a fast parametrized algorithm.

5



Now this talk becomes more concrete. It continues with the definition

of the Cartesian product and two examples of approximate Cartesian

products.

Then comes the strong product, an example of an approximate strong

product, and an indication how one can recognize it.

An idea to recognize strong products as such and an estimate of the

complexity.

This is followed by a treatment of the examples for approximate Carte-

sian products and an outlook on further investigations.

6



Definition of the Cartesian product G2H

V (G2H) = V (G) × V (H),

E(G2H) that is the set of all pairs [(u, v), (x, y)]

where either u = x and [v, y] ∈ E(H) or [u, x] ∈ E(G) and v = y

See the example on the next page:

7



x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

8



First example of an approximate Cartesian product

1

2

3

9



Second example of an approximate Cartesian product

10



Example of an strong product

11



Example of an approximate strong product

12



Idea to recognize it as an approximate strong product

13



New algorithm for the recognition of strong products

1. Every neighborhood of a vertex is a neighborhood. Factor all of

them.

2. Successively combine factorizations of neighborhoods with inter-

sections that contain at least two vertices.

3. Check whether this yields a factorization of the given graph. Re-

duce the number of factors if necessary.

(For details see the talk by Werner Klöckl.)

14



Complexity of this approach if the degrees of G are bounded by d:

Every neighborhood can be factored in O(d5) time. If G as n vertices

Step 1 can be done in O(nd5) time.

Steps 2 and 3 can be effected most likely in O(m) = O(nd) time,

thus d4O(m) is the bound.

This compares to n5 in general.

Essentially the same bound should apply for the recognition of ap-

proximate strong (and direct) products.

15



With the Cartesian product it is more difficult to define subproducts

that can be used to cover the graph. One way is to use subproducts

generated by the edges incident with every given vertex. They can

be found in linear time each.

See the examples on the next slides.

Then the same procedure is followed as in the case of the strong

product.

16



1

2

3

1

2
3

Partial products to the first example of an

approximate Cartesian graph product.

17



Basepoint 1

Basepoint 2

Partial products to the second example of an

approximate Cartesian graph product.

18



Conclusion

We expect to be able to find algorithms of low complexity for the

recognition of approximate products for the Cartesian, the strong

and the direct product of undirected graphs, and for a large class of

oriented graphs in the case of the direct product.

The results will in general not be optimal, but good in a certain sense

and normed (as the canonical isometric embedding of graphs into

Cartesian products).

”We” refers to Peter Stadler in Leipzig, me in Leoben, and those

members of our teams who work in this area. Currently these are

Clemens Brand, Werner Klökl, Tomas Kupka, Wilfried Imrich in Leoben

and Hellmuth Marc and Peter Stadler in Leipzig. We also appreciate

the support by Christoph Flamm from Vienna.

19


