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Repeat: Stochastic proximity embedding (SPE)

The SPE algorithm is using the idea of stochastic proximity
embedding (introduced by D. K. Agrafiotis).

We are given relations/proximities/distances between n objects.

SPE for a pre-described number of steps extends or contracts
edges; in our case, the algorithm at every step modifies a random
edge to be of length one. The algorithm starts with a random
representation and iteratively refines it by repeatedly selecting an
edge at random and adjusting its coordinates, so that the edge
length becomes one. The magnitude of these adjustments is
controlled by a temperature, which decreases during the course of
the simulation to avoid oscillations.

The algorithm is programmatically simple, robust, convergent and
scales linearly with respect to sample size.
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Motivation

W. Andreas Svrcek-Seiler asked at 2004 Winterseminar in his talk
0.02e on Embedding, the following questions:

... Without any mathematical rigor one might state that SPE
algorithm allows “nice” representations of *some* graphs,
especially if they are highly connected.

Why is that?

When using SPE algorithm with all proximities equal to one,
why are objects always drawn similar to a representation on
the following slide?

How does that some objects are getting mapped inside the
representation and not on the boundary?

Why does the number of interior objects differ with n?

Boris Horvat, Tomaž Pisanski, Arjana Žitnik, Winterseminar, Bled, February 2009 3 / 18



Symmetric concentric representation of K23

Symmetric planar representation of the complete graph K23.
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The energy of a graph representation

Usually the algorithms for automatic drawing of graphs are based
on the local search method, where the total energy of the drawing
is being minimized.

In graph drawing algorithms usually only the distances of adjacent
and sometimes also non-adjacent vertices are taken into
consideration.
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An example: Spring embedders

Spring embedders: Edges are modeled with springs. Two forces are
defined (the attractive force acts between adjacent vertices and the
repulsive one between all pairs of vertices). The force between two
vertices depends on the Euclidean distance between them. The
minimal energy corresponds to the equilibrium point of the forces.

The following equation is the energy function for the well-known
spring embedding algorithm of type Fruchterman-Reingold:

εFR(ρ,G ) =
∑
v∈V

 ∑
u∈N(v)

‖ρ(u)− ρ(v)‖3

3k
− k2

∑
u∈V

log ‖ρ(u)− ρ(v)‖

 ,

where N(v) is the set of all neighbor vertices of vertex v in the
graph G , and where V = V (G ).
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The energy of a graph representation

The “energy” that is being investigated in this talk is simply the
quotient of the longest and the shortest edge representation. Such
quotient is called the dilation coefficient of the representation.

The minimum of all dilation coefficients over all planar
representations of graph G is called the dilation coefficient ∆(G ) of
a graph.

It is a graph invariant.
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The dilation coefficient

Graphs for which ∆(G ) = 1 are quite special as they can be drawn
in the plane with all edges of the same length. Such graphs are
called unit-distance graphs.

As opposed to unit-distance graphs, the complete graphs have the
maximal possible dilation coefficient for a given number of vertices.

In this talk, we will observe ε∞(ρ,G ) := max
e∈E(G)

‖ρ(e)‖.

Considering min
e∈E(G)

‖ρ(e)‖ = 1, algorithms that minimize the energy

function ε∞ also minimize the dilation coefficient of G .
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The upper bound for ∆ - the idea

R1

Rt

Rt-2

Rt-3

R1 - R2 >= 1

Every graph representation gives the upper bound for the dilation coefficient. We present the idea of a symmetric

concentric representation of n vertices in R2.
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General non-uniform concentric representation

Let rm = 1
2 sin( π

m )
be the radius of the circumscribed circle of the

regular unit side m-gon.

The idea is to place some vertices onto the outer orbit with the
smallest radius as possible and to optimally place all remaining
vertices (in a recursive way) inside of the outer orbit. To achieve
this, we observe two situations:

1 We try to place n −m vertices into points of a regular
(n −m)-gon with side one and remaining m vertices inside a
disc with the radius smaller than rn−m − 1.

2 We try to place n −m vertices into points of a regular
(n−m)-gon with points circularly embedded onto a circle with
radius Rm + 1, where Rm is the radius of the circumscribed
circle of the smallest disc containing the remaining m vertices.
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General non-uniform concentric representation

Define an ordered integer partition [m1,m2, . . . ,mt ] of a natural
number n, where n = m1 + m2 + . . .+ mt and
m1 > m2 > . . . > mt > 0.

The general (or non-uniform) concentric representation
ρ

[m1,m2,...,mt ]
(Kn) of the complete graph Kn with respect to the

ordered integer partition [m1,m2, . . . ,mt ], is defined as follows: we
place n vertices on t concentric cycles, mi vertices into mi evenly
spaced points on the i-th cycle with radius Ri , such that every pair
of such points is at distance at least one and such that two
neighboring cycles are at least one apart; i.e.,
Ri = max{rmi ,Ri+1 + 1}.
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General non-uniform concentric representation

An ordered integer partition [m1,m2, . . . ,mt ] of an integer n that
gives the optimal ∆ could be calculated using a dynamic
programming method with the top-down approach and the
memorization.

The Bellman equation for recursively calculating the smallest
radius Rn of the outer cycle of an optimal general concentric
representation of the complete graph Kn, is given by

Rn = min
0≤m<n

{
{rn−m | rn−m − Rm > 1}

⋃
{Rm + 1 | rn−m − Rm ≤ 1}

}
.

Concentric radii give the general concentric ordered integer
partition, which defines the general concentric representation and
its dilation coefficient.
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Symmetric concentric representations of K5, . . . , K24

Symmetric general non-uniform concentric representations of complete graphs Kn , 5 ≤ n ≤ 24.

Boris Horvat, Tomaž Pisanski, Arjana Žitnik, Winterseminar, Bled, February 2009 13 / 18



Circular packing

Our problem is, in addition to famous Erdös problems, related to
the problem of packing unit circles into a circle with the smallest
radius.

Namely, if we represent the vertices of Kn as the centers of the
unit circles, every vertex is at least at distance 1

2 from the
boundary of the larger circle and so the maximum distance
between any two vertices of Kn is at most r − 1, where r is the
radius of the larger circle.

The circular packing problem uses only discs with diameter exactly
one and hence, places centers of each two discs at distance at least
one. This is not necessary when obtaining the dilation coefficient
of the complete graph; and hece, the problems are not the same.
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Circular packing : An example

(a) Do sedaj znano najbolǰse pakiranje kroga s 23 enotskimi krogi. (b) Polni graf K23 prirejen temu pakiranju ima

dilacijski koeficient 4,5445.
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Conclusions : Comparisons

!"#$#%& 

Table I. Upper and lower bounds for the dilation coefficient of the complete graph K
n
 on n  

vertices compared to dilation coefficients of the representations obtained by graph-drawing 

algorithms SAAlg, FRAlg and SPEAlg and to the dilation coefficient of the underlying graph 

of the circular packing.  
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 SAAlg FRAlg SPEAlg 

2 0.4850 2 1 {2} 1 100.00% 1 1 1 

3 0.8188 2 1 {3} 1 100.00% 1 1 1 

4 1.1002 2 1.4142 {4} 1.4142 100.00% 1.4142 1.4164 1.4201 

5 1.3480 2 1.6180 {5} 1.6180 100.00% 1.6297 1.6383 1.6374 

6 1.5722 2 1.9021 {5, 1} 2 105.15% 1.9044 2.0781 1.9906 

7 1.7782 2 2 {6, 1} 2 100.00% 2.0055 2.0566 2.0795 

8 1.9701 4 2.2470 {7, 1} 2.2470 100.00% 2.2568 2.3307 2.3591 

9 2.1502 4 2.6131 {8, 1} 2.6131 100.00% 2.6979 2.8162 2.7269 

10 2.3206 4 2.8794 {9, 1} 2.7938 97.03% 3.3205 3.3825 3.0530 

11 2.4827 4 2.9544 {9, 2} 2.8794 97.46% 3.3523 3.6682 3.2387 

12 2.6376 4 3.1068 {9, 3} 2.9960 96.43% 3.1614 3.7134 3.5829 

13 2.7861 4 3.2361 {10, 3} 3.2361 100.00% 3.4372 4.0166 3.7671 

14 2.9290 4 3.4142 {10, 4} 3.3251 97.39% 3.6075 4.3921 4.0907 

15 3.0669 4 3.5133 {11, 4} 3.5202 100.19% 3.9151 4.2499 4.5065 

16 3.2003 4 3.6636 {11, 5} 3.5933 98.08% 3.7454 4.6231 4.8885 

17 3.3296 4 3.8637 {12, 5} 3.7837 97.93% 4.0499 4.6431 4.6870 

18 3.4551 4 3.9593 {11, 6, 1} 3.8637 97.59% 3.9928 5.1883 5.2157 

19 3.5772 4 4 {12, 6, 1} 3.8637 96.59% 4.2001 5.1174 5.6607 

20 3.6961 6 4.1481 {13, 6, 1} 4.1015 98.88% 4.4755 5.2817 5.9600 

21 3.8121 6 4.2734 {13, 7, 1} 4.2348 99.10% 5.2243 5.7495 6.5630 

22 3.9253 6 4.4940 {14, 7, 1} 4.4389 98.77% 5.4136 5.6523 6.8137 

23 4.0360 6 4.6131 {14, 8, 1} 4.5445 98.51% 5.3458 5.8755 6.8752 

24 4.1443 6 4.7834 {15, 8, 1} 4.6449 97.10% 5.6482 5.7917 7.4315 

25 4.2504 6 4.8968 {15, 9, 1} 4.7526 97.05% 5.8130 6.4269 7.6314 

26 4.3544 6 4.9726 {15, 9, 2} 4.8281 97.09% 5.8125 6.7805 7.9892 

27 4.4564 6 5.1258 {16, 9, 2} 4.8856 95.31% 5.8360 6.5777 7.8196 

28 4.5565 6 5.1547 {16, 9, 3} 5.0149 97.29% 6.1285 6.9569 8.5486 

29 4.6548 6 5.2361 {16, 10, 3} 5.1384 98.13% 6.5785 6.4743 7.9189 

30 4.7515 6 5.4142 {16, 10, 4} 5.1977 96.00% 6.3015 7.3133 9.5919 

31 4.8466 6 5.4190 {17, 10, 4} 5.2915 97.65% 6.5744 7.4074 8.5796 

32 4.9401 6 5.5258 {17, 11, 4} 5.4274 98.22% 7.0711 7.9482 10.3989 

33 5.0322 6 5.6770 {17, 11, 5} 5.4697 96.35% 6.8092 8.0789 10.5514 

34 5.1229 6 5.7588 {18, 11, 5} 5.6108 97.43% 7.2694 7.6486 10.6985 

35 5.2123 6 5.8637 {18, 12, 5} 5.6962 97.14% 7.5832 7.9259 12.4338 

36 5.3005 6 5.9744 {17, 12, 6, 1} 5.7467 96.19% 7.1789 7.6474 11.7903 

37 5.3874 6 6 {18, 12, 6, 1} 5.7588 95.98% 7.6798 7.6583 11.5260 

38 5.4731 8 6.0548 {19, 12, 6, 1} 5.9532 98.32% 7.8716 8.0515 11.6702 

39 5.5577 8 6.1575 {19, 13, 6, 1} 6.0482 98.23% 7.7182 9.0842 12.6976 

40 5.6413 8 6.2832 {19, 13, 7, 1} 6.1091 97.23% 8.1228 9.9491 13.8120 

 

 

Upper bounds for the dilation coefficient of the complete graph Kn on n vertices compared to dilation coefficients

of the representations obtained by several graph-drawing algorithms.
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B. Horvat, T. Pisanski, A. Žitnik, The dilation coefficient of a
complete graph, to be published in CCA (2009).

E. Specht, The best known packings of equal circles in the
unit circle, http://www.packomania.com (Last update:
December 18, 2008).

M. Kaminski, P. Medvedev and M. Milanič, The plane-width
of graphs, submitted (2009).
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Thank you!
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Boris Horvat, Tomaž Pisanski, Arjana Žitnik, Winterseminar, Bled, February 2009 18 / 18


